
Probabilistic Model Checking of
Randomised Distributed

Protocols
using PRISM

Dave Parker

University of Birmingham

VPSM PhD School, Copenhagen, October 2006

Part II

Tool Support: PRISM

Overview

• Tool support for probabilistic model checking

• The PRISM tool

− functionality, features, resources

− modelling language

− property specification

− tool demo

− efficient symbolic implementations

• Related work/research topics

Motivation

• Complexity of PCTL model checking

− generally polynomial in model size (number of states)

• State space explosion problem

− models for realistic case studies are typically huge

• Clearly tool support is required

• Benefits:

− fully automated process

− high-level languages/formalisms for building models

− visualisation of quantitative results

Probabilistic model checkers

• PRISM (this talk) – DTMCs, MDPs, CTMCs + rewards

• ETMCC/MRMC – DTMCs, CTMCs + reward extensions

• LiQuor – LTL verification for MDPs (Probmela language)

• RAPTURE - prototype for abstraction/refinement of MDPs

• Simulation-based probabilistic model checking:

− APMC, Ymer (both based on PRISM language)

• CSL model checking for CTMCs: APNN-Toolbox, SMART

• Multiple formalism/tool solutions: CADP, Möbius

The PRISM tool

• PRISM: Probabilistic symbolic model checker

− developed at the University of Birmingham, since approx. 1999

− free, open source

− versions for Linux, Unix, Mac OS X, Windows

• Construction of models:

− DTMCs, MDPs , CTMCs + costs/rewards

• Verification of:

− PCTL, CSL + extensions + costs/rewards

• www.cs.bham.ac.uk/~dxp/prism

PRISM - Functionality

• Constructs three types of probabilistic models:

− DTMCs, MDPs, CTMCs

− also: PTAs with digital clocks by manual translation

− augmented with costs/rewards

• The PRISM language – high-level model description language

• PRISM simulator - generate model traces for debugging, etc.

• Variety of import/export functionality:

− model output: text files, Dot graphs, Matlab, ETMCC/MRMC

− model import: text files

− other input formalisms via language translation: PEPA, CSP

− direct connections to other tools: APMC, ProVer/Ymer

PRISM - Functionality

• Supports verification of:

− PCTL (for DTMCs, MDPs), CSL (for CTMCs)

− plus “quantitative” extensions

− cost/reward-based properties

• Powerful, flexible implementation

− efficient symbolic (BDD-based) implementations

− multiple computation engines

− wide range of model analysis methods

− sampling-based computation (discrete-event simulation)

PRISM - Functionality

• Graphical user interface

− model/property editor

− easy automation of verification experiments

− graphical visualisation of results

− debugging tool: simulation engine

• Command-line version

− same underlying verification engines

− useful for scripting, batch jobs

Getting PRISM + Other Resources

• PRISM website: www.cs.bham.ac.uk/~dxp/prism

− tool download: binaries, source code

− online example repository (40+ case studies)

− online documentation

− support: help forum, bug tracking, feature requests

• hosted on Sourceforge

− related publications, links

PRISM modelling language

• Simple, state-based language for DTMCs/MDPs/CTMCs

− based on Reactive Modules [Alur/Henzinger]

• Modules (system components, composed in parallel)

• Variables (finite-valued, local or global)

• Guarded commands (labelled with probabilities/rates)

• Synchronisation (CSP-style) + process-algebraic operators
(parallel composition, action hiding/renaming)

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

PRISM language example

// hermans self-stabilisation algorithm [Her90]

dtmc // algorithm is synchronous

module process1 // first of N=5 symmetric processes

x1 : [0..1]; // one bit per process; xi=x(i-1) means process i has a token

[step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);

[step] !x1=x5 -> (x1'=x5);

endmodule

// add further processes through renaming
module process2 = process1 [x1=x2, x5=x1] endmodule
module process3 = process1 [x1=x3, x5=x2] endmodule
module process4 = process1 [x1=x4, x5=x3] endmodule
module process5 = process1 [x1=x5, x5=x4] endmodule

// can start in any possible configuration
init true endinit

// cost - 1 in each state (expected number of steps)
rewards true : 1; endrewards

PRISM – Property specifications

• Based on (probabilistic extensions of) temporal logic

− incorporates PCTL for DTMCs/MDPs, CSL for CTMCs

• Examples:

− P<0.001 [F shutdown] - “shutdown eventually occurs with
probability at most 0.001”

− P<0.2 [F[t,t] (deliv_rate < min)] “the probability that the
current packet delivery rate has dropped below minimum at
time t is less than 0.2”

− P≥0.95 [!repair U≤200 done] - “with probability 0.95 or
greater, the process will successfully complete within 200
hours and without requiring any repairs”

• No counterexamples (error traces) in prob. model checking

PRISM – Property specifications

• Focus on quantitative properties, compute actual values

− P=? [F≤T “shutdown”] - “what is the probability of shutdown
occurring within T hours?”

• Best/worst-case scenarios

− P=? [F “error” {“init”}{max}] - “what is the worst-case
error probability over all possible initial configurations?”

− Pmin=? [!end2 U end1] - “what is the minimum probability
of process 1 finishing before process 2, over all possible
schedulings of the processes?”

• Experiments – ranges of model/property parameters

− P=? [F≤T error] for N=1..5, T=1..100

− identify patterns, trends, anomalies in results

Optimum probability
of leader election by
time T for various coin
biases

Probability that 10%
of gate outputs are
erroneous for varying
gate failure rates and
numbers of stages

Worst-case expected
number of steps to
stabilise for initial
configurations with K
tokens amongst N
processes

Cost- and reward-based properties

• Costs and rewards

− real-valued quantities assigned to states/transitions

• Instantaneous – state-based measures

− current queue size, number of operational channels, ...

− “what is the expected size of the message queue at time t?”

− “what is the long-run expected size of the queue?”

• Cumulative – state or transition (impulse) costs/rewards

− time, power consumption, messages lost, ...

− “what is the expected power consumption during the first 2
hours of operation?”

− “what is the worst-case expected time taken for the protocol
to terminate?”

PRISM Demo

PRISM Screenshots

PRISM Screenshots

PRISM Screenshots

Efficiency - Symbolic techniques

• State space explosion

− models of real-life systems typically huge

• Symbolic probabilistic model checking

− data structures based on binary decision diagrams (BDDs)

− compact storage: exploit model structure and regularity

− efficient implementation of graph traversal fixed point algorithms

• PRISM: multiple computation engines

− MTBDDs (BDD extension): storage/analysis of very large models
(given structure/regularity), numerical computation can blow up

− sparse matrices: fastest solution for smaller models (<106 states),
prohibitive memory consumption for larger models

− hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)

Efficiency – Other strategies

• Approximate model checking (see also APMC [LHP06])

− sampling using Monte Carlo discrete-event simulation

− performed at modelling language level – better scalability

− potentially huge number of samples for accurate answers

− also: statistical hypothesis testing, see e.g. [YS02]

• Parallelisation of model checking

− distribution of storage/computation across multi-processor
machines [KPZM04], networked clusters [ZPK05], grids

− potentially promising for symbolic approaches – reduced I/O

− simulation-based computations much easier to distribute

Ongoing research areas

• Abstraction and refinement, see e.g. [DJJL01,KNP06a]

− construct smaller, abstract model by removing
information/variables not relevant to property being checked,
iteratively refine abstraction if analysis fails

• Symmetry reduction [DM06, KNP06b]

− exploit replication of identical components

• Partial order reduction, see e.g. [BGC04], [DN04]

− exploit commutativity of concurrently executed transitions

• Compositionality, see e.g. [dAHJ01,Che06]

− analyse full model based on analysis of sub-components

References

• [BGC04] C. Baier, M. Grosser, and F. Ciesinski. Partial order reduction
for probabilistic systems. In Proc. QEST’04, pages 230–239. IEEE
Computer Society Press, 2004.

• [Che06] L. Cheung. Reconciling Nondeterministic and Probabilistic
Choices. Ph.D. thesis, Radboud University of Nijmegen. 2006.

• [DJJL01] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen.
Reachability analysis of probabilistic systems by successive refinements.
In Proc. PAPM/PROBMIV’01, volume 2165 of LNCS, pages 39–56,
Springer, 2001.

• [DN04] P. D’Argenio and P. Niebert. Partial order reduction on
concurrent probabilistic programs. In Proc. QEST’04, pages 240–249.
IEEE Computer Society Press, 2004.

References

• [dAHJ01] L. de Alfaro, T. Henzinger and R. Jhala. Compositional
Methods for Probabilistic Systems. In CONCUR 01: Concurrency Theory,
12th International Conference, LNCS, Springer-Verlag, 2001.

• [DM06] A. Donaldson and A. Miller. Symmetry Reduction for
Probabilistic Model Checking using Generic Representatives. In Proc. 4th
International Symposium on Automated Technology for Verification and
Analysis (ATVA'06), Springer. October 2006.

• [KNP06a] M. Kwiatkowska, G. Norman and D. Parker. Game-based
Abstraction for Markov Decision Processes. In Proc. 3rd International
Conference on Quantitative Evaluation of Systems (QEST'06), pages 157-
166, IEEE CS Press. 2006.

• [KNP06b] M. Kwiatkowska, G. Norman and D. Parker. Symmetry
Reduction for Probabilistic Model Checking. In Proc. 18th International
Conference on Computer Aided Verification (CAV'06), volume 4144 of
LNCS, pages 234-248, Springer, 2006.

References

• [KPZM04] M. Kwiatkowska, D. Parker, Y. Zhang and R. Mehmood.
Dual-Processor Parallelisation of Symbolic Probabilistic Model Checking.
In Proc. MASCOTS'04, pages 123-130, IEEE CS Press. 2004.

• [LHP06] R. Lassaigne, T. Hérault and S. Peyronnet. APMC 3.0:
Approximate verification of Discrete and Continuous Time Markov Chains.
In Proc. 3rd International Conference on Quantitative Evaluation of
Systems (QEST'06), 2006.

• [YS02] H. Younes and R. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In Proceedings of the 14th
International Conference on Computer Aided Verification, volume 2404 of
LNCS, pages 223-235, Copenhagen, Denmark, July 2002.

• [ZPK05] Y. Zhang, D. Parker and M. Kwiatkowska. A Wavefront
Parallelisation of CTMC Solution using MTBDDs. In Proc. International
Conference on Dependable Systems and Networks (DSN'05), pages 732-
742, IEEE Computer Society Press. 2005.

