Probabilistic Model Checking of
Randomised Distributed

Protocols
using PRISM

Dave Parker

University of Birmingham

VPSM PhD School, Copenhagen, October 2006

Part 11

Tool Support: PRISM

Overview

« Tool support for probabilistic model checking
« The PRISM tool

- functionality, features, resources
- modelling language

— property specification

— tool demo

- efficient symbolic implementations

« Related work/research topics

Motivation

Complexity of PCTL model checking

- generally polynomial in model size (number of states)
State space explosion problem

- models for realistic case studies are typically huge
Clearly tool support is required
Benefits:

— fully automated process
- high-level languages/formalisms for building models

- visualisation of quantitative results

Probabilistic model checkers

PRISM (this talk) - DTMCs, MDPs, CTMCs + rewards
ETMCC/MRMC - DTMCs, CTMCs + reward extensions
LiQuor — LTL verification for MDPs (Probmela language)
RAPTURE - prototype for abstraction/refinement of MDPs

Simulation-based probabilistic model checking:
- APMC, Ymer (both based on PRISM language)
CSL model checking for CTMCs: APNN-Toolbox, SMART

Multiple formalism/tool solutions: CADP, Mo6bius

The PRISM tool

PRISM: Probabilistic symbolic model checker

- developed at the University of Birmingham, since approx. 1999
- free, open source
— versions for Linux, Unix, Mac OS X, Windows

Construction of models:
- DTMCs, MDPs , CTMCs + costs/rewards
Verification of:

- PCTL, CSL + extensions + costs/rewards

www.cs.bham.ac.uk/~dxp/prism

PRISM - Functionality

Constructs three types of probabilistic models:

The PRISM language - high-level model description language

PRISM simulator - generate model traces for debugging, etc.

DTMCs, MDPs, CTMCs
also: PTAs with digital clocks by manual translation

augmented with costs/rewards

Variety of import/export functionality:

model output: text files, Dot graphs, Matlab, ETMCC/MRMC
model import: text files
other input formalisms via language translation: PEPA, CSP

direct connections to other tools: APMC, ProVer/Ymer

PRISM - Functionality

o Supports verification of:

PCTL (for DTMCs, MDPs), CSL (for CTMCs)
plus “quantitative” extensions

cost/reward-based properties

o Powerful, flexible implementation

efficient symbolic (BDD-based) implementations
multiple computation engines
wide range of model analysis methods

sampling-based computation (discrete-event simulation)

PRISM - Functionality

Graphical user interface

- model/property editor
- easy automation of verification experiments
— graphical visualisation of results

- debugging tool: simulation engine

Command-line version

- same underlying verification engines

- useful for scripting, batch jobs

Getting PRISM + Other Resources

« PRISM website: www.cs.bham.ac.uk/~dxp/prism

tool download: binaries, source code

online example repository (40+ case studies)
online documentation

support: help forum, bug tracking, feature requests

« hosted on Sourceforge
related publications, links

PRISM modelling language

« Simple, state-based language for DTMCs/MDPs/CTMCs

- based on Reactive Modules [Alur/Henzinger]
« Modules (system components, composed in parallel)
« Variables (finite-valued, local or global)
« Guarded commands (labelled with probabilities/rates)
o Synchronisation (CSP-style) + process-algebraic operators
(parallel composition, action hiding/renaming)

[send] (s=2) -> P : (s'=3)&(lost'=lost+1) + (1-p,..) : (s'=4);

< > < > — < > — —
action guard probability update probability update

PRISM language example

// hermans self-stabilisation algorithm [Her90]
dtmc // algorithm is synchronous
module processl // first of N=5 symmetric processes

x1 : [0..1]; // one bit per process; xi=x(i-1) means process i has a token
[step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] Ix1=x5 -> (x1'=x5);

endmodule

// add further processes through renaming

module process2 = processl [x1=x2, x5=x1] endmodule
module process3 = processl [x1=x3, x5=x2] endmodule
module process4 = processl [x1=x4, x5=x3] endmodule
module process5 = processl [x1=x5, x5=x4] endmodule

// can start in any possible configuration
init true endinit

// cost - 1 in each state (expected number of steps)
rewards true : 1; endrewards

PRISM - Property specifications

« Based on (probabilistic extensions of) temporal logic

— incorporates PCTL for DTMCs/MDPs, CSL for CTMCs
« Examples:

- P<0.001 [F shutdown] - “shutdown eventually occurs with
probability at most 0.001”

- P<0.2 [F[t,t] (deliv_rate < min)] “the probability that the
current packet delivery rate has dropped below minimum at
time t is less than 0.2"

- P=0.95 [repair U200 done] - “with probability 0.95 or
greater, the process will successfully complete within 200
hours and without requiring any repairs”

« No counterexamples (error traces) in prob. model checking

PRISM - Property specifications

« Focus on quantitative properties, compute actual values

- P=?[F£T “shutdown”] - “"what is the probability of shutdown
occurring within T hours?”

« Best/worst-case scenarios

- P=?[F “error” {"init"}{max}] - “what is the worst-case
error probability over all possible initial configurations?”

— Pmin=? ['lend2 U end1] - “"what is the minimum probability
of process 1 finishing before process 2, over all possible
schedulings of the processes?”

« Experiments - ranges of model/property parameters
- P=?1[F<T error] for N=1..5, T=1..100

- identify patterns, trends, anomalies in results

o --o---8---b
B =< &

PRISM [21]

—e—), =0.01
—a—). =0.02
—a—) =0.03
—— L =0.04
Analytical [7]
8 -e- 1-001
-8-) =002
-&=-) =003

&
@

£
o]

Probability

o
1N

o
]
A

-#= % =004

1 2 3 4 5 5] 7
Number of restorative stages

Probability that 10%
of gate outputs are
erroneous for varying

gate failure rates and £ |
numbers of stages 206
E;0.
E (1),

2y

N
;

N
s

Optimum probability
of leader election by
time T for various coin
biases

Expected time

—e— N=19
—— =17
p | —a—N=15
——N=13
——N=11
N=9
—a— N=7
—i N =5
—— N=3

35791113151?19
K

Worst-case expected
number of steps to
stabilise for initial
configurations with K
tokens amongst N
processes

Cost- and reward-based properties

« Costs and rewards
- real-valued quantities assigned to states/transitions
« Instantaneous - state-based measures

- current queue size, number of operational channels, ...
- “what is the expected size of the message queue at time t?”

- “what is the long-run expected size of the queue?”
« Cumulative - state or transition (impulse) costs/rewards

- time, power consumption, messages lost, ...

- “what is the expected power consumption during the first 2
hours of operation?”

- “what is the worst-case expected time taken for the protocol
to terminate?”

PRISM Demo

PRISM Screenshots

lad PRISM 3.0.betal
File Edit Model Properties Qptions

-

BIRDE]

PRISM Model File: cluster.sm

" Model: cluster.sm
= Twpe: Stochastic (CTMC)

@ I Modules
@ & Left
L] left_n
o mire 0

o max: left_mx

o init: left_msx
@ & |eft: bool

o init: false

® & Right
@ A REepairman
& & Line
© & Toleft
© & ToRight

@ [Constants
© o Nint
© o |eft_mx : int
© @ right_mx : int
2 o k:int
@ O line_rate . double
©- o Toleft_rate : double
@ o Toright_rate : double
® B QPERATIOMNAL | bool
@ o MINIMUM double
@ o REPAIR : bool

Built Model

Mo of states: 4150
KMo of transitions: 19552

- A

S0 workstation cluster THREQDD

o A dxpsoxn 11,,01,500
stochastic
const int N; 7 number of workstations in each cluster

§§ const int Teft_mx = N; 7 nuwber of work stations in lefr cluster
i const int right_mx = N; /7 number of work stations in ripht cluster

S winigue Q05 requires 374%N connected warkstations opperational
const int k=Ffloor{0.75%N);
formula minimum = (left_n>=k & Toleft_n) |
(right_ns>=k & Toright_n) |
({lefi_n+right_n)>=k & Toleft_n & line_n & Toright_n);

A7 opates

const double Tine_rate = 0.0002;
const double Toleft_rate = 0.00025;
const double Toright_rate = 0,00025;

S0 lefr cluster
module ettt

Teft_n : [O..left_mx] imit left_mx; -7 number of workstations operztionzl
Teft : bool; ¢ being repzaired?

[startLleft] left & (left_n<left_mxd -> 1 : (left'=true);
[repairLeft] left & (left_n<left_mx) -> 1 : (left'=false) & (left_n'=sleft_n+1);
O (eft_n=03 -»> 0.002%lett_n : {(left_n'=left_n-1);

endmodule

S0 ripht cluster
imodule Right = Left[left_n=right_n,

left=right,
Teft_mnx=right_m:,
startLefrt=startRight,
repairLett=repairRight]

4]

lBuiIding model... done.

PRISM Screenshots

lud PRISM 3.0.betal - |2
File Edit Model Properties Options
EIESEIE
Properties list: fdatafprivate fluserfprism-examples fcluster/cluster.csl
~Properties 1| Experiments
(3
P 5=% ["premium"] : “]El
P 5=7 [!"minimum"]
P Po=1 [true U "premium"] Propert Defined Const... Status Method
P P=7 [true U<=T !"minimum"] P=?[true U[T... T=0.0:1.0E-... _|Dane Werification
¥ P=7 [true U[T,T] !"minimum" {1"minimun"}{max}] P=?[true U[T. N=2T=0.0:1. Dane SImAIAta
? P=? [true U<=T "premium” {"minimum"F{mint] P=¢[true U[T... N=3T=0.0:1... Stopped Wearification
? P=7 ["minimum" U<=T "premiun”" {"minimum"}<{min}] P=¢[true U<, |[N=3T=0.0:1.. Dane Wearification
? P=7 [!minimum” U>=T “minimum* {."minimun"3{max}] P=7[true U< [M=3:1:5T=0.. Done verification
P R=7 [I=T {!"minimum"}{min}]
P R=7 [C<=T]
P R=7 [C==T]
e that Q05 drops below minimurm guality within T time units (from the initial state)
Canstants
Marne | Type | Yalue
T |double |
MNew Graph
20.00002—
=
o
2
Label=z £ N=3
i Mame Definiti_on ! 0.000014 M=
minimum {lefi_n==k&Tolefi_n|{right_n>=k&Tori...
premium {lefti_n==left_mx&Tolefi_n)|{right_n>=r._. +— =5
0 T
0 10 20
T
Properties
lRunning experiment... done. J

PRISM Screenshots

had PRISM 3.0.betal - X
File Edit Model Properties Options
[%]m]e]m]
~Exploration | -Simulation Fath
&y Auto Update = o0 Model Type: Path Length: Total Time:
T ot Stochastic (CTMC) 18 44.030215385327935
) i E Resst Path State Rewards: Trans ition Rewards: Total Reward:
e 4373.594264201196 0.0 4373.5242642011596
% Do Update
Defined Constants:
E: rt Path
State time: |10 [V Auto M N=10,T=100.0
Action Rate U’f’date Step 1eft_n left right_n right r line line_n Toleft
® Left 0.01& leftn'=7 0 o (false) (false) false (false] Grue) (false)
Right 002 right_n'=4 1 @
Line 2.0E-4 line_n'=false > |
TaoRight 2.5E-4 Taright_n'=fal E: aom (falze) Talse
[starilLeft] 10.0 left'=true, '= 4 €]
[stanToleft] |10.0 r'=true, Toleft 5 | irue
& 10 false false
7 =)
~Path Modification 8 | (rue) true
] ()] (false) (false)
E Backtrack | | E Remowe | 12 Cj
12 [€))]
13 g
14
- Formulae 15 | (trug) (true)
! 16 (false) false
F‘%‘“j””&“{“i — 17 | | Grue)
rue =1 'minimum =
A 18 10 false false
? true U[T,T] M"minimum" ()
& true U<=T"premium" =
State labels:
¥ init =
¥ deadlock
& minimum
& premium - |
»
ILoading properties... done. J

Efficiency - Symbolic techniques

« State space explosion
- models of real-life systems typically huge
« Symbolic probabilistic model checking

— data structures based on binary decision diagrams (BDDs)

— compact storage: exploit model structure and regularity

— efficient implementation of graph traversal fixed point algorithms
« PRISM: multiple computation engines

- MTBDDs (BDD extension): storage/analysis of very large models
(given structure/regularity), numerical computation can blow up

— sparse matrices: fastest solution for smaller models (<10° states),
prohibitive memory consumption for larger models

- hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)

Efficiency — Other strategies

« Approximate model checking (see also APMC [LHP06])

- sampling using Monte Carlo discrete-event simulation
- performed at modelling language level - better scalability
- potentially huge number of samples for accurate answers

- also: statistical hypothesis testing, see e.g. [YS02]
« Parallelisation of model checking

- distribution of storage/computation across multi-processor
machines [KPZMO04], networked clusters [ZPKO05], grids

- potentially promising for symbolic approaches - reduced I/0

- simulation-based computations much easier to distribute

Ongoing research areas

Abstraction and refinement, see e.g. [DJJLO1,KNPO64a]

— construct smaller, abstract model by removing
information/variables not relevant to property being checked,
iteratively refine abstraction if analysis fails

Symmetry reduction [DM06, KNPO6Db]
- exploit replication of identical components
Partial order reduction, see e.g. [BGC04], [DNO4]

- exploit commutativity of concurrently executed transitions
Compositionality, see e.g. [dAHJO01,Che06]

- analyse full model based on analysis of sub-components

References

[BGCO04] C. Baier, M. Grosser, and F. Ciesinski. Partial order reduction
for probabilistic systems. In Proc. QEST04, pages 230-239. IEEE
Computer Society Press, 2004.

[Che06] L. Cheung. Reconciling Nondeterministic and Probabilistic
Choices. Ph.D. thesis, Radboud University of Nijmegen. 2006.

[DJILO1] P. D'Argenio, B. Jeannet, H. Jensen, and K. Larsen.
Reachability analysis of probabilistic systems by successive refinements.
In Proc. PAPM/PROBMIV’01, volume 2165 of LNCS, pages 39-56,
Springer, 2001.

[DNO4] P. D’Argenio and P. Niebert. Partial order reduction on
concurrent probabilistic programs. In Proc. QEST04, pages 240-249.
IEEE Computer Society Press, 2004.

References

[dAHJO1] L. de Alfaro, T. Henzinger and R. Jhala. Compositional
Methods for Probabilistic Systems. In CONCUR 01: Concurrency Theory,
12th International Conference, LNCS, Springer-Verlag, 2001.

[DMO6] A. Donaldson and A. Miller. Symmetry Reduction for
Probabilistic Model Checking using Generic Representatives. In Proc. 4th
International Symposium on Automated Technology for Verification and
Analysis (ATVA'06), Springer. October 2006.

[KNPO6a] M. Kwiatkowska, G. Norman and D. Parker. Game-based
Abstraction for Markov Decision Processes. In Proc. 3rd International
Conference on Quantitative Evaluation of Systems (QEST'06), pages 157-
166, IEEE CS Press. 2006.

[KNPO6b] M. Kwiatkowska, G. Norman and D. Parker. Symmetry
Reduction for Probabilistic Model Checking. In Proc. 18th International
Conference on Computer Aided Verification (CAV'06), volume 4144 of
LNCS, pages 234-248, Springer, 2006.

References

[KPZMO04] M. Kwiatkowska, D. Parker, Y. Zhang and R. Mehmood.
Dual-Processor Parallelisation of Symbolic Probabilistic Model Checking.
In Proc. MASCOTS'04, pages 123-130, IEEE CS Press. 2004.

[LHPO6] R. Lassaigne, T. Hérault and S. Peyronnet. APMC 3.0:
Approximate verification of Discrete and Continuous Time Markov Chains.

In Proc. 3rd International Conference on Quantitative Evaluation of
Systems (QEST'06), 2006.

[YS02] H. Younes and R. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In Proceedings of the 14th
International Conference on Computer Aided Verification, volume 2404 of
LNCS, pages 223-235, Copenhagen, Denmark, July 2002.

[ZPKO5] Y. Zhang, D. Parker and M. Kwiatkowska. A Wavefront
Parallelisation of CTMC Solution using MTBDDs. In Proc. International
Conference on Dependable Systems and Networks (DSN'05), pages 732-
742, IEEE Computer Society Press. 2005.

