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Part 11

Tool Support: PRISM



Overview

« Tool support for probabilistic model checking
« The PRISM tool

- functionality, features, resources
- modelling language

— property specification

— tool demo

- efficient symbolic implementations

« Related work/research topics



Motivation

Complexity of PCTL model checking

- generally polynomial in model size (number of states)
State space explosion problem

- models for realistic case studies are typically huge
Clearly tool support is required
Benefits:

— fully automated process
- high-level languages/formalisms for building models

- visualisation of quantitative results



Probabilistic model checkers

PRISM (this talk) - DTMCs, MDPs, CTMCs + rewards
ETMCC/MRMC - DTMCs, CTMCs + reward extensions
LiQuor — LTL verification for MDPs (Probmela language)
RAPTURE - prototype for abstraction/refinement of MDPs

Simulation-based probabilistic model checking:
- APMC, Ymer (both based on PRISM language)
CSL model checking for CTMCs: APNN-Toolbox, SMART

Multiple formalism/tool solutions: CADP, Mo6bius



The PRISM tool

PRISM: Probabilistic symbolic model checker

- developed at the University of Birmingham, since approx. 1999
- free, open source
— versions for Linux, Unix, Mac OS X, Windows

Construction of models:
- DTMCs, MDPs , CTMCs + costs/rewards
Verification of:

- PCTL, CSL + extensions + costs/rewards

www.cs.bham.ac.uk/~dxp/prism



PRISM - Functionality

Constructs three types of probabilistic models:

The PRISM language - high-level model description language

PRISM simulator - generate model traces for debugging, etc.

DTMCs, MDPs, CTMCs
also: PTAs with digital clocks by manual translation

augmented with costs/rewards

Variety of import/export functionality:

model output: text files, Dot graphs, Matlab, ETMCC/MRMC
model import: text files
other input formalisms via language translation: PEPA, CSP

direct connections to other tools: APMC, ProVer/Ymer



PRISM - Functionality

o Supports verification of:

PCTL (for DTMCs, MDPs), CSL (for CTMCs)
plus “quantitative” extensions

cost/reward-based properties

o Powerful, flexible implementation

efficient symbolic (BDD-based) implementations
multiple computation engines
wide range of model analysis methods

sampling-based computation (discrete-event simulation)



PRISM - Functionality

Graphical user interface

- model/property editor
- easy automation of verification experiments
— graphical visualisation of results

- debugging tool: simulation engine

Command-line version

- same underlying verification engines

- useful for scripting, batch jobs



Getting PRISM + Other Resources

« PRISM website: www.cs.bham.ac.uk/~dxp/prism

tool download: binaries, source code

online example repository (40+ case studies)
online documentation

support: help forum, bug tracking, feature requests

« hosted on Sourceforge
related publications, links



PRISM modelling language

« Simple, state-based language for DTMCs/MDPs/CTMCs

- based on Reactive Modules [Alur/Henzinger]
« Modules (system components, composed in parallel)
« Variables (finite-valued, local or global)
« Guarded commands (labelled with probabilities/rates)
o Synchronisation (CSP-style) + process-algebraic operators
(parallel composition, action hiding/renaming)

[send] (s=2) -> P : (s'=3)&(lost'=lost+1) + (1-p,..) : (s'=4);

< > < > — < > — —
action guard probability update probability update




PRISM language example

// hermans self-stabilisation algorithm [Her90]
dtmc // algorithm is synchronous
module processl // first of N=5 symmetric processes

x1 : [0..1]; // one bit per process; xi=x(i-1) means process i has a token
[step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] Ix1=x5 -> (x1'=x5);

endmodule

// add further processes through renaming

module process2 = processl [ x1=x2, x5=x1 ] endmodule
module process3 = processl [ x1=x3, x5=x2 ] endmodule
module process4 = processl [ x1=x4, x5=x3 ] endmodule
module process5 = processl [ x1=x5, x5=x4 ] endmodule

// can start in any possible configuration
init true endinit

// cost - 1 in each state (expected number of steps)
rewards true : 1; endrewards



PRISM - Property specifications

« Based on (probabilistic extensions of) temporal logic

— incorporates PCTL for DTMCs/MDPs, CSL for CTMCs
« Examples:

- P<0.001 [ F shutdown ] - “shutdown eventually occurs with
probability at most 0.001”

- P<0.2 [ F[t,t] (deliv_rate < min) ] “the probability that the
current packet delivery rate has dropped below minimum at
time t is less than 0.2"

- P=0.95 [ repair U200 done ] - “with probability 0.95 or
greater, the process will successfully complete within 200
hours and without requiring any repairs”

« No counterexamples (error traces) in prob. model checking



PRISM - Property specifications

« Focus on quantitative properties, compute actual values

- P=?[ F£T “shutdown” ] - “"what is the probability of shutdown
occurring within T hours?”

« Best/worst-case scenarios

- P=?[ F “error” {"init"}{max} ] - “what is the worst-case
error probability over all possible initial configurations?”

— Pmin=? [ 'lend2 U end1 ] - “"what is the minimum probability
of process 1 finishing before process 2, over all possible
schedulings of the processes?”

« Experiments - ranges of model/property parameters
- P=?1[ F<T error ] for N=1..5, T=1..100

- identify patterns, trends, anomalies in results
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Cost- and reward-based properties

« Costs and rewards
- real-valued quantities assigned to states/transitions
« Instantaneous - state-based measures

- current queue size, number of operational channels, ...
- “what is the expected size of the message queue at time t?”

- “what is the long-run expected size of the queue?”
« Cumulative - state or transition (impulse) costs/rewards

- time, power consumption, messages lost, ...

- “what is the expected power consumption during the first 2
hours of operation?”

- “what is the worst-case expected time taken for the protocol
to terminate?”



PRISM Demo



PRISM Screenshots

lad PRISM 3.0.betal
File Edit Model Properties Qptions
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PRISM Model File: cluster.sm

" Model: cluster.sm
= Twpe: Stochastic (CTMC)

@ I Modules
@ & Left
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o max: left_mx
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o init: false

® & Right
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const int k=Ffloor{0.75%N);
formula minimum = (left_n>=k & Toleft_n) |
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({lefi_n+right_n)>=k & Toleft_n & line_n & Toright_n);

A7 opates

const double Tine_rate = 0.0002;
const double Toleft_rate = 0.00025;
const double Toright_rate = 0,00025;

S0 lefr cluster
module ettt

Teft_n : [O..left_mx] imit left_mx; -7 number of workstations operztionzl
Teft : bool; ¢ being repzaired?

[startLleft] left & (left_n<left_mxd -> 1 : (left'=true);
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S0 ripht cluster
imodule Right = Left[left_n=right_n,

left=right,
Teft_mnx=right_m:,
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4]

lBuiIding model... done.




PRISM Screenshots
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PRISM Screenshots
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Efficiency - Symbolic techniques

« State space explosion
- models of real-life systems typically huge
« Symbolic probabilistic model checking

— data structures based on binary decision diagrams (BDDs)

— compact storage: exploit model structure and regularity

— efficient implementation of graph traversal fixed point algorithms
« PRISM: multiple computation engines

- MTBDDs (BDD extension): storage/analysis of very large models
(given structure/regularity), numerical computation can blow up

— sparse matrices: fastest solution for smaller models (<10° states),
prohibitive memory consumption for larger models

- hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)



Efficiency — Other strategies

« Approximate model checking (see also APMC [LHP06])

- sampling using Monte Carlo discrete-event simulation
- performed at modelling language level - better scalability
- potentially huge number of samples for accurate answers

- also: statistical hypothesis testing, see e.g. [YS02]
« Parallelisation of model checking

- distribution of storage/computation across multi-processor
machines [KPZMO04], networked clusters [ZPKO05], grids

- potentially promising for symbolic approaches - reduced I/0

- simulation-based computations much easier to distribute



Ongoing research areas

Abstraction and refinement, see e.g. [DJJLO1,KNPO64a]

— construct smaller, abstract model by removing
information/variables not relevant to property being checked,
iteratively refine abstraction if analysis fails

Symmetry reduction [DM06, KNPO6Db]
- exploit replication of identical components
Partial order reduction, see e.g. [BGC04], [DNO4]

- exploit commutativity of concurrently executed transitions
Compositionality, see e.g. [dAHJO01,Che06]

- analyse full model based on analysis of sub-components
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