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We present novel techniques for simultaneous task allocation and planning in multi-robot systems operating under uncertainty.
By performing task allocation and planning simultaneously, allocations are informed by individual robot behaviour, creating more
efficient team behaviour. We go beyond existing work by planning for task reallocation across the team given a model of partial task
satisfaction under potential robot failures and uncertain action outcomes. We model the problem using Markov decision processes,
with tasks encoded in co-safe linear temporal logic, and optimise for the expected number of tasks completed by the team. To avoid the
inherent complexity of joint models, we propose an alternative model that simultaneously considers task allocation and planning, but
in a sequential fashion. We then build a joint policy from the sequential policy obtained from our model, thus allowing for concurrent
policy execution. Furthermore, to enable adaptation in the case of robot failures, we consider replanning from failure states and
propose an approach to preemptively replan in an anytime fashion, replanning for more probable failure states first. Our method also
allows us to quantify the performance of the team by providing an analysis of properties such as the expected number of completed
tasks under concurrent policy execution. We implement and extensively evaluate our approach on a range of scenarios. We compare
its performance to a state-of-the-art baseline in decoupled task allocation and planning: sequential single-item auctions. Our approach
outperforms the baseline in terms of computation time and the number of times replanning is required on robot failure.
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1 INTRODUCTION

In many service robot applications, such as intra-logistics, surveillance or stock monitoring, it is desirable for a collection
of tasks to be allocated to a team of robots. The use of a team of robots allows for the tasks to be completed in a way
that is robust against failures of individual robots, and allows the number of tasks requested to be dynamic as long
as resources exist in the team to service them. In this paper, we address applications such as these where tasks are
independent (i.e., there are no inter-task dependencies) and where each task only requires a single robot to complete it.
Most existing approaches for solving this class of problems divide the problem into separate task allocation (TA) and
planning processes. TA determines which robot should complete which tasks, and planning determines how each task,
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2 Faruq et al.

or conjunction of tasks, should be completed. This separation is made to reduce the computational complexity of the
problem. It allows each robot to plan separately for its own task set, avoiding the need for a joint planning model which
is typically exponential in the number of team members. It also allows specialised algorithms to be used for the TA
and planning parts, increasing the efficiency with which the task-directed behaviour of the team can be generated. TA
usually assumes a greatly simplified model of planning in order to be able to efficiently compute allocations. However,
this also means that the TA process cannot be informed by the plans of the individual robots, which prevents it from
exploiting opportunities, or avoiding hindrances, that are only evident once planning has been performed. For example,
if the individual robots plan with time-based models, a task may be much quicker to complete at a particular time of
day, but with TA separated from planning, this information cannot be exploited in the allocation process.

To address this limitation, recent work has considered the problem of simultaneous task allocation and planning

(STAP) [52, 54], which solves the complete problem in a single process, and can therefore take the plans of each robot
(and their costs etc.) into account during the allocation process. The STAP problem is challenging due to the need to
search for solutions (task allocations and associated single-agent plans) over the joint space of possible allocations and
multi-agent action choices. In [19], we introduced an extension of STAP called STAPU, which considers uncertainty
in the action outcomes of the individual agents. In particular, we model the probability that individual robots suffer
permanent failures meaning that they can no longer execute tasks. In this paper, we significantly extend this work by:
(i) tackling an alternative problem formulation which allows the team to continue completing tasks even when some
have become unachievable, improving robustness; (ii) proposing a novel anytime planning approach based on task
reallocation in cases of robot failure, allowing the team to adapt to individual robot failures; and (iii) extending the
modelling formalism to incorporate shared environmental state features.

To enable the specification of intricate goal behaviours more naturally, and in order to produce guarantees on
the quality of the multi-robot plans that we generate, our formulation of the STAPU problem adopts languages and
techniques from the field of formal verification. Specifically, we make use of linear temporal logic (LTL), a powerful
and intuitive formalism that is widely used to specify a variety of robot tasks. Each task to be completed by the team
is specified in the co-safe fragment of LTL, and a safe LTL formula is used to specify safety constraints to be obeyed
by all robots as they achieve these tasks. To model how the robots can achieve these specifications, individual robots’
capabilities and environments are described using Markov decision processes (MDPs). Building upon techniques and
tools to synthesise provably correct policies from an MDP model of the system and an LTL task specification [33, 34],
we propose a method that generates multi-robot policies which maximise the expected number of tasks completed
before the safety constraint is violated.

We tackle the basic task allocation and planning problem using a team MDP that exploits the independence between
tasks and adopts a sequential modelling approach to build policies for each robot. We then iteratively improve these
policies by incorporating the possibility of reallocating tasks in the event of individual robot failures. To do so, we
construct a joint model of the synchronised execution of the individual robot policies in order to identify states
where robots might fail, and build new team policies from those states, thus providing probabilistic guarantees on
the performance (and safe operation) of the team of robots, along with an efficient task reallocation mechanism. We
implement our approach as an extension of the probabilistic model checker PRISM [33], and evaluate its performance
on a variety of representative multi-robot problems.

In comparison to [19], we introduce a number of significant improvements. Firstly, the previous work considered
the problem of maximising the probability of all tasks being completed by the team. Our new approach tackles the
issue of partial mission satisfaction, i.e., tasks not being achievable with probability 1, in a more principled and flexible
Manuscript submitted to ACM
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way by posing the objective as finding a team policy that, in expectation, achieves as many tasks as possible. This
alternative formulation allows the team to continue to complete tasks even when some have become unachievable,
a behaviour that is not attainable under the objective addressed in [19]. In addition, we further explore the coupling
within the multi-robot system by extending our method to deal with shared environmental state features. These are
global state features which may be observed by one robot during task execution (e.g., whether a door is open or closed),
but can then be exploited by another robot subsequently (e.g., the second robot does not need to re-observe the door
status). Moreover, we substantially improve the formalisation of the solution. In particular we provide a more precise
formalisation of the underlying team model, introducing a joint MDP with shared state features. Building on this, we
improve the description of the problem statement, the method for building joint policies, and the approach for task
reallocation. The latter provides a novel anytime planning approach to deal with cases of robot failure. Finally, we extend
the evaluation of our work, comparing its performance with an auction-based STAPU baseline which is representative
of state-of-the-art solutions to this problem. In this evaluation we demonstrate that our novel method outperforms the
baseline in computation time for allocation, and the number of reallocation events needed, whilst additionally providing
guarantees on the expected value of number of tasks completed at each state.

2 RELATEDWORK

Within the existing literature on multi-robot systems, we can consider the following distinctions: 1) multi-agent path

finding (MAPF) approaches, which have rich models of inter-agent spatial interactions but can only solve path planning
problems, versus more general planning approaches which can reason about a greater range of tasks; 2) planning
approaches which explicitly model uncertainty, versus those with deterministic models; 3) approaches which produce
solutions using verification-based methods (and thus can produce formal guarantees on behaviour), versus other solution
approaches; and 4) approaches which integrate task allocation and planning, versus those that separate these processes.

MAPF [20] is a widely-studied problem which focuses on ensuring efficient, collision-free movement of a robot team
through an environment. By focusing purely on path finding, domain-specific heuristics and algorithms can be used to
efficiently solve larger problem instances than would otherwise be possible [56]. A more general class of problems is
multi-agent planning, which allows robot actions to have preconditions and effects across state features in the problem,
and can therefore represent a wider range of robot tasks [61, 66]. These typically focus on problems where interactions
and coordination between agents are required to solve a single task (e.g., one robot needs to place an object onto a
second robot), but these techniques do not usually involve explicit allocation of tasks as is required in a STAPU problem.

Multi-robot task allocation (MRTA) is a canonical problem in multi-robot systems research [47] and as such has been
addressed from various perspectives. Good surveys on this topic are [24, 31]. These also propose a taxonomy for MRTA.
The problem tackled in this paper can be framed within the MRTA taxonomy as an instance of the ID [ST-SR-TA] class.
In words, we consider robots that can execute at most one task at a time (ST), and tasks that require a single robot to be
completed (SR) and take some time to be executed (TA). Furthermore, given that the use of LTL specifications allow for
introducing subtask dependencies, we are considering problems that have intra-schedule dependencies (ID).

A number of approaches have looked into combining task allocation and planning without uncertainty (i.e., STAP) [18,
29, 42, 43, 46, 50, 52, 54]. The work of Schillinger et al. [52, 54] is of particular relevance for this paper. They use a logical
model of robot operation plus a team task specification in LTL and propose an algorithm that plans and allocates tasks
to robots in order to minimise the maximum cost any robot will incur to complete its tasks. To overcome the complexity
of reasoning in a space which grows exponentially in the number of robots, the authors propose an approach where
separate planning models for each robot are linked sequentially by switch transitions, which allow one robot to pass
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tasks to the next robot in the team. They exploit these transitions to produce multi-robot plans which allocate tasks
across the team in order to minimise the aforementioned solution metric of minimising the largest robot cost. Our
work takes this approach as an inspiration, but modifies it extensively to reason over uncertainty in the effects of robot
actions.

Other works have considered LTL in the context of MRTA in different ways. [29] uses Petri nets to model the
environment. This keeps the model structure constant. They then use LTL to specify the mission and provide a solution
using mixed integer linear programming (MILP). The size of the MILP problem solved is exponential in the number
of atomic propositions in the specification, hindering scalability of the method. Similarly, [35] considers a Petri net
model of a multi-robot system and avoids scalability issues by enforcing safe LTL rules using ideas from supervisory
control theory. However, they can only disable actions to maintain the system safe, and cannot plan to reach goals. [50]
considers an extension of LTL that allows specification of how many robots should execute a given task. The problem
is solved using an ILP formulation. For teams of homogeneous robots, they are able to make their approach scale to
large numbers of robots. However, the number of tasks contained in their specification is typically small. Similarly, [13]
consider LTL-based control of swarms of robots. [42, 46] avoid enumerating the full state-space for STAP problems by
using sampling-based methods to allocate tasks and generate policies. They differ in the type of sampling method used,
however both use finite transition systems to model agents, and LTL for mission specification. The solution quality and
time of such algorithms is variable and they rely on heuristics which may be hard to compute. Finally, [18] consider the
problem of distributing a new set of LTL tasks across a group of heterogeneous robots which are already performing a
set of tasks they have been allocated previously.

The various planning fields surveyed above also have analogues which include uncertainty. MAPF approaches have
included uncertainty to account for the performance of mobile robot localisation and navigation reliability [3, 44, 60, 64].
Many single robot planning approaches assume that the environment is fully observable but responds probabilistically
to robot actions and thus formulate planning problems using MDPs [38, 57]. Approaches in this space include our prior
work [34, 37] which uses verification-based methods to produce probabilistically-guaranteed behaviour policies for a
mobile robot, where elements of the MDP are learnt from experience. Other approaches use sets of LTL specifications
to define non-Markovian rewards over an MDP [5, 11, 27, 55]. The optimisation objective we consider takes a similar
approach, aiming to maximise the expectation of a non-Markovian reward function, but adding a hard safety constraint.
Furthermore, our setting is one of MRTA, where the tasks must be distributed amongst robots, whilst the aforementioned
approaches consider a set of tasks to be executed by a single robot [5, 11, 27], or a set of uncertain specifications, where
there is a belief over which task is the actual objective [55].

When extending MDP planning approaches to multi-robot settings, authors either: assume communication and sparse
interactions between robots in order to maintain full observability and mitigate scalability issues [4, 14–17, 21, 22, 45, 51];
resort to auctioning approaches for TA, thus keeping the planning over single robot models [12, 53, 58]; or otherwise
use the computationally-demanding decentralised, partially-observable MDP formalisation which accounts for the
unknown state of other robot in the problem [1, 2]. As is appropriate in many service robot domains, we make the
assumption of perfect communication, thus allowing this work to retain the MDP formalisation.

Our work addresses a planning scenario where it may be impossible to achieve the entire mission due to events in the
environment or the choices of the agents themselves. However, we assume that it is beneficial to achieve as much of the
mission as possible. Existing work addressing such partial satisfaction includes [37, 39] who use co-safe LTL to create
metrics to guide planning for single agents in order to maximise the amount of a partial task achieved. Unlike [39], the
metric in [37] is independent of user input. This is useful in scenarios where end users do not have complete access
Manuscript submitted to ACM
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to the robot’s mission. Alternative approaches to partial satisfaction include using soft constraints. For example, [63]
generates a minimum violating plan for an autonomous vehicle using a horizon-based planner and rapidly-exploring
random trees (RRTs) [40]. They specify constraints in LTL and a penalty cost is associated with each constraint that can
be violated. For scenarios where a robot must repeatedly satisfy some part of the specification, [25] generates a policy
which minimises the probability of getting into a state that violates the specification. There are other approaches to
multi-robot planning based on formal models and LTL specifications [26, 28]. Like us, these approaches are designed to
cope with individual robot failures, but do not explicitly model or quantify failure probabilistically in the way we do.

Whilst there is work on TA under uncertainty [15], there is very little existing literature which addresses STAP
under uncertainty. [14] deals with TA and MAPF under uncertainty in a warehouse environment. The focus is on
scalability and thus [14] only addresses pathfinding and uses an approximate solution method which cannot provide
probabilistic guarantees. [23] addresses STAP but uses online policy execution to deal with unmodelled environmental
disturbances. This also fails to provide guarantees over behaviour in advance, and cannot optimise for objectives over
the team behaviour. In contrast, the work in this paper allows for rich LTL task specifications, and solves the problem
exactly to provide probabilistic guarantees over the resulting behaviour.

3 PRELIMINARIES

3.1 Markov Decision Processes

We use Markov decision processes (MDPs) to model the evolution of robots and their environment.

Definition 1 (MDP). An MDP is a tuple of the form M = ⟨𝑆, 𝑠, 𝐴, 𝛿,𝐴𝑃, 𝐿⟩, where:

• 𝑆 is a finite set of states;
• 𝑠 ∈ 𝑆 is the initial state;
• 𝐴 is a finite set of actions;
• 𝛿 : 𝑆×𝐴×𝑆 → [0, 1] is a probabilistic transition function, where ∀𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴 :

∑
𝑠′ 𝛿 (𝑠, 𝑎, 𝑠′) ∈ {0, 1};

• 𝐴𝑃 is a set of atomic propositions;
• 𝐿 : 𝑆 → 2𝐴𝑃 is a labelling function, such that 𝑝 ∈ 𝐿(𝑠) if and only if 𝑝 is true in 𝑠 ∈ 𝑆 .

In each state 𝑠 of an MDP M, there is a decision between the actions that are enabled in 𝑠 , i.e., those in the set
𝐴𝑠 = {𝑎 ∈ 𝐴 | 𝛿 (𝑠, 𝑎, 𝑠′) > 0 for some 𝑠′ ∈ 𝑆}. If action 𝑎 ∈ 𝐴𝑠 is taken in state 𝑠 , then the probability that the next state
is 𝑠′ is given by 𝛿 (𝑠, 𝑎, 𝑠′). A sequence of such transitions 𝜎 = 𝑠0

𝑎0→ 𝑠1
𝑎1→ . . . where 𝛿 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1) > 0 for all 𝑖 ∈ N is an

(infinite) path through the MDP. A finite path 𝜌 = 𝑠0
𝑎0→ 𝑠1

𝑎1→ . . .
𝑎𝑛−1→ 𝑠𝑛 is a prefix of an infinite path. We denote the

sets of all finite and infinite paths ofM starting from state 𝑠 by FPathM,𝑠 and IPathM,𝑠 .
The choice of action to take at each step of the execution of an MDP M is made by a policy, which can base its

decision on the history ofM up to the current state.

Definition 2 (Policy). A policy for MDP M is a function 𝜋 : FPathM,𝑠 → 𝐴 such that, for any finite path 𝜌 ending in
state 𝑠𝑛 , we have 𝜋 (𝜌) ∈ 𝐴𝑠𝑛 .

In this work, we will use memoryless policies 𝜋 : 𝑆 → 𝐴, which only base their choice of action on the current state,
and finite-memory policies, which track a finite set of “modes” needed, in conjunction with the current state, to choose
an action. For a policy 𝜋 , we can define a probability space Pr𝜋M,𝑠

over the set of infinite paths IPathM,𝑠 . Furthermore,
for a measurable function 𝑋 : IPathM,𝑠 → R, we write E𝜋M,𝑠

(𝑋 ) for the expected value of 𝑋 with respect to Pr𝜋M,𝑠
.

We also use MDP reward structures, which assign non-negative values to state-action-state triples.
Manuscript submitted to ACM



6 Faruq et al.

Definition 3 (Reward structure). A reward structure for an MDPM is a function 𝑟 : 𝑆 ×𝐴 × 𝑆 → R≥0.

Of particular interest in this paper is the expected amount of reward accumulated up until a target is reached.

Definition 4 (Expected cumulative reward). For reward structure 𝑟 on MDP M and target label 𝑏 ∈ 𝐴𝑃 , we define the
function cumul𝑏𝑟 : IPathM,𝑠 → R≥0 as:

cumul𝑏𝑟 (𝑠0
𝑎0→ 𝑠1

𝑎1→ . . . ) =
∑︁𝑛𝑏−1

𝑖=0
𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1),

where 𝑛𝑏 is the first index for which 𝑏 ∈ 𝐿(𝑠𝑛𝑏 ). The expected cumulative reward under policy 𝜋 of M is defined as
E𝜋M,𝑠

(cumul𝑏𝑟 ).

3.2 Linear Temporal Logic

Linear temporal logic (LTL) [48] is an extension of propositional logic which allows reasoning about infinite sequences
of states. The syntax of LTL is as follows.

Definition 5 (LTL syntax). LTL formulas 𝜑 over atomic propositions 𝐴𝑃 are defined using the following grammar:

𝜑 ::= true | 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 | X𝜑 | 𝜑 U𝜑, where 𝑝 ∈ 𝐴𝑃.

The X operator is read “next”, meaning that the formula it precedes will be true in the next state. The U operator is
read “until”, meaning that its second argument will eventually become true in some state, and the first argument will
be continuously true until this point. The other propositional connectives can be derived from the ones above in the
usual way. Moreover, other useful LTL operators can be derived from the ones above. Of particular interest for our
work are the “eventually” operator F𝜑 , which requires that 𝜑 is satisfied in some future state; the “always” operator G𝜑 ,
which requires 𝜑 to be satisfied in all future states; and the “weak until” operator W, which relaxes the until operator
to include infinite sequences for which𝜓 is never satisfied but 𝜑 is always satisfied: F𝜑 ≡ true U𝜑 ; G𝜑 ≡ ¬ F¬𝜑 ; and
𝜑 W𝜓 ≡ (𝜑 U𝜓 ) ∨ (G𝜑). Given an infinite path 𝜎 , we write 𝜎 ⊨ 𝜑 to denote that 𝜎 satisfies formula 𝜑 .

The semantics of full LTL is defined over infinite paths. However, in this work, we are interested in specifying
behaviours that occur within finite time. So, we use two well-known subsets of LTL for which properties are meaningful
when evaluated over finite paths: safe and co-safe LTL [32]. These are based on the notions of bad prefix and good prefix.
A bad prefix for 𝜑 is a finite path that cannot be extended in such a way that 𝜑 is satisfied, and a good prefix for 𝜑 is a
finite path that cannot be extended in such a way that 𝜑 is not satisfied. Safe LTL is defined as the set of LTL formulas
for which all non-satisfying infinite paths have a finite bad prefix. Conversely, co-safe LTL is the set of LTL formulas
for which all satisfying infinite paths have a finite good prefix. If 𝜑 is a formula of safe LTL, then its negation ¬𝜑 is
co-safe, and vice-versa. For any co-safe LTL formula 𝜑 written over 𝐴𝑃 , we can build a deterministic finite automaton
(DFA) equivalent to 𝜑 .

Definition 6 (DFA representation). Let 𝜑 be a co-safe LTL formula. The DFA representing 𝜑 is a tuple A𝜑 =

⟨𝑄,𝑞,𝑄𝐹 , 2𝐴𝑃 , 𝛿𝜑 ⟩, where:

• 𝑄 is a finite set of states;
• 𝑞 ∈ 𝑄 is the initial state;
• 𝑄𝐹 ⊆ 𝑄 is the set of accepting states;
• 2𝐴𝑃 is the alphabet; and
• 𝛿𝜑 : 𝑄 × 2𝐴𝑃 → 𝑄 is a transition function;
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such that the language of finite words accepted by A𝜑 is the set of good prefixes of paths that satisfy 𝜑 (or, more
precisely, the sequences of state labellings from those paths) [32]. Conversely, if 𝜑 is a formula in safe LTL, then the
DFA A¬𝜑 for its negation represents the bad prefixes of 𝜑 .

We will consider the class of syntactically safe and co-safe LTL−X formulas as our specification language. This is
obtained by two syntactic restrictions. We assume that all formulas are in positive normal form (negation can only
appear next to atomic propositions). First, we disallow the X operator. This is due to technicalities related to our
mechanism for resolving conflicting actions and will be further explained later. Second, we consider syntactically safe
LTL−X , i.e., the set of formulas for which only the G and W temporal operators occur, and syntactically co-safe LTL−X ,
i.e., the set of formulas for which only the F and U temporal operators occur. Note that (co-)safe LTL−X formulas are
a subset of (co-)safe LTL which, in turn, are a subset of full LTL. All the results we describe next for a given class of
formulas apply to the contained classes as well.

3.3 LTL Specifications for MDPs

Given an MDP M and an LTL formula 𝜑 over the set of atomic propositions 𝐴𝑃 used to label the MDP, we write
𝑃𝑟𝜋M,𝑠

(𝜑) for the probability of a path satisfying 𝜑 from state 𝑠 in MDPM under a policy 𝜋 :

Pr𝜋M,𝑠
(𝜑) = Pr𝜋M,𝑠

({𝜎 ∈ IPathM,𝑠 | 𝜎 |= 𝜑}) .

Furthermore, we write Prmax
M,𝑠

(𝜑) to denote the maximum probability (over all policies) of satisfying 𝜑 from state 𝑠 .
Another useful property is the expected amount of reward accumulated until a co-safe LTL formula 𝜑 is satisfied.

For reward structure 𝑟 , we define this using the function:

cumul𝜑𝑟 (𝑠0
𝑎0→ 𝑠1

𝑎1→ . . . ) =
∑︁𝑛𝜑−1

𝑖=0
𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1),

where 𝑛𝜑 is the first index for which 𝑠0
𝑎0→ 𝑠1

𝑎1→ . . .
𝑎𝑛−1→ 𝑠𝑛𝜑 is a good prefix for 𝜑 . The expected amount of reward 𝑟

accumulated before 𝜑 is satisfied under policy 𝜋 on M is then defined as E𝜋M,𝑠
(cumul𝜑𝑟 ), and we write 𝐸max

M,𝑠
(cumul𝜑𝑟 )

to denote the maximum expected value over all policies ofM.
For a co-safe LTL formula 𝜑 , we can compute both the maximum probability Prmax

M,𝑠
(𝜑) and the maximum expected

reward 𝐸max
M,𝑠

(cumul𝜑𝑟 ), by building and solving a product MDP, which combines the MDPM with a DFA A𝜑 for 𝜑 .

Definition 7 (Product MDP). If M = ⟨𝑆, 𝑠, 𝐴, 𝛿,𝐴𝑃, 𝐿⟩ is an MDP and 𝜑 is a co-safe LTL formula over 𝐴𝑃 represented
by DFA A𝜑 = ⟨𝑄,𝑞,𝑄𝐹 , 2𝐴𝑃 , 𝛿𝜑 ⟩, the product MDP is the MDP M ⊗ A𝜑 = ⟨𝑆⊗, 𝑠⊗, 𝐴, 𝛿⊗, 𝐴𝑃, 𝐿⊗⟩ where:

• 𝑆⊗ = 𝑆 ×𝑄

• 𝑠⊗ = (𝑠, 𝛿𝜑 (𝑞, 𝐿(𝑠)))

• 𝛿⊗ ((𝑠, 𝑞), 𝑎, (𝑠′, 𝑞′)) =
{
𝛿 (𝑠, 𝑎, 𝑠′) if 𝑞′=𝛿𝜑 (𝑞, 𝐿(𝑠′))

0 otherwise

• 𝐿⊗ (𝑠, 𝑞) =
{

𝐿(𝑠) ∪ {acc𝜑 } if 𝑞 ∈ 𝑄𝐹

𝐿(𝑠) otherwise

The construction of the product MDPM ⊗ A𝜑 is well known; see, e.g., [6]. The product behaves like the original
MDP M (it preserves the probabilities of paths from M) but is augmented with information about the satisfaction of 𝜑 .
Once a path of M ⊗ A𝜑 reaches an accepting state (i.e., a state of the form (𝑠, 𝑞𝐹 ) for 𝑞𝐹 ∈ 𝑄𝐹 ), it is a good prefix for 𝜑
and we know that 𝜑 is satisfied. This reduces the problem of computing Prmax

M (𝜑) to finding the maximum probability
Manuscript submitted to ACM
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of reaching an accepting state in the product. Since we label such states with a new atomic proposition acc𝜑 , we have:

Prmax
M (𝜑) = Prmax

M⊗A𝜑
(F acc𝜑 ) .

Furthermore, a (memoryless) optimal policy for reaching acc𝜑 in M ⊗ A𝜑 can be converted to an optimal policy for 𝜑
inM. The latter is a finite-memory policy whose modes are the DFA states𝑄 . Optimal values and policies can be found
using standard techniques over the product such as value iteration [49].

In a similar fashion, we can use the product MDP to compute the maximum expected cumulative reward until 𝜑 is
satisfied, and a corresponding optimal policy:

𝐸max
M (cumul𝜑𝑟 ) = 𝐸max

M⊗A𝜑
(cumul

acc𝜑
𝑟𝜑 ),

where 𝑟 is a reward structure forM and 𝑟𝜑 is the corresponding reward structure forM ⊗ A𝜑 , with reward values
copied directly to their corresponding transitions in the product.

We will often use superscript notation when referring to product models, e.g., writingM𝜑 forM ⊗ A𝜑 . For a list
Φ = ⟨𝜑1, . . . , 𝜑𝑚⟩ of co-safe LTL formulas, we can apply Definition 7 repeatedly to build the productM⊗A𝜑1⊗· · ·⊗A𝜑𝑚

and we will sometimes use the shorthandMΦ for this.

4 PROBLEM FORMULATION

We now formalise the problem of multi-robot planning under uncertainty that we tackle in this paper. We explain the
modelling of each individual robot, the joint multi-robot model, the mission specification for the robots, and then how
these are combined to define a problem over an MDP.

4.1 Robot Models

Overall, we assume a set of 𝑛 robots. The operation of each individual robot 𝑖 as it attempts to perform tasks is modelled
by an MDP M𝑖 . The state space of M𝑖 comprises both the local state of the robot and also the global state common
to all robots. In our work, the local state is typically the robot’s location within a topological map used to model its
environment. The topological map is a graph where nodes represent physical locations of interest and edges represent
the robot’s ability to move between any two nodes.

Example 1 (Topological Map). Figure 1 shows the topological map for a toy example with 8 locations 𝑣0, . . . , 𝑣7. Green
circles show locations that the robots must visit and the red circle is a location that all robots must avoid (see Section 4.3).
Edges drawn as solid lines indicate that the robot can move freely between a pair of locations. A dashed edge indicates
a constraint on the global state, in this case on the status of a door.

We assume that the global state comprises 𝑘 separate state features. In the example above, there is a single global
feature representing the state of the door. The MDPM𝑖 for robot 𝑖 has an action set𝐴𝑖 , which is partitioned into actions
𝐴𝑙
𝑖
that update the local state (e.g., representing navigation between locations) and action sets 𝐴𝑔

𝑗
that update global

feature 𝑗 (e.g., opening or closing a door). The MDPM𝑖 for robot 𝑖 is called a local MDP and is defined as follows.

Definition 8 (Local MDP). A local MDP for robot 𝑖 is an MDPM𝑖 = ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖 , 𝛿𝑖 , 𝐴𝑃, 𝐿𝑖 ⟩ where:

• the state space 𝑆𝑖 = 𝑆𝑙
𝑖
× 𝑆

𝑔

1 × ... × 𝑆
𝑔

𝑘
is the product of the robot’s local state space 𝑆𝑙

𝑖
and the state space 𝑆𝑔

𝑗
for 𝑘

global state features;
• actions𝐴𝑖 = 𝐴𝑙

𝑖
∪𝐴

𝑔

1∪ · · · ∪𝐴
𝑔

𝑘
are partitioned into action sets that update the local state and global state features.
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𝑣3

𝑣0

𝑣4 𝑣5

𝑣7

𝑣6 𝑣2

𝑣1

do
or

Fig. 1. Example topological map. Robots start in 𝑣0, 𝑣1, 𝑣2; locations to visit in green and to avoid in red; mission specification
Φ = ⟨F(𝑣5 ∧ F 𝑣4 ), F 𝑣3, F 𝑣6, G¬𝑣7 ⟩.

Actions from each set update the corresponding part of the state, i.e., for states 𝑠 = (𝑠𝑙 , 𝑠𝑔1 , . . . , 𝑠
𝑔

𝑘
) and 𝑡 = (𝑡𝑙 , 𝑡𝑔1 , . . . , 𝑡

𝑔

𝑘
)

in 𝑆𝑖 , we require that, if 𝛿𝑖 (𝑠, 𝑎, 𝑡) > 0, then either:

• 𝑎 ∈ 𝐴𝑙
𝑖
and 𝑠𝑔

𝑗
= 𝑡

𝑔

𝑗
for all 𝑗 ; or

• 𝑎 ∈ 𝐴
𝑔

𝑗
, 𝑠𝑙 = 𝑡𝑙 and 𝑠𝑔

𝑗 ′ = 𝑡
𝑔

𝑗 ′ for all 𝑗
′ ≠ 𝑗 .

For convenience, we assume there is a special action ⊥ ∈ 𝐴𝑙
𝑖
, which represents the robot staying idle. This is hence

enabled in all states and corresponds to a self-loop transition. Probabilities in the MDP M𝑖 represent uncertainty
regarding either the environment or the behaviour of the robot. A typical example of the former would include when the
robot attempts to navigate to a particular location, but an obstacle in the environment means that with some probability
the robot moves to a different location or remains where it is. For the latter, in this work we are particularly interested
in (permanent) robot failure, indicating that it is no longer able to perform any tasks. We assume a designated failure
state 𝑠fail

𝑖
∈ 𝑆𝑙

𝑖
for each robot 𝑖 which, once entered, cannot be left. Probabilistic transitions to 𝑠fail

𝑖
can occur from any

state elsewhere in 𝑆𝑙
𝑖
. Whenever we say that “a robot fails”, we model this through a transition to its failure state.

Example 2 (Local MDP). Figure 2 shows a fragment of an example local MDP corresponding to the map in Example 1
(see Figure 1). There is one local state feature, the robot’s location, with 𝑆𝑙

𝑖
= {𝑣0, . . . , 𝑣7}, and one global state feature,

modelling the status of a door (open, closed, unknown) with 𝑆
𝑔

1 = {𝑜, 𝑐, ?}.
States are of the form (𝑣 𝑗 , 𝑑𝑜𝑜𝑟 ) and the initial state is (𝑣0, ?), where the robot is in location 𝑣0 and the door status is

unknown. Actions updating the local state, in the set 𝐴𝑙
𝑖
, are of the form𝑚 𝑗𝑘 (“move from 𝑣 𝑗 to 𝑣𝑘 ”). Actions updating

the global state, in the set 𝐴𝑔

1, are of the form 𝑐𝑑 𝑗 (“check the door status when in 𝑣 𝑗 ”). Some instances of both types of
actions exhibit probabilistic behaviour. For example, when checking the door in 𝑣0 (action 𝑐𝑑0), the door is open with
probability 0.8; and moving from 𝑣0 to 𝑣3 (action𝑚03) succeeds with probability 0.9, or results in a transition to the
robot’s failure state with probability 0.1. We omit ⊥ actions from Figure 2.

4.2 Multi-Robot Models

Given MDPs defining the local model for each of the 𝑛 individual robots, we define the joint MDP as an MDP M𝐽

formed as the product of these. This models the combined execution of the 𝑛 robots in their environment.
The (joint) state space 𝑆 𝐽 of the global model includes the local state of each robot 𝑖 and the state of each global

feature 𝑗 . We start by defining a function that projects joint states onto local robot states.
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𝑣3, 𝑜

𝑠
fail
𝑖

𝑣0, 𝑜

𝑣4, 𝑜

𝑣0, 𝑐

𝑣4, 𝑐

𝑣0, ?

𝑣4, ?

𝑚04 𝑚40 𝑚04 𝑚40𝑚04 𝑚40

𝑚30

𝑚03

0.9

0.
1

𝑐𝑑0

0.2

0.8

𝑐𝑑4

0.2

0.8

Fig. 2. Fragment of an example local MDP for robot 𝑖 corresponding to the map in Figure 1 (see Example 2).

Definition 9. Let 𝑆 𝐽 = 𝑆𝑙1 × · · · × 𝑆𝑙𝑛 × 𝑆
𝑔

1 × ... × 𝑆
𝑔

𝑘
, and 𝑖 ∈ {1, . . . , 𝑛}. We write [.]𝑖 : 𝑆 𝐽 → 𝑆𝑖 for the function that

projects states ofM𝐽 to the corresponding states ofM𝑖 , defined as:

[𝑠𝑙1, . . . , 𝑠
𝑙
𝑛, 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
]
𝑖
= (𝑠𝑙𝑖 , 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
) .

In each transition of the global model, all robots make transitions simultaneously. We therefore require that, in any
transition, at most one robot updates each global state feature. Since we partition actions according to the parts of the
state space that they update, we can enforce this condition simply by constraining the set of joint actions 𝐴 that are
allowed in the global model MDP. Note that the partition of the action set is not necessary to enforce the condition, and
one can do it when considering arbitrary action sets. However, to keep notation simple, we choose to introduce the
model under the partitioned action set assumption.

Definition 10 (Joint MDP). Let the model for each robot 𝑖 be a local MDPM𝑖 = ⟨𝑆𝑖 , 𝑠𝑖 , 𝐴𝑖 , 𝛿𝑖 , 𝐴𝑃, 𝐿𝑖 ⟩, where:

• 𝑆𝑖 = 𝑆𝑙
𝑖
× 𝑆

𝑔

1 × · · · × 𝑆
𝑔

𝑘
;

• 𝑠𝑖 = (𝑠𝑙𝑖 , 𝑠
𝑔

1, . . . , 𝑠
𝑔

𝑘
);

• 𝐴𝑖 = 𝐴𝑙
𝑖
∪𝐴

𝑔

1 ∪ · · · ∪𝐴
𝑔

𝑘
;

We assume that the 𝑘 global state features are the same for all robots (i.e., their state spaces 𝑆𝑔
𝑗
, initial values 𝑠𝑔

𝑗
and

action sets 𝐴𝑔

𝑗
are the same in each M𝑖 ), as is the set 𝐴𝑃 . The joint MDP is an MDP M𝐽 = ⟨𝑆 𝐽 , 𝑠 𝐽 , 𝐴𝐽 , 𝛿 𝐽 , 𝐴𝑃, 𝐿𝐽 ⟩ where:

• 𝑆 𝐽 = 𝑆𝑙1 × · · · × 𝑆𝑙𝑛 × 𝑆
𝑔

1 × ... × 𝑆
𝑔

𝑘
;

• 𝑠 𝐽 = (𝑠𝑙1, . . . , 𝑠
𝑙
𝑛, 𝑠

𝑔

1, . . . , 𝑠
𝑔

𝑘
);

• 𝐴𝐽 = {(𝑎1, . . . , 𝑎𝑛) | 𝑎𝑖 ∈ 𝐴𝑖 and, for each 1≤ 𝑗≤𝑘 , we have 𝑎𝑖 ∈ 𝐴
𝑔

𝑗
for at most one 𝑖}.

Then, for states 𝑠, 𝑡 ∈ 𝑆 𝐽 and action 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴𝐽 , we define 𝛿 𝐽 and 𝐿𝐽 as follows:

• 𝛿 𝐽 (𝑠, 𝑎, 𝑡) =
∏𝑛

𝑖=1 𝛿𝑖 ( [𝑠]𝑖 , 𝑎𝑖 , [𝑡]𝑖 );
• 𝐿𝐽 (𝑠) =

⋃𝑛
𝑖=1 𝐿𝑖 ( [𝑠]𝑖 ) .

Our proposed joint MDP model is an instance of a multi-agent MDP [10] (MMDP), where we impose extra structure
on local and global state features. Thus, our joint model has similar assumptions as MMDPs, namely that robots have
access to the full state space of the team, and that actions are executed in a synchronised fashion, using a common
timestep across the robots. We also assume robots can coordinate locally and navigate around each other efficiently,
Manuscript submitted to ACM
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and do not consider issues related to collisions and obstacle avoidance in the model. One can achieve efficient local
coordination by using specific motion planning approaches such as [7, 41]. Our focus in this paper is instead on planning
at a higher level of abstraction: we aim to provide effective and adaptive task allocation in the presence of individual
(and permanent) robot failures.

4.3 Mission Specification

Weuse amix of co-safe and safe LTL−X formulas to specify the robots’ mission. Amission specificationΦ = ⟨𝜑1, . . . , 𝜑𝑚, 𝜑safe⟩
consists of a list of co-safe LTL−X task specifications 𝜑1, ..., 𝜑𝑚 and a safety specification 𝜑safe in safeLTL−X , all written
over the set 𝐴𝑃 . We assume the team’s mission is composed of formulas which are (i) non-conflicting, i.e., (non-
)satisfaction of one formula must not violate any other formula in the mission, and (ii) achievable by a single robot.
These assumptions have been made in other work on this topic [18, 54].

Example 3 (Mission Specification). We return to the running example. Let 𝑣 𝑗 be an atomic proposition indicating
that a robot is in location 𝑣 𝑗 . When used to label a state of local MDP M𝑖 , this means that robot 𝑖 is in 𝑣 𝑗 . Since the
state labelling in the joint MDP takes the union of individual labellings for local MDPs, when 𝑣 𝑗 labels a state in M𝐽 , it
indicates that some robot is in 𝑣 𝑗 .

An example mission specification for this model is Φ = ⟨F(𝑣5 ∧ F 𝑣4), F 𝑣3, F 𝑣6, G¬𝑣7⟩. Task specification 𝜑1 =

F(𝑣5 ∧ F 𝑣4) requires first 𝑣5 then 𝑣4 to be visited; the other two tasks are to visit 𝑣3 and 𝑣6, respectively. The safety
specification 𝜑safe = G¬𝑣7 states that location 𝑣7 must be avoided.

4.4 Problem Statement

Given a set of 𝑛 robots and a mission specification Φ = ⟨𝜑1, . . . , 𝜑𝑚, 𝜑safe⟩, our aim is to derive a joint policy for the
robots which allows them to collectively achieve the tasks 𝜑1, ..., 𝜑𝑚 without violating the safety constraint 𝜑safe . This
incorporates both the allocation of tasks to robots, and the planning for each robot to achieve its tasks. Since our model
explicitly includes the possibility of individual robot failures (after which they are unable to perform any tasks), policies
can also dynamically reallocate tasks to robots as needed. In addition, we aim to produce probabilistic guarantees for
these policies which quantify their effectiveness or reliability.

Formally, if the behaviour of each robot 𝑖 is defined by local MDP M𝑖 , then our goal becomes to synthesise an
appropriate joint policy, i.e., a policy 𝜋 𝐽 for the joint MDPM𝐽 . One possibility would be to find a policy that maximises
the probability Pr𝜋 𝐽

M𝐽
(𝜑1 ∧ · · · ∧ 𝜑𝑚 ∧ 𝜑safe) of satisfying all formulas in Φ, as in [19]. However, in some scenarios, one

or more tasks may become unachievable (for example, if a door is closed, then some locations may become inaccessible
for all robots) reducing this probability to zero.

So, instead, we target policies that maximise the expected number of tasks 𝜑𝑖 completed without violating the safety

constraint 𝜑safe . To formalise this, we use the product construction described in Section 3.3. The co-safeLTL−X formulas
𝜑𝑖 are used to construct a reward structure over the product that counts the number of tasks that are completed; and we
consider the expected amount of this reward accumulated until the negation of the safe LTL−X formula 𝜑safe is satisfied.
Formally, letM′

𝐽
= M𝐽 ⊗ A𝜑1 ⊗ · · · ⊗ A𝜑𝑚 be the product of the joint MDPM𝐽 with DFAs for the𝑚 formulas 𝜑𝑖 and

MΦ
𝐽
= M′

𝐽
⊗ A¬𝜑safe be the product ofM𝐽 with DFAs for all𝑚 + 1 formulas in the mission specification Φ. We fix a

reward structure tasks forM′
𝐽
that counts the number of tasks that are completed, i.e., which assigns to each transition

𝑠
𝑎−→ 𝑠′ the number of tasks 𝜑𝑖 for which it is a transition into an accepting state for A𝜑𝑖

. Then, our goal is to compute
the expected cumulative value of tasks up until a point where ¬𝜑safe becomes true, which reduces to computing the
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expected cumulative reward until reaching accepting states for A¬𝜑safe in the product modelMΦ
𝐽
:

𝐸max
M′

𝐽

(cumul
¬𝜑safe

tasks ) = 𝐸max
MΦ

𝐽

(cumul
acc¬safe
tasks ),

where, by slight abuse of notation, we use tasks to refer to the reward structures for both models.
Note that the cumulative value of tasks is always finite, because we consider a finite number of co-safe tasks. Thus, in

order to compute 𝐸max
MΦ

𝐽

(cumul
acc¬safe
tasks ), we can make states in acc¬safe absorbing and compute the total expected reward

in the resulting model. In practice, this means that policies will be defined until we reach a state where ¬𝜑safe becomes
true (i.e., a state where the safety specification has been broken); or the expected cumulative value of the tasks reward
structure becomes zero (i.e., a state from which the team cannot achieve more tasks). In the latter case, policies will
finish without breaking the safety specification. This means the policies will try to avoid states where ¬𝜑safe is satisfied,
as they cannot accumulate more reward after such states are reached and the goal is to maximise reward. Finally, we
note that the tasks reward can be adapted to assign different values to each task, thus allowing for prioritising the
satisfaction of some co-safe LTL−X tasks over others.

It may not be feasible to find the optimal policy for the objective above, but for any policy that we do synthesise,
we will also compute the actual expected number of tasks completed without violating the safety constraint, which
represents a probabilistic guarantee on its performance. We can also compute separate guarantees, for example, the
probability with which a particular task 𝜑𝑖 is completed or with which the safety specification 𝜑safe holds.

5 SIMULTANEOUS TASK ALLOCATION AND PLANNING UNDER UNCERTAINTY (STAPU)

The problem of determining a joint robot policy, as formulated in the previous section, can be undertaken in a number
of ways. In this paper, we propose an approach called simultaneous task allocation and planning under uncertainty

(STAPU), which combines the processes of task allocation and task planning in order to exploit information about
individual robot plans into the allocation process.

In principle, we could achieve this by constructing and solving the global MDP product MΦ
𝐽
, following the problem

formulation given in Section 4.2, which would yield an optimal joint policy. However, this approach is typically infeasible
since the MDP grows exponentially with the number of robots.

Instead, inspired by the (non-probabilistic) approach of [52], we propose a method that initially plans on a sequential
model of the robots, avoiding the construction of the fully synchronised joint model. This exploits the assumption that
tasks have no interdependencies and can each be completed by a single robot. We consider each robot independently in
turn, allowing it to (simultaneously) choose tasks to undertake and decide how best to complete them.

To achieve this, we build and solve a team MDP, which can be viewed as a sequence of models for each individual
robot. More precisely, each individual model for robot 𝑖 is a local product MDP, encoding: the dynamics of the robot
(from local MDP M𝑖 ); the definitions of the tasks, along with the extent to which they have been completed so far
(using DFAs A𝜑 for the co-safe formulas 𝜑 in the mission specification Φ); and the state of the safety constraint (using
the state of A¬𝜑safe ) .

The local product MDPs are joined using switch transitions, which represent changes in the allocation of a task from
robot 𝑖 to 𝑖 + 1 (the next robot in the sequential model). These transitions are added in every state of robot 𝑖’s model
where no task has yet been started, or one has just been completed, as determined by whether the DFAs for each task
are in their initial or accepting states. When a switch transition occurs, robot 𝑖 + 1 begins in its initial state. The state
of the DFAs remains the same, so that information about task completion is preserved. Considered sequentially, this
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M1 M𝑛 𝜑1 𝜑𝑚 𝜑safe

A𝜑1 A𝜑𝑚 A¬𝜑safe

. . . . . .

. . .

MΦ
1 MΦ

𝑛
. . .

Team MDPMΦ
𝑇

Team Policy 𝜋Φ
𝑇

Current Joint Policy 𝜋Φ
𝐽

...

...

Find STAPU solution

Build joint policy

and add to 𝜋Φ
𝐽

Get next reallocation state

𝑠Φ
𝐽

∈ 𝑆⊥

and set initial state ofMΦ
𝑇

accordingly

Fig. 3. Overview of STAPU with reallocation. Each robot MDP, M𝑖 is combined with DFA, A𝜑1 , . . . , A𝜑𝑚 , A¬𝜑safe to generate a

local product MDP MΦ
𝑖
. The local product MDPs for all 𝑛 robots are used to create a team MDP, MΦ

𝑇
. A sequential team policy, 𝜋Φ

𝑇

is generated by maximising the expected cumulative task reward over MΦ
𝑇
. The sequential policy, 𝜋Φ

𝑇
is used to construct a a joint

policy, 𝜋Φ
𝐽
. While constructing 𝜋Φ

𝐽
, reallocation states 𝑠Φ

𝐽
∈ 𝑆⊥ are identified. Replanning takes place for each of these states, ordered

by decreasing reachability probability.

model allows each robot a choice, before or after executing any task, as to whether it or the subsequent robots should
tackle the unallocated tasks.

We find a sequential policy, by computing an optimal policy for the team MDP that maximises the expected number
of tasks completed without violating the safety constraint. We then convert this sequential policy into a joint policy,
where the robots execute concurrently. In situations where an action for this policy cannot be generated (e.g., because a
robot has failed), we perform a replanning process from that joint state. Figure 3 provides an overview of these steps
which are described in more detail in the following sections.

5.1 Team MDP and Sequential Policy

The team MDP MΦ
𝑇
is built as the union of MDPs for the 𝑛 robots, and models their joint behaviour in a sequential

fashion. The MDP for each individual robot 𝑖 is the local product MDP MΦ
𝑖

= M𝑖 ⊗ A𝜑1 ⊗ · · · ⊗ A𝜑𝑚 ⊗ A¬𝜑safe ,
combining the local modelM𝑖 of robot 𝑖’s behaviour with DFAs representing the satisfaction of the formulas in the
mission Φ = ⟨𝜑1, . . . , 𝜑𝑚, 𝜑safe⟩.
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𝑣3, 𝑜,

0, 1, 0, 0

𝑠fail, 𝑜,

0, 0, 0, 0
𝑠fail, 𝑜,

0, 1, 0, 0

𝑣0, 𝑜,

0, 0, 0, 0

𝑣4, 𝑜,

0, 0, 0, 0

𝑣0, 𝑜,

0, 1, 0, 0

𝑣4, 𝑜,

0, 1, 0, 0

𝑚04 𝑚40𝑚04 𝑚40

𝑚03

0.9

0.
1

𝑚30

𝑚03

0.9

0
.1

Fig. 4. Fragment of the local product MDP for robot 𝑖 . States are shaded if task 2 (reaching location 𝑣3) has been completed.

Example 4 (Local Product MDP). Consider the local MDP depicted in Figure 2. The mission specification is as described
in Example 3, i.e., Φ = ⟨F(𝑣5 ∧ F 𝑣4), F 𝑣3, F 𝑣6, G¬𝑣7⟩. The local product MDP for each robot contains the states of the
robot, the state of the door and the states for the mission. A fragment of the local product MDP is shown in Figure 4.
For simplicity, we depict a small part which includes four states from the local MDP in Figure 2. Each state is of the
form (𝑣𝑖 , 𝑑𝑜𝑜𝑟, 𝑞1, 𝑞2, 𝑞3, 𝑞safe) where 𝑣𝑖 denotes the robot’s position on the topological map, 𝑑𝑜𝑜𝑟 denotes the state
variable of the door, and 𝑞𝑖 , 𝑞safe denote the states of the DFAs for task 𝜑𝑖 and safety specification 𝜑safe , respectively. If
the robot starts in state (𝑣0, 𝑜, 0, 0, 0, 0) and chooses action𝑚03, it moves to state (𝑣3, 𝑜, 0, 1, 0, 0) with probability 0.9,
completing task 2 (F 𝑣3). The DFA for this task has two states: the initial state 0 and accepting state 1. The robot cannot
subsequently go back to a state where the task is not complete.

States of the team MDPMΦ
𝑇
take the form (𝑖, 𝑠Φ

𝑖
) where 𝑖 denotes the robot currently executing tasks and 𝑠Φ

𝑖
is a

state of the local product MDP MΦ
𝑖
. So, 𝑠Φ

𝑖
= (𝑠𝑖 , 𝑞1, . . . , 𝑞𝑚, 𝑞safe) comprises a state 𝑠𝑖 ∈ 𝑆𝑖 from the local MDP M𝑖 for

robot 𝑖 and one for each of the DFAs A𝜑1 , . . . ,A𝜑𝑚 ,A¬𝜑safe .

Definition 11 (Team MDP). Given a mission Φ and the local product MDPsMΦ
𝑖
= ⟨𝑆Φ

𝑖
, 𝑠Φ𝑖 , 𝐴𝑖 , 𝛿

Φ
𝑖
, 𝐴𝑃Φ, 𝐿𝑎𝑏Φ𝑖 ⟩ for each

robot 𝑖 , the team MDP is defined as the MDPMΦ
𝑇
= ⟨𝑆Φ

𝑇
, 𝑠Φ
𝑇
, 𝐴𝑇 , 𝛿

Φ
𝑇
, 𝐴𝑃Φ, 𝐿𝑎𝑏Φ

𝑇
⟩ where:

• 𝑆Φ
𝑇
=
⋃𝑛

𝑖=1 ({𝑖}× 𝑆Φ
𝑖
)

• 𝑠Φ
𝑇
= (1, 𝑠Φ1 )

• 𝐿𝑎𝑏Φ
𝑇
(𝑖, 𝑠Φ

𝑖
) = 𝐿𝑎𝑏Φ𝑖 (𝑠Φ𝑖 )

• 𝐴𝑇 = {𝜁 } ∪ ⋃𝑛
𝑖=1𝐴𝑖 , where 𝜁 labels a switch transition

• 𝛿Φ
𝑇
is defined as follows. For action 𝑎𝑖 ∈ 𝐴𝑖 of robot 𝑖 , the team MDP mirrors the local product MDP:

𝛿Φ𝑇 ((𝑖, 𝑠Φ𝑖 ), 𝑎𝑖 , (𝑖, 𝑡
Φ
𝑖 )) = 𝛿Φ𝑖 (𝑠

Φ
𝑖 , 𝑎𝑖 , 𝑡

Φ
𝑖 ),

where 𝑠Φ
𝑖
, 𝑡Φ
𝑖
∈ 𝑆Φ

𝑖
are states of the local product MDP for robot 𝑖 . For switch transitions:

𝛿Φ𝑇 ((𝑖, 𝑠Φ𝑖 ), 𝜁 , ( 𝑗, 𝑡
Φ
𝑗 )) = 1,

if all of the following conditions hold:
(i) 𝑖 < 𝑛 and 𝑗 = 𝑖 + 1;
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1, 𝑣3, 𝑜,

0, 1, 0, 0

0, 𝑠fail1 , 𝑜,

0, 0, 0, 0

0, 𝑠fail1 , 𝑜,

0, 1, 0, 0

1, 𝑣0, 𝑜,

0, 0, 0, 0

1, 𝑣4, 𝑜,

0, 0, 0, 0

1, 𝑣0, 𝑜,

0, 1, 0, 0

1, 𝑣4, 𝑜,

0, 1, 0, 0

𝑚04 𝑚40𝑚04 𝑚40

𝑚03

0.9

0.
1

𝑚30

𝑚03
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0
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2, 𝑣1, ?,

0, 1, 0, 0

2, 𝑣5, ?,

0, 1, 1, 0

2, 𝑠fail2 , ?,

0, 1, 1, 0

2, 𝑣4, ?,

0, 1, 2, 0

2, 𝑠fail2 , ?,

0, 1, 0, 0

2, 𝑣7, ?,

0, 1, 1, 1

𝑚15

0.9

0.1

𝑚51

𝑚54 0.9

0.1

𝑚45

𝑚57𝑚75

𝜁

3, 𝑣2, ?,

0, 1, 0, 0

3, 𝑣2, ?,

0, 1, 2, 0

𝜁

𝜁

Fig. 5. A fragment of the team MDP. The first variable in each state refers to the robot that is being represented. The red state must
be avoided as per the safety specification.

(ii) 𝑖 = 1 and 𝑠Φ1 is the initial local product state for robot 1, or (𝑖, 𝑠Φ
𝑖
) has an incoming switch transition, or 𝑠Φ

𝑖

includes a “newly reached” accepting state (i.e., for some task 𝜑 𝑗 , 𝑞 𝑗 is an accepting state and has an incoming
transition inMΦ

𝑖
from a state that is not accepting, indicating the task just been achieved);

(iii) local product MDP states 𝑠Φ
𝑖
=(𝑠𝑖 , 𝑞1, . . . , 𝑞𝑚, 𝑞safe) and 𝑡Φ𝑗 =(𝑡 𝑗 , 𝑞1, . . . , 𝑞𝑚, 𝑞safe) have the same DFA state com-

ponents 𝑞1, . . . , 𝑞𝑚, 𝑞safe ;
(iv) 𝑡 𝑗 is the initial state in robot 𝑗 ’s local MDPM 𝑗 .
For all other pair of states, 𝛿Φ

𝑇
((𝑖, 𝑠Φ

𝑖
), 𝜁 , ( 𝑗, 𝑡Φ

𝑗
)) = 0.

The team MDP considers the local product models sequentially. Special switch transitions are added to connect the
local product model of each robot with the local product model of the subsequent robot. These represent moving the
task allocation and planning process to the next robot. For robot 𝑖 , switch transitions can occur when robot 𝑖 has not
acted (modelling the case where we do not allocate any task to 𝑖), or when robot 𝑖 has just completed a task. The team
MDP encodes the execution of the tasks by the team, whilst avoiding the construction of the joint MDP. Note that,
while the number of states in a joint MDP is exponential in the number of robots, for the team MDP it is linear. This
will allow us to scale to much larger models, as will be highlighted in Section 6.

Example 5 (Team MDP). Figure 5 shows a fragment of the team MDP for the problem in Example 1. There are three
copies of the local product MDPs, one per robot. Each copy is only linked to the next copy through switch transitions 𝜁
that originate from states where tasks have just been completed, or from states that have incoming switch transitions.
The switch transitions maintain the values of the automata states and jump to the initial location of the next robot.

Remark 1 (Switch Transitions and Failure States). In our definition of team MDP, there are no switch transitions from
designated failure states or states where the safety specification is violated. This is because one way to maximise the
expected task reward is to have each robot attempt to satisfy all the tasks in the mission specification in turn: if the first
robot fails, the second robot continues from then on; if the second robot fails, the next robot continues; and so on. If the
first robot does not fail, it completes the entire mission while the other robots in the team do nothing. This behaviour
does not effectively allocate tasks across the team, and does not consider the total number of steps in the plan. Thus, we
do not add switch transitions to designated failure states to prevent the policies from behaving in the way described
above. We will deal with failures by replanning when the policy is undefined, as will be explained in Subsection 5.3.
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1, 𝑣0, ?,

0, 0, 0, 0

1, 𝑣0, 𝑐,

0, 0, 0, 0
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2, 𝑣5, ?,
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𝜁
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𝑚54
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3, 𝑣2, ?,
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3, 𝑠fail , ?,

0, 1, 2, 0

3, 𝑣6, ?,

1, 1, 2, 0

𝜁
𝑚26

0.8

0.
2

Fig. 6. A fragment of the sequential policy extracted from the team MDP. The thick lines show the most likely path in this fragment.
Shaded states represent the most probable terminal state.

Our first step towards creating a joint policy is to construct a sequential policy 𝜋Φ
𝑇
by solving the team MDPMΦ

𝑇
.

Since MΦ
𝑇
already includes the DFAs for the LTL−X formulas in the mission specification Φ, we generate the policy 𝜋Φ

𝑇

using the same approach formalised in Section 4.4, i.e., finding an optimal policy that maximises the expected number
of tasks completed without violating the safety condition:

𝐸max
MΦ

𝑇

(cumul
acc¬safe
tasks ) .

The atomic proposition acc¬safe labels states where the DFA for 𝜑safe is in an accepting states; these are transferred to
MΦ

𝑇
when copying the labelling from the local product MDPsMΦ

𝑖
(see Definition 11). The reward structure tasks is

defined exactly as in Section 4.4, by counting the number of tasks that are completed when executing a given transition.

Example 6 (Sequential Policy). In Figure 6, we depict a fragment of the sequential policy obtained from the team MDP
in Figure 5. Note the sequential nature of this policy: it starts (in state (1, 𝑣0, ?, 0, 0, 0, 0)) with actions for robot 1 (𝑐𝑑0
and𝑚03), then moves to robot 2, and finally to robot 3. Given that these policies will be executed in parallel, we reset
the value of global state features (the door state, here) when applying switch transitions, to ensure that robots do not
follow policies under wrong assumptions about the state of the system.
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Note that the quality of the sequential policy 𝜋Φ
𝑇
is dependent on the ordering over robots used to build the team

MDP MΦ
𝑇
. Finding good orderings is outside the scope of this paper. This problem has, however, been addressed in

the context of MAPF, where it has been shown that finding an optimal ordering is NP-hard [8] and for which several
heuristic and optimisation approaches have been proposed [9, 62, 65].

5.2 Building a Joint Policy

We start with a (memoryless) optimal policy 𝜋Φ
𝑇
: 𝑆Φ

𝑇
→ 𝐴𝑇 for the team MDP MΦ

𝑇
. This policy is sequential in nature,

i.e., it starts by prescribing actions for robot 1, then a switch transition occurs and actions are prescribed for robot 2,
and so on. However, our goal is for these policies to be executed concurrently. In this section, we describe how we
use this sequential policy to construct a joint policy 𝜋 𝐽 . This joint policy can then be used for execution, and also for
providing more accurate performance guarantees over the joint model. Note that, whilst enumerating all states of the
joint model is typically infeasible, the states visited under a policy are usually just a small fraction of the full joint model
state space. Thus providing guarantees of joint execution is feasible.

Since we are working with (co-)safe LTL−X specifications, we construct a memoryless joint policy 𝜋Φ
𝐽
which applies

to the product of the joint model M𝐽 and the DFAs for the formulas in the mission specification Φ. This can easily
be converted into a finite-memory policy 𝜋 𝐽 forM𝐽 . In constructing the joint policy 𝜋Φ

𝐽
, we will assume that robots

communicate with each other after executing each action.
We start by defining the projection of a team MDP policy 𝜋Φ

𝑇
onto a policy over each local product MDPMΦ

𝑖
.

Definition 12 (Policy projection). Let 𝜋Φ
𝑇
: 𝑆Φ

𝑇
→ 𝐴𝑇 be a policy for team MDP MΦ

𝑇
. Its projection onto MΦ

𝑖
is the

policy [𝜋Φ
𝑇
]
𝑖
: 𝑆Φ

𝑖
→ 𝐴𝑖 , defined by:

[𝜋Φ𝑇 ]𝑖 (𝑠) =
{
𝜋Φ
𝑇
(𝑖, 𝑠) if 𝜋Φ

𝑇
(𝑖, 𝑠) is defined and 𝜋Φ

𝑇
(𝑖, 𝑠) ≠ 𝜁

⊥ otherwise.

Example 7 (Policy Projection). Examples of the actions taken in states by the policy projection of the sequential policy
depicted in Figure 6 are:

[𝜋Φ𝑇 ]1 (𝑣0, ?, 0, 0, 0, 0) = 𝜋Φ𝑇 (1, 𝑣0, ?, 0, 0, 0, 0) = 𝑐𝑑0,

[𝜋Φ𝑇 ]1 (𝑣3, 𝑜, 0, 1, 0, 0) = ⊥,

[𝜋Φ𝑇 ]2 (𝑣1, ?, 0, 1, 0, 0) = 𝜋Φ𝑇 (2, 𝑣1, ?, 0, 1, 0, 0) =𝑚15 .

We want to use 𝜋Φ
𝑇
to select an action 𝑎 to take in joint product state 𝑠Φ

𝐽
= (𝑠 𝐽 , 𝑞Φ) where 𝑠 𝐽 = (𝑠𝑙1, . . . , 𝑠

𝑙
𝑛, 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
)

and 𝑞Φ = (𝑞1, . . . , 𝑞𝑚, 𝑞safe). A first approach one might think of to do so is to choose the joint action:

𝑎 = ( [𝜋Φ𝑇 ]1 ( [𝑠 𝐽 ]1, 𝑞
Φ), . . . , [𝜋Φ𝑇 ]𝑛 ( [𝑠 𝐽 ]𝑛, 𝑞

Φ)) .

However, doing so ignores the sequential nature of 𝜋Φ
𝑇
, which is synthesised over a model that assumes robots act in

order. This means that, in action 𝑎 above, robot 𝑖 does not consider the tasks that previous robots intend to complete
when choosing its action. This can lead to lack of coordination, with multiple robots attempting to complete the
same task. To avoid this issue, the policy action for robot 𝑖 is chosen using an updated version of 𝑞Φ that assumes the
previous robots’ execution will be according to the path with highest probability. To define the update to 𝑞Φ, we start
by considering the notion of most probable terminal state reached in MΦ

𝑖
under [𝜋Φ

𝑇
]
𝑖
. Terminal states are those where

no policy action is available, either because a switch transition occurred in the team MDP or because the robot failed.
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Definition 13 (Most probable terminal state). Let term( [𝜋Φ
𝑇
]
𝑖
) = {𝑠 ∈ 𝑆Φ

𝑖
| [𝜋Φ

𝑇
]
𝑖
(𝑠) = ⊥}. The most probable terminal

state for robot 𝑖 , starting in 𝑠 ∈ 𝑆Φ
𝑖
and under policy [𝜋Φ

𝑇
]
𝑖
is defined as:

𝑠∗𝑖 = arg max
𝑠′∈term( [𝜋Φ

𝑇
]
𝑖
)
Pr

[𝜋Φ
𝑇
]
𝑖

MΦ
𝑖
,𝑠
(F 𝑠′),

where we slightly abuse LTL notation and write F 𝑠′ to denote “eventually reach state 𝑠′”.

Example 8 (Most probable terminal state). Consider the policy projections for the sequential policy depicted in Figure 6.
The most probable terminal state for each policy is the terminal state that is reached by following the most likely path.
Thus, as depicted in the figure, 𝑠∗1 = (𝑣3, 𝑜, 0, 1, 0, 0) and 𝑠∗2 = (𝑣4, ?, 0, 1, 2, 0).

Using the notion of most probable terminal state, we can define the notion of a concurrency-aware projection of a
joint product MDP state to a local product state for 𝑖 .

Definition 14 (Concurrency-aware projection). Let 𝑠Φ
𝐽
= (𝑠 𝐽 , 𝑞Φ) ∈ 𝑆Φ

𝐽
with 𝑠 𝐽 = (𝑠𝑙1, . . . , 𝑠

𝑙
𝑛, 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
) and 𝑞Φ =

(𝑞1, . . . , 𝑞𝑚, 𝑞safe) The concurrency-aware projection of 𝑠Φ
𝐽
onto the local product state space 𝑆Φ

𝑖
of robot 𝑖 is defined

recursively as follows:

[𝑠Φ𝐽 ]
∥
1
= (𝑠𝑙1, 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
, 𝑞1, . . . , 𝑞𝑚, 𝑞safe),

[𝑠Φ𝐽 ]
∥
𝑖+1 = (𝑠𝑙𝑖+1, 𝑠

𝑔

1 , . . . , 𝑠
𝑔

𝑘
, 𝑞𝑖∗1 , . . . , 𝑞

𝑖∗
𝑚, 𝑞𝑖∗safe),

where (𝑞𝑖∗1 , . . . , 𝑞
𝑖∗
𝑚, 𝑞𝑖∗safe) are the DFA components of the most probable terminal state for robot 𝑖 , starting in [𝑠Φ

𝐽
] ∥
𝑖
and

under [𝜋Φ
𝑇
]
𝑖
.

Broadly speaking, we project the joint MDP states to the corresponding local state, as in Definition 9, but also update
the DFA states taking into account the most probable task execution of previous robots.

Example 9 (Concurrency-aware projection). Consider the policies represented in Figure 6 and the joint state 𝑠Φ
𝐽
=

(𝑣0, 𝑣1, 𝑣2, ?, 0, 0, 0, 0) The concurrency-aware projections for each robot are defined as:

[𝑠Φ𝐽 ]
∥
1
(𝑠Φ𝐽 ) = (𝑣0, ?, 0, 0, 0, 0);

[𝑠Φ𝐽 ]
∥
2
(𝑠Φ𝐽 ) = (𝑣1, ?, 0, 1, 0, 0);

[𝑠Φ𝐽 ]
∥
3
(𝑠Φ𝐽 ) = (𝑣2, ?, 0, 1, 2, 0).

We can now define the joint policy obtained from 𝜋Φ
𝑇
.

Definition 15 (Joint policy). The joint policy 𝜋Φ
𝐽
: 𝑆Φ

𝐽
→ 𝐴𝐽 is such that:

𝜋Φ𝐽 (𝑠
Φ
𝐽 ) =

(
[𝜋Φ𝑇 ]1

(
[𝑠Φ𝐽 ]

∥
1

)
, . . . , [𝜋Φ𝑇 ]𝑛

(
[𝑠Φ𝐽 ]

∥
𝑛

))
.

To avoid introducing extra notation, the definition above does not consider conflicting actions, i.e., joint actions
where more than one robot changes the value of the same global state feature. According to Definition 10, these are not
in 𝐴𝐽 . We address this in practice by allowing the robot with lowest index to execute its policy action, and making the
subsequent conflicting robots idle, i.e., making the policy action for the subsequent conflicting robots equal to ⊥. Note
that, because we disallow the X operator, this does not influence the satisfaction of the mission specifications.
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The joint policy can be executed by the team of robots in a synchronised fashion. To compute 𝜋Φ
𝐽
at each joint

product state, we need to compute the concurrency-aware projection of that state to each local product. This requires
us to compute the most probable terminal state for the corresponding state in each local product MDP, which can be
computationally expensive, as it requires the computation of reachability probabilities. However, by maintaining the
results of the reachability probability computations for all states reachable under [𝜋Φ

𝑇
]
𝑖
, for each robot 𝑖 , one only needs

to compute the reachability probabilities once per local product MDP.

Example 10 (Joint Policy). Considering again the policies represented in Figure 6, we can define the joint policy for
joint state 𝑠Φ

𝐽
= (𝑣0, 𝑣1, 𝑣2, ?, 0, 0, 0, 0) as:

𝜋Φ𝐽 (𝑠
Φ
𝐽 ) =

(
[𝜋Φ𝑇 ]1

(
[𝑠Φ𝐽 ]

∥
1

)
, [𝜋Φ𝑇 ]2

(
[𝑠Φ𝐽 ]

∥
2

)
, [𝜋Φ𝑇 ]3

(
[𝑠Φ𝐽 ]

∥
3

))
=

(
[𝜋Φ𝑇 ]1 ((𝑣0, ?, 0, 0, 0, 0)) , [𝜋

Φ
𝑇 ]2 ((𝑣1, ?, 0, 1, 0, 0)) , [𝜋

Φ
𝑇 ]3 ((𝑣2, ?, 0, 1, 2, 0))

)
.

The joint policy is defined for all joint states in a similar manner.

5.3 Reallocation through Replanning

As described in Definition 11, switch actions are only added to states where a task has been completed. This allows the
team model to consider robots in a sequential fashion, but also introduces reallocation states where the joint policy
is not defined. In those cases, our approach is to build another instance of the team MDP, where the initial state is
set to the reallocation state. In this subsection, we formally define the reallocation states, and propose an approach
for replanning from those states that takes into account how likely they are to occur. By first considering the most
probable reallocation states, our algorithm can be viewed as anytime, as it can incrementally build a more complete
solution, with more accurate performance guarantees, but if interrupted early, it can still provide a partial solution and
an under-estimate of the guarantee.

Definition 16 (Reallocation states). We define the set of reallocation states as:

𝑆⊥ = {𝑠Φ𝐽 ∈ 𝑆Φ𝐽 | [𝜋Φ𝑇 ]𝑖
(
[𝑠Φ𝐽 ]

∥
𝑖

)
= ⊥ for all 1 ≤ 𝑖 ≤ 𝑛}.

In words, reallocation states are states for which the joint policy (Definition 15) is undefined for all robots, i.e., there
are no more actions for the team to execute. In order to replan for a reallocation state 𝑠Φ

𝐽
∈ 𝑆⊥, we simply set the

initial states of each local MDPM𝑖 to the corresponding projection [𝑠Φ
𝐽
]
𝑖
, and reconstruct a team MDP according to

Definition 11. We consider more likely reallocation states first, by ordering the set 𝑆⊥ in decreasing order of reachability

probability under 𝜋Φ
𝐽
, i.e. we order states 𝑠Φ

𝐽
∈ 𝑆⊥ in decreasing order of Pr

𝜋Φ
𝐽

MΦ
𝑖
,𝑠Φ𝐽

(F 𝑠Φ
𝐽
).

6 EVALUATION

We have developed an implementation of our STAPU approach, built on top of the probabilistic model checker
PRISM [33]. This tool provides construction of MDPs, from a high-level modelling language, and verification of the
MDPs against specifications in LTL, which includes functionality required to implement STAPU such as generating
DFAs, building MDP-DFA products, and solving MDPs using a variety of techniques. The implementation builds on
PRISM’s “explicit” model checking engine, which is written in Java.
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6.1 Baseline Comparison: Auctioning

The goal of the STAPU approach is to provide an efficient and scalable approach to task allocation and planning, whilst
also generating probabilistic guarantees in the form of expected measures of performance for policies. A comparison of
STAPU against the naive approach of building and solving the full joint MDP is impractical since this has very limited
scalability: for a representative topological map with 100 locations and one basic reachability task per robot, solving
the MDP for 3 robots is feasible (needing approximately 8 million states), but quickly becomes infeasible since the
joint MDP is exponential in the number of both robots and tasks. Instead, for a more competitive baseline comparison,
we implement an alternative approach where task allocation and task planning are decoupled, rather than performed
simultaneously as in STAPU. To do so, we use an implementation that combines sequential single-item auctioning [30]
with MDP-based planning.

Sequential single-item auctioning [30] is an approach to task allocation which proceeds in a series of rounds. In
every round, each robot makes a bid for a task that is not yet unallocated, and provides an estimate of the contribution
that this would make to the overall team objective if it carried out this task in addition to the ones that it has already
been allocated. The robot with the best bid is allocated the corresponding task and the round concludes. Subsequent
rounds run until all tasks are allocated. In our setting, the auction has𝑚 rounds, since this is the number of tasks, and
robots’ bids are based on the highest increase that can be made to the expected number of tasks completed.

In order to ensure that STAPU and the baseline method optimise for similar objectives, our sequential single-item
auction also uses the tasks reward structure from Section 4.4. For a fair comparison, and to ensure that the auction-
based approach provides comparable probabilistic guarantees to STAPU, we adopt similar techniques for the baseline
implementation using MDPs and LTL task specifications. Specifically, to calculate robot 𝑖’s bid, we first solve local
product MDPs using the set of tasks already assigned to 𝑖 and each of the remaining unassigned tasks. From these, we
choose the unassigned task that offers the highest increase to the team.

Once all tasks are assigned to robots, the auctioning process stops. We then use this task allocation to generate
policies for each robot. To save computation, we re-use the policies generated during the auctioning process. The
individual robot policies are used to construct a joint policy in a manner similar to the one described for STAPU. This
allows us to restrict actions that modify global states and to identify states where robots need to replan. Note that the
local product MDP for each robot includes a subset of the tasks in the mission specification, therefore no conflicts arise
but we lose information about the state of tasks not assigned to that particular robot. Unlike STAPU, where replanning
only takes place in states that are not reachable under the sequential policy, auctioning does not enable the reallocation
of tasks without replanning. For example, whenever a robot fails or a door is closed the auction must be re-run.

6.2 Benchmarks

Our test environments are inspired by the benchmarks already used for multi-agent path finding (MAPF) [59], and
consist of a warehouse, a fully connected grid and an office. We use 3 variations of the warehouse environment: one
where robots travel from the shelves to the depot, one where robots travel from the depot to the shelves and one where
the initial and task locations are random. Similarly, we use 3 variations of the grid environment: one where robots
travel left to right, one where robots travel right to left and one where initial and task locations are random. In order
to test the use of global state features, we use variants of the warehouse environment with and without doors. The
warehouse has 123 locations, and 100 locations for the version with doors. The office model is slightly smaller, with 60
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locations. For most of our experiments, we fix the size of the grid environment to 11 × 11, but we also vary this size to
evaluate scalability.

Missions comprise tasks to visit various target locations and the safety specification is to avoid a set of locations. By
default, we assume 4 robots and 4 tasks, but we also present results for varying numbers of both. We model individual
robot failures by introducing transitions to the designated failure state from some of a robot’s local states with a fixed
probability (we use 0.2 in our experiments). By default, we assume that most states (90%) can suffer failures, we also
experiment with varying this percentage.

For each test configuration, we create 10 different variants, in which the initial robot locations, locations for tasks
and failure states are chosen randomly. We illustrate a selection of the maps used in Figure 7. The experiments described
in this section were run on an Intel i5 with 16GB of RAM running Linux (CentOS).

6.3 Results

We evaluate STAPU, focusing primarily on efficiency and scalability, but also the quality of generated policies, and
compare to the baseline auction-based approach.

Both our implementations, STAPU and the baseline, consider the efficiency of policies by adding a cost, based on
distance, to each action in the local models and minimising expected cumulative cost as a secondary objective. This is
achieved by using nested value iteration (NVI) [36] to solve all MDPs, with maximising the expected number of achieved
tasks as the primary objective, and minimising the expected cost as the secondary objective. In NVI, the secondary
objective is used to tie-break between actions with the same value on the primary objective. For the auctioning baseline,
both the expected number of tasks and the expected cost are used as the bid, and the expected cost is again used to
tie-break between robots that have the same bid in terms of expected number of tasks.

Figure 8 shows the total time required for policy generation across the full set of test environments. We use a scatter
plot, with STAPU on the x-axis and auctioning on the y-axis, so points above the diagonal indicate better performance
(shorter times) for STAPU. We see that STAPU generally takes less time than auctioning. An exception is the office
environment, where the model is smaller and auctioning is usually faster. STAPU solves instances of the team MDP,
which is larger and slower to solve than the local robot MDPs solved during auctioning. However, the decoupling of
task allocation and planning in the latter leads to more occurrences of replanning in order to reallocate tasks after a
robot fails (and therefore a larger number of MDPs need to be built and solved). The number of times that replanning
occurs is shown with a similar scatter plot in Figure 9 and shows a correlation with the timing results.

To check that faster performance by STAPU is not at the expense of generating policies of poorer quality, we also
compare the probabilistic guarantees offered by the policies that STAPU and auctioning generate. Figure 10 plots the
expected number of tasks for each approach, as computed from the generated joint policy. We see that these values are
generally very similar for STAPU and auctioning.

Next, we consider how the time required by STAPU and auctioning is affected by various aspects of the test
environments. For clarity of presentation we consider a fixed environment in each case, but we have observed similar
patterns on the other benchmarks. Figure 11 shows the results. Since there are multiple random instances for each
test environment, we use boxplots that show the mean and median values of each set and their range. The box shows
the interquartile range and the ends indicate the outer-quartiles. The mean is represented by a triangle, outliers by
diamonds and the median is the horizontal bar enclosed in the box.

Figure 11a shows times as we vary the percentage of states in which failures can occur. Larger numbers of failures lead
to more replanning and thus higher times. The rate of increase in time is less steep for STAPU. For a clearer comparison
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(a) Warehouse: Random (b) Warehouse: Shelf to Depot (c) Warehouse: Depot to Shelf

(d) 8 × 8 Grid: Random (e) Grid: Left to Right (f) Grid: Right to Left

(g) Office (h) Small Warehouse (3 doors)

Fig. 7. Instances of the topological maps used as test environments for benchmarking. Initial locations of robots (4 in these examples)
are denoted by coloured circles, task locations are marked by green diamonds and locations to be avoided for the safety specification
are shown by a red forbidden sign. Failure locations (40% of locations in (c); 90% elsewhere) are shaded grey. Doors, as used in (h), are
represented as a dashed brown line between two states.

of the difference in effect on STAPU and auctioning, Figure 11b shows relative times: the ratio of times for auctioning
and STAPU (i.e., the speedup factor obtained with STAPU). As the percentage of failure states increase, we see that
STAPU does better, up to 10 times faster in cases. This is because the sequential team model allows reallocation of tasks
after failures and reduces the amount of replanning required. STAPU is also able to modify the existing team MDP
for each replan, where as auctioning has to build and solve a new one each time. However, the team MDP is larger
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Fig. 8. Scatter plots showing the total runtime taken (in milliseconds) for STAPU (x-axis) vs. auctioning (y-axis) across the full set of
test environments.

and slower to solve. For lower numbers of failure states, the additional overhead of solving larger MDPs in STAPU
outweighs the gain and auctioning is faster.

In terms of the sizes of problems we consider, key variables are the numbers of robots, tasks and map locations.
STAPU avoids generation of the full joint MDP, whose size is exponential in the numbers of both robots and tasks. The
largest MDP solved is the team MDP, whose size is 𝑂 (𝑛 · 𝑁loc · (𝑁dfa)𝑚) for 𝑛 robots,𝑚 tasks and where 𝑁loc and 𝑁dfa

are the number of map locations and the maximum size of the DFA representing a task (where the latter is typically
small). So the size of the MDP is no longer exponential in the number of robots and this is not the limiting factor for
scalability. Instead, our primary concern is the computation time, which is influenced not just by the sizes of MDPs to
be solved, but the number of times that replanning occurs.

Figure 11c shows the effect on time as the number of robots is increased. This increases the size of the team MDP for
STAPU linearly, as discussed above, but has a more significant effect on the amount of replanning needed for both
methods, so STAPU remains faster in general. Similar trends are seen in Figure 11d, which shows the times as the
number of tasks increases, and in Figure 11e, where we vary the number of map locations (and therefore the size of each
robot’s local MDP). For the latter, we use fully connected square grids with increasing sizes.

Finally, we evaluate the performance of the two methods as the number of global state features increases. For this, we
use a variation of the warehouse environment where the status of doors are modelled as global states. The default state
of each door is unknown; and in order to go through a door, a robot must check whether the door is open or closed.
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Fig. 9. Scatter plots showing the number of times replanning occurs for STAPU (x-axis) vs. auctioning (y-axis) across the full set of
test environments.

STAPU’s team model allows robots to transfer knowledge of this value. As seen in Fig 11f STAPU is significantly faster
than the auctioning approach as the number of shared states increase.

7 CONCLUSION

We have presented an approach, STAPU, to simultaneous task allocation and planning for multi-robot systems operating
in uncertain environments and prone to failures. Leveraging techniques from probabilistic model checking we are
able to provide probabilistic guarantees on the performance of the team, in particular, optimising for and providing a
guarantee on the expected number of achieved tasks by the team, whilst avoiding the construction of the full joint
MDP. We also tackle the topic of task reallocation on failure, providing an anytime algorithm that incrementally finds
states where reallocation is required, and builds policies from those states.

We have evaluated STAPU extensively with respect to efficiency and scalability, comparing it with a baseline
auctioning method, a standard approach for multi-robot task allocation. Our experiments have shown that on average,
STAPU is able to compute solutions faster than the baseline. The quality of STAPU’s solutions, evaluated as probabilistic
guarantees on the expected number of achieved tasks, is also similar to those of the baseline.

Future work includes modelling robot collisions, possibly treating them as reallocation states, and extending our
approach to dynamic arrival of new tasks. Furthermore, we will exploit approaches to relax our assumptions of perfect
communication and synchronisation, specifically in scenarios where the need for communication is sparse.
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