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Abstract. Given the presence of residual vulnerabilities in software sys-
tems, it is critical to apply suitable countermeasures in order to minimize
the likelihood of an attack. In this paper we propose a formal approach,
based on stochastic games, to threat analysis and synthesis of defence
strategies for protecting systems with vulnerabilities. Crucially, we sup-
port analysis under partial observation, where some of the attacker’s ac-
tivities are unobservable or undetectable by the defender. We construct
a one-sided partially observable security game and transform it into a
perfect game, for which formal analysis is feasible. We prove that this
transformation is sound for a sub-class of security games and a subset
of objectives specified in the temporal logic rPATL. We implement our
approach and evaluate it by applying it to a real-life example.

1 Introduction

In today’s increasingly complex software systems, many vulnerabilities still re-
main in the system after being discovered due to factors such as the lack of a
patch or knowledge to fix them, cost considerations, or organizational preferences
for availability and usability over security [31]. Threat modelling is as a widely-
used technique for specifying, discovering and analyzing security weaknesses in
order to assess and manage the security of systems with vulnerabilities [18].

A wide range of models and languages has been proposed for threat mod-
elling and analysis (see [18,22] for a survey). Attack graph-based [28] and attack
tree-based [32] approaches are among the most common. While attack trees
have received a lot of attention in the past, they are often constructed man-
ually or semi-automatically, which is a challenge when developing automated
online analysis techniques. In contrast, attack graphs can be generated fully au-
tomatically using formal approaches, such as model checking [28] or logic-based
reasoning [27], making them a suitable candidate for automated analysis.

The opposing objectives and dependent strategies of attack and defence make
them well-suited for game-based threat analysis, enabling us to model the inter-
actions between the attacker and the defender to construct effective defences
and assess threats. Game theory has been applied to analyze security in differ-
ent research communities in recent years [2, 13,14] (see [25] for a survey).
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However, most of the research achievements in this area are based on the
hypothesis that both players have full observation of the opponent’s moves, which
is unrealistic in practice. This is because it is not always possible to observe all
the attacker’s activities; many vulnerabilities and malicious activities cannot
be detected due to factors such as the high overhead of monitoring, expensive
security controls, or ineffective security mechanisms.

In this paper, we propose an approached based on stochastic games, under
partial observation, for the analysis of attack-defence scenarios in systems with
vulnerabilities and the automatic synthesis of defence strategies. We employ
attack graphs for the automatic construction of attack scenarios, and build on
stochastic modelling and verification with games [12] for security analysis, which
provides formal assurance for systems operating in uncertain environments.

We define the semantics of attack graphs in terms of Symbolic Markov Deci-
sion Processes, which specify the attacker’s behaviour. We specify defences as a
set of rules, triggered as a reaction to an attack or as a preventive action to stop
potential future attacks. A fully observable (also called perfect) stochastic two-
player game is then constructed from the attacker’s and defender’s behaviour, in
which each player has full observation of the other players’ actions. This allows
us to analyze attack-defence scenarios and synthesize defence strategies using
existing formal verification methods and tools. We specify attacker or defender
objectives in the temporal logic rPATL (Probabilistic ATL with Rewards) [12]
and use the stochastic game verification tool PRISM-games [23].

To support reasoning under partial observation, we define a partially observ-
able one-sided security game (PO-security game). This provides partial observa-
tion of the attacker’s behaviour but, on the other hand, assumes that the attacker
has full observation of the defender’s actions. This type of game, where one player
has full observation and the other has partial observation, is called a one-sided
partially observable game [11]. Note that, if the defender wins in this one-sided
game setting, they will also win in a setting where the attacker has only partial
observation [10]. While the formal verification community has studied analy-
sis under partial observation and presented theoretical results (e.g., [3, 8–10]),
progress on developing practical methods for stochastic games under partial ob-
servation has been very limited, even for the simpler one-sided case [7].

To analyze a PO-security game, we transform it into a perfect game and then
analyze the resulting model with PRISM-games. We prove that this transforma-
tion is sound for a subclass of security games called ODT (Observable Defence
Triggers) security games and a subset of rPATL properties (called observable
step-unbounded defence objectives). This means that a synthesized strategy for
the defender in the resulting perfect security game is a valid strategy for the
defender in the original PO-security game.

We implement a prototype tool to support the proposed approach and eval-
uate it through application to a real-life case study. Our experimental results
demonstrate that transforming a PO-security game significantly enhances the
performance of our analysis and can serve as a promising technique for reducing
the state space when dealing with large attack graphs.
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Fig. 1: An Example Attack Graph

The contributions of this paper are: (i) constructing a security game from an
attack graph and the defender’s behaviour; (ii) introducing partially observable
security games and an approach for their analysis; and (iii) applying it to a real-
life case study. The paper is organized as follows. Section 2 presents preliminaries
on stochastic games. Section 3 constructs a fully observable security game, and
Section 4 discusses PO-security games. We present the evaluation in Section 5,
discuss related work in Section 6, and conclude in Section 7. Formal proofs can
be found in an extended version of this paper [20].

2 Preliminaries

2.1 Attack Graphs

An attack graph shows strategies that can be taken by an attacker to reach
its final goal. It comprises three types of nodes: (a) condition nodes, depicted
as rectangles, show the primitive capabilities that an attacker has, (b) derived
nodes, represented by diamonds, are associated with derived capabilities gained
through attack actions, and (c) rule nodes, represented by ellipses, show actions.
Fig. 1 shows an attack graph where the label of a node is of the form (id, p): id
is the node identifier and p is the probability of reaching that node. The table
gives a description of each node identifier. When the prerequisites of a rule (i.e.
its predecessor nodes) in the attack graph are satisfied, it is activated and leads
to its consequence (i.e., its successor node) with a probability.

The attack graph in Fig. 1 describes an attack scenario where the attacker’s
goal is to take the system plycent03 down. The attacker is located on the internet
and has direct access to the system plycent02, which has a vulnerability that can
lead to memory tampering. They also have access to the SSH service offered
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by plycent03, which suffers from the vulnerability vul cve-2018-5390 that can
be exploited to perform a DoS attack. The attacker can directly access the
SSH service on plycent03 (via the path r11 and r2), or indirectly via exploiting
the vulnerability on plycent02 (via the path r8, r5, and r2). Once the attacker
gains access to the SSH service of plycent03, they can exploit its vulnerability to
perform a Denial of Service (DoS) attack.

From the system description and the attack goal, we generate an attack
graph using MulVAL (Multihost, Multistage Vulnerability Analysis) [27], simi-
lar to [21]. MulVAL is a logic programming-based system to automatically build
attack scenarios. The logical attack graph produced by MulVAL relies on the
method proposed in [31] to calculate a cumulative security metric called AGP
(Attack Graph-based Probabilistic Metric) that shows the likelihood of an at-
tacker reaching a specific derived node in the attack graph from an entry point,
considering the causality among attack steps. The probability of an attack de-
pends on the attacker’s resources, skills, attack success rate, etc. We use the
scores provided by the Common Vulnerability Scoring System (CVSS)3 and do-
main experts to initialize the scores for primitive and rule nodes. CVSS is a
vulnerability database that provides different scores to measure the severity and
exploitability of vulnerabilities.

2.2 Probabilistic Model Checking

Probabilistic model checking is an approach to formal verification and strategy
synthesis for probabilistic systems, including for stochastic games [12, 29]. Let
PX be the set of all discrete probability distribution functions over the set X,
V = ⟨v1, . . . , vn⟩ be a vector of variables, Dvi be the domain of a variable vi,
and DV =

∏n
i=1 Dvi . A valuation ν of V is a tuple ⟨ν1, . . . ,νn⟩ ∈ DV , and we

denote the i-th value of ν by ν(vi) for 1 ≤ i ≤ n.

Our modelling approach uses Symbolic Markov Decision Processes (SMDPs),
a high-level description of a Markov Decision Process (MDP) in a similar form
to the modelling language of the PRISM [24] and PRISM-games [23] tools.

Definition 1 (Symbolic Markov Decision Process). A Symbolic Markov
Decision Process (SMDP) is a tuple M = ⟨V,ν0, Σ, δ⟩ where V = ⟨v1, . . . , vn⟩ is
a tuple of variables, ν0 ∈ DV gives the initial conditions on the variables, Σ is
a finite non-empty set of actions, and δ is a finite set of probabilistic transitions
⟨ϕ, σ,PU ⟩ where ϕ ⊆ DV is a predicate on V which guards the transition, σ ∈ Σ
is an action and PU ∈ PU is a discrete probability distribution over the set U of
update functions of the form u : DV 7→ DV , defined as a set of assignments.

SMDP M starts in its initial state. A transition can fire if its guard is satisfied
and, when fired, the variables are updated with the probabilities corresponding
to its update functions. The semantics of M is an MDP M = ⟨V, S, s0, Σ, δ⟩

3 https://www.first.org/cvss/

https://www.first.org/cvss/
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where S ⊆ DV is a set of states, s0 = ν0 is the initial state and δ : S ×Σ → PS

is a (partial) transition function defined as follows:

δ = {⟨⟨s, σ⟩, f(U, s)⟩ | ∃δ = ⟨ϕ, σ,PU ⟩ ∈ δ, s |= ϕ}

f(U, s) =

{
⟨t, p⟩ u ∈ U, t = u(s), p = PU (u)

undef otherwise

Definition 2 (Two-Player Stochastic Game). Let M1 = ⟨V1, S1, s1,0, Σ1, δ1⟩
and M2 = ⟨V2, S2, s2,0, Σ2, δ2⟩ be two MDPs specifying two players’ behaviour.
A (turn-based) stochastic two-player game is a tuple G = ⟨P, V, S, s0, Σ, sch, ∆⟩
where P = {1, 2} is the set of players, V is a vector of state variables over
V1 ∪ V2 ∪ {t}, S ⊆ DV is the set of states, s0 is the initial state, Σ = Σ1 ∪ Σ2

is the set of actions, sch : S → P is a scheduler and ∆ = {⟨⟨ν, σ⟩,PS⟩} is a
(partial) transition function defined as follows.

Let ν↓Vi
be the projection of ν onto the variables in Vi. Let (ν ↓Vi

)\x denote

a tuple obtained by setting the subtuple Vi in ν to x, and δi(x, σ)(x
′) represent

the probability of a transition from state x to state x′ with action σ according to
δi. The probability of a transition from PS in state ν with the active player i to
a state ν′ by performing action σ is:

PS(ν
′) =


p ν↓{t} = i

∧ ∃x. δi(ν↓Vi
, σ)(x) = p ∧ ν′ = (((ν ↓Vi)\x) ↓{t})\sch(ν)

0 otherwise

Informally, the transition function in Definition 2 says that a state with active
player i is updated to a new state ν′ in which the active player’s state ν↓Vi

is updated to x with probability p, the other player’s local substate remains
unmodified and the active player is updated according to the scheduler function.
We represent the game by M1 || M2 and partition the game’s states into sets
S1 and S2, controlled by each of the two players. Furthermore, Σ(s) denotes
the actions that can be performed in state s ∈ S. We also annotate games with
reward structures ξ : Σ → R≥0, which can be used to model rewards or costs.

Given a game G and an objective ψ, the goal of strategy synthesis is to
synthesize strategies for (coalitions of) players to be able to win the game. A
strategy informally determines the optimal action that should be performed by
the coalition in each state to achieve its objective. The objective ψ is specified
using the temporal logic rPATL (probabilistic alternating-time temporal logic
with rewards). This logic allows us to express quantitative properties of the
games, e.g., to ensure that the probability of an event’s occurrence meets some
threshold (for example: “can the defender protect the network in such a way
that the probability of the system being compromised by the attacker is less
than 0.1?”). rPATL is a branching-time logic and contains state formulas ϕ and
path formulas ψ. The syntax is given by the following grammar:

ϕ ::= ⊤ | α | ¬ϕ | ϕ ∧ ϕ | ⟨⟨C⟩⟩P▷◁p[ψ] | ⟨⟨C⟩⟩Rξ
▷◁x[Fϕ]

ψ ::= Xϕ | ϕ1U≤kϕ2 | ϕ1Uϕ2
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where α is an atomic proposition, C is a coalition of players, ▷◁∈ {<,≤, >,≥},
p ∈ [0, 1], x ∈ R, k ∈ N and ξ is a reward structure.

The operators X (“next”), U≤k (“bounded until”), U (“until”) and F (“even-
tually”) are the standard temporal operators. Informally, ⟨⟨C⟩⟩P▷◁p[ψ] states that
the coalition C has a strategy to ensure that the path formula ψ will be satis-
fied with a probability meeting the bound ▷◁ p, regardless of the strategies of
other players. Similarly, ⟨⟨C⟩⟩Rξ

▷◁x[Fϕ] means that C has a strategy guaranteeing
that the expected reward ξ accumulated until reaching a state where ϕ is true
satisfies ▷◁ x. We write s |= ϕ to indicate that state s of G satisfies the formula
ϕ, and write G |= ϕ, if s0 |= ϕ. Further, Sat(ϕ) = {s ∈ S | s |= ϕ} denotes
the set of states satisfying ϕ. We refer the reader to [12] for the full semantics
of rPATL. In this paper, we use PRISM-games [23] to synthesize strategies for
players according to objectives specified in rPATL.

3 Fully-Observable Security Games

We construct a perfect (fully observable) two-player stochastic security game
between the attacker and defender, where the attacker’s goal is to gain a specific
capability, and the defender tries to prevent the attacker from doing so. In such
a turn-based stochastic game, each player independently chooses an action in
every round, and a player’s action is fully observable by the opponent, i.e., the
attacker and the defender have perfect observation of each other’s moves.

Attacker Behaviour. We follow a similar approach to [30] to formalize an
attack graph where the state of an attacker is represented using a set of Boolean
variables, each corresponding to the attacker holding either a primitive capability
(box node) or a derived capability (diamond node). Initially, the attacker only
holds the primitive capabilities and has no derived capabilities. A transition
corresponds to the attacker performing an action by applying a rule σ and,
when it is triggered (i.e., the rule prerequisites hold and its consequence e does
not hold), the attacker gains the new capability e with probability p(σ).

Example 1. The attacker’s behaviour in Fig. 1 contains four rule nodes, each of
which is translated into a transition. For instance, the rule node r2 is translated
to the transition ⟨ϕ, remote DOS,PU ⟩ where:

ϕ = p3 ∧ d4 ∧ p14 ∧ p15 ∧ ¬d1
PU ({d1 7→ ⊤}) = 0.74 PU (∅) = 0.26.

This states that, if the attacker has capabilities {p3, d4, p14, p15} but not d1,
they can acquire d1 with a probability of 0.74, or fail with a probability of 0.26.

Defender Behaviour. The choices of each player depend on the moves of
the other, i.e., their capabilities and privileges may change as a consequence
of their opponent’s moves. For example, if an attacker gains full control over
a system through a ransomware attack, the defender will lose access to that
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system. Similarly, if the defender modifies configurations to block service access
on a victim, the attacker may adjust its strategy accordingly.

Therefore, an attacker’s decision to target a system should account for poten-
tial defensive countermeasures, and vice versa. We define two types of defence:
reactive defence and proactive defence. Reactive defences are typically responses
to an ongoing attack, whereas proactive defences are preventive actions taken
to thwart potential future malicious activities. An example of reactive defence
includes updating permissions to block an attacker’s access to a system upon
detection of malicious activity by an intrusion detection system. An example of
proactive defences is regular vulnerability scans on critical systems to detect and
rectify potential weaknesses, proactively patching applications, and monitoring
critical security controls. Defences performed by the defender respond to the at-
tacker gaining new capabilities, with the aim of either revoking those capabilities
or preventing the attacker from acquiring specific capabilities in the future.

We define defence-triggering capabilities as a set of attacker capabilities VAD

that the defender can observe and against which it can apply countermeasures.
Therefore, the defender’s state variables include the defence-triggering state vari-
ables of the attacker in addition to its own internal variables. Furthermore, the
actions of the attacker and the defender should be distinct.

Definition 3 (Defender Behaviour). Let AT = ⟨VA,νA,0, ΣA, ∆A⟩ be the
behaviour of the attacker, and VAD ⊆ VA be the set of defence-triggering ca-
pabilities of the attacker. The behaviour of the defender is defined as DE =
⟨VD,νD,0, ΣD, ∆D⟩ where VAD ⊆ VD, νD,0 =⇒ νA,0, and ΣD ∩ΣA = ∅.

Example 2. A reactive defence to the capability of executing code with root
privilege by the attacker on the system plycent02 is to patch the vulnerability
cve-2018-7566 (the rule node r8 in Fig. 1). This defence is specified as a transition
⟨ϕ, patch vul−2018−7566,PU ⟩ where:

ϕ = has root exec code on plycent02 ∧ vul vul−2018−7566 exists on plycent02
u = {has root exec code on plycent02 7→ ⊥;

vul vul−2018−7566 exists on plycent02 7→ ⊥}
PU (u) = 0.85 , PU (∅) = 0.15

This states that, if the attacker can execute code with root privileges on plycent02,
exploiting the vulnerability patch vul−2018−7566, this defence rule eliminates
the vulnerability and revokes its root privileges with probability 0.85. We assume
that such defence probabilities are determined by a domain expert.

Security Game. Given the behaviours of the attacker and defender, specified as
SMDPs, and a scheduler sch, we construct a security game G = ⟨{A,D}, V, SA∪
SD, s0, ΣD ∪ ΣA, sch, ∆⟩ according to Definition 2, where {A,D} is the set of
players, SA is the set of states controlled by the attacker, and SD is the set
of states controlled by the defender. In each state of this security game, each
action σ ∈ Σ (where Σ = ΣA ∪ΣD) yields at most one probabilistic transition.
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The security game can further be associated with reward structures that assign
rewards or costs to the states or transitions.

We use the probabilistic model checker PRISM-games to analyse various
classes of properties for a single player or for both players, e.g., the likelihood
or costs associated with achieving specific capabilities or goals by the attacker.
Our primary objective is to prevent the attacker from reaching its targets, which
can include intermediate or final objectives such as gaining control of a specific
system to access sensitive information on another victim. PRISM-games can also
synthesize a strategy Γ : S → Σ that determines the optimal action to be taken
in each state by the player controlling it. We use strategy synthesis to develop
defence strategies aimed at enhancing system protection.

Game Assumptions.Wemake the following assumptions in our security games.
The game consists of one attacker and one defender. The attacker’s goal is to
obtain as many capabilities as possible, and the defender’s goal is to prevent the
attacker from acquiring more capabilities and to revoke their existing ones. If an
attacker obtains a capability, they will hold it until it gets revoked by the oppo-
nent. An attacker tries an action if it can result in gaining new capabilities. The
defender has the ability to check and observe the consequences of (observable)
attacks immediately, i.e. we rely on intrusion exploitation systems and intrusion
detection systems to detect and report (some of) the attacks immediately.

4 One-Sided Partially-Observable Security Games

In a perfect stochastic game, each round involves one player independently choos-
ing an action that is fully observable by the opponent, i.e. each player has com-
plete knowledge of the opponent’s capabilities. Most security games also assume
perfect observation [13,14], meaning that players have full visibility of the game
state and the opponent’s actions. However, this assumption is not realistic in
practice. Not all of the attacker’s steps are observable by the defender, nor are
all attacks easily detectable. Detecting some malicious activities and distinguish-
ing them from normal operations can be very difficult or costly.

We instead assume that the attacker has full observation but the defender
has partial observation, i.e., a one-sided partially observable game [11]. Note that
if the defender wins in the one-sided setting, they will also win in a setting where
the attacker has partial observation [10]. Similarly, if the attacker cannot win in
this setting, they cannot win in a setting where the defender has full observation.
We define a partially observable stochastic two-player security game as follows.

Definition 4 (One-Sided Partially-Observable Security Game). Let P =
{A,D}, i ∈ P and Mi = ⟨Vi,νi,0, Σi, δi⟩ be two SMDPs representing the be-
haviour of the attacker and the defender. A (turn-based) stochastic two-player
PO security game is a tuple G = ⟨P, V, S,Obs, s0, Σ, sch, ∆⟩ where V is a vector
defined over VA∪VD∪{t}, S ⊆ DV is the set of states and Obs : DV → DVD

is a
function that defines the observation of the defender in a state. The initial state
is s0 such that s0 |= νA,0 and Obs(s0) |= νD,0, Σ = ΣA∪ΣD and sch : S → P is
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the scheduler. The transition ∆ : S ×Σ → PU is a (partial) transition function
defined as follows, where up(u, σ) is an update function:

∆ = {⟨⟨s, σ⟩, f(U, s, σ)⟩|∃⟨ϕ, σ,PU ⟩ ∈ δA ∧ s |= ϕ ∨ ∃⟨ϕ, σ,PU ⟩ ∈ δD ∧ Obs(s) |= ϕ}

f(U, s, σ) =

{
⟨up(u, σ)(s), p⟩ u ∈ U, p = PU (u)

undef otherwise

In this paper, we focus on a specific one-sided partially observable security
game, defined as follows. We partition the actions of the attacker into two sets:
observable and unobservable actions. The defender can observe only the observ-
able actions of the attacker and their consequences. An attacker’s action involves
applying a rule to obtain a new derived capability; if the action is observable, the
defender can also see the newly obtained capability. For instance, network traffic
can be monitored to detect direct network access between hosts, whereas a DoS
attack might go undetected if the host is not equipped with an appropriate IDS.

Therefore, we define the game state as V = ⟨vA,0, . . . , vA,n, vD,0, . . . , vD,m, t⟩,
where VA = ⟨vA,0, . . . , vA,n⟩ represents the attacker’s state, VD = ⟨vD,0, . . . , vD,m⟩
represents the defender’s state, and t indicates the active player. The defender’s
observation in a game state ν is defined as:

Obs(ν) = ⟨ν(vD,0), . . . ,ν(vD,m), t⟩. (1)

Note that VAD is duplicated in V . Let−→u be a function that applies the updates of
the variables in VAD by u to the sub-states of both players. The function up(u, σ)
applies the update of an unobservable action locally only to the attacker’s sub-
state. Otherwise, the updates should be applied to the both players’ sub-states:

up(u, σ) =

{
u σ /∈ ΣO ∪ΣD
−→u otherwise

(2)

where ΣO gives the observable actions of the attacker.

Analyzing a Partially Observable Security Game. To analyze a partially
observable (PO) security game, we transform it into a perfect security game and
analyze the perfect game instead. If a derived capability is obtained through
an observable action, it also becomes observable to the defender; otherwise, the
update remains unobserved. If the defender knows the possible consequences of
their observations, they can infer the attacker’s next observable actions.

To achieve this, we need to identify the sets of observable prerequisites that
can lead to an observable action being performed through a sequence of un-
observable actions, ultimately resulting in the attacker achieving an observable
derived capability. For instance, assume the defender cannot detect a memory
tampering attack by the attacker (i.e., rule node r8 in Fig. 1 becomes unob-
servable). This means it will not be possible to detect whether the attacker can
execute code with root privileges on plycent02 (node d7). However, the defender
knows that if the attacker holds the observable capabilities p9, p10 and p6, then
it can ultimately perform the action in node r5 via performing r8 and then
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r5. Thus, the observable prerequisites of r5 become {p6,p9,p10}. There might be
several sets of observable prerequisites that can lead to performing an observable
action. For the algorithm to compute observable prerequisites, see [20].

We transform an attacker’s behaviour into an abstract behaviour that hides
the unobservable actions and only considers their impact on performing ob-
servable actions. Let doPrequisites(r) be a function that returns the set of all
observable prerequisites of r. Each element dop of doPrequisites(r) represents
the prerequisites of a specific path, and we associate a transition with each path.
The guard of this transition is the conjunction of all observable capabilities in
dop and the negation of r’s consequence, i.e. this transition is triggered when
all its observable prerequisites hold and r’s consequence has not been achieved.
This transition will set r’s consequence with a probability that is the product of
all the action probabilities along the path, i.e., this path can be taken if all the
actions along it can be performed successfully.

Example 3. Let all the rule nodes in Fig.1 be unobservable, except for r2. The
observable behaviour of the attacker is translated into two symbolic transitions,
corresponding to the paths {r11, r2} and {r8, r5, r2}. The transition associated to
{r11, r2} is ⟨p14∧p15∧p12∧p13∧p3∧¬d1, path0,PU ⟩, where U = {{d1 7→ ⊤}, ∅},
PU ({d1 7→ ⊤}) = 0.74 ∗ 0.8 = 0.59, and PU (∅) = 0.4.

Definition 5 (Attacker’s Observable Behaviour). Let R be the set of the
attacker actions, i.e., the set of rule nodes in the attack graph, and C and
H be the set of observable primitive and derived capabilities, respectively. Let
ΣO ⊆ R be the set of observable actions and p : R → [0, 1] be a function giv-
ing the probability of successfully applying action rules r ∈ R. The observ-
able behaviour of G is defined as [AT] = ⟨VO,νO,0, ΣO, δO⟩, where VO is a
vector of variables defined on C ∪ H. The initial conditions on the variables
are given by: ν0 =

∧
ϕ∈C ϕ ∧

∧
ϕ∈H ¬ϕ. For each rule r ∈ ΣO and each of

its distinct sets of observable prerequisites dop ∈ doPrequisites(r), a transition
⟨¬e∧

∧
di∈dop di, act(dop),PU ⟩ ∈ δO is defined, where act(dop) assigns an action

label in ΣO to dop, e corresponds to the successor derived node of r, U = {∅, u},
u = {e 7→ ⊤}, and:

PU (u) =
∏

ri∈dop

p(ri), PU (∅) = 1− PU (u).

The reward structure for the attacker’s actions is defined as ξ′(r) =
∑

ri∈dop ξ(ri).

We build and analyze a fully-observable security game, as given in Defi-
nition 5, instead of directly analyzing the partially observable security games
constructed using the functions Obs and up defined in Equations 1 and 2. Let
V ′
AD be the attacker’s copy of VAD (i.e., the set of common variables between

the attacker and the defender). The scheduler of the perfect game is defined as
follows, where sch is the scheduler of the original PO security game:

sch′(ν) = sch(ν↓(VO\V ′
AD

)∪VD∪{t}
), (3)
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Table 1: Services and Vulnerabilities
Machine Software/

Service
Vulnerability Consequence

plyrhel01 http cve-2018-1000120 Remote Code Execution

plycent01 Linux kernel cve-2017-13215 Privilege Escalation

plycent02 postgress Improper Authentication

plycent03
ssh cve-2018-7566 Memory Tampering, Authentication Bypass
http cve-2018-1273 Remote Code Execution

where the scheduler of a state ν is the value returned by the original scheduler
sch for the corresponding state in ν in the original game, essentially projecting
onto the state variables of the attacker, the defender, and the variable t.

Soundness. An ODT (Observable Defence-Triggering) security game is a PO
security game in which all the defence-triggering capabilities of the attacker are
observable, i.e., VAD ⊆ VO. We prove that the transformation of an ODT security
game, using Definition 4 and the functions Obs and up defined in Equation 1
and Equation, 2 to a perfect security game is sound for a subset of rPATL.

Definition 6. A rPATL formula ϕ is an observable step-unbounded defence
objective, if (i) it is defined over VO ∪ VD (i.e., it contains no unobservable
variable), (ii) it contains no X or Uk operators, and (iii) in any sub-formula
≪ C ≫P▷◁ p[ψ], C ⊆ {D}.

The results below state that an observable step-unbounded defence objective
holds in an ODT security game defined in Definition 4, if and only if it is satisfied
by a perfect game with the attacker behaviour obtained using Definition 5. Proofs
of these results are in the extended version of this paper [20].

Theorem 1. Let G be a one-sided partially observable security game and [G] be
its transformation to a perfect game. For any observable step-unbounded defence
objective ϕ, G |= ϕ if and only if [G] |= ϕ.

Theorem 2. For an observable step-unbounded defence objective ≪ D ≫ P▷◁q[ψ]
or ≪ D ≫ R▷◁q[Fϕ], PRISM-games synthesizes the same winning strategies for
the defender in G and [G].

5 Evaluation

Scenario. To evaluate our approach, we designed an attack scenario against a
system shown in Fig. 2. Table 1 shows some of the services and software vulner-
abilities present on each machine. In this scenario, the goal is to launch a DoS
attack on the database server plycent02. The attacker is located on the inter-
net and can access web pages served by the HTTP server hosted on plycent01.
Dotted arrows show the sequence of service accesses made by the attacker to
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reach its final goal. The attack graph generated for this scenario using MulVAL
comprises 50 nodes and 18 attack steps. We use the security metrics AGP pro-
vided by MulVAL, CVSS, and expert knowledge to determine the probability of
attacker actions. The countermeasures considered in this attack scenario include
stopping a service, limiting access to a service, or patching vulnerabilities.

We define two reward structures: (i) aCosts, which models the costs of an
attack step for the attacker; and (ii) dCosts, which captures the cost of defence
in addition to the damages an attacker can cause to the system by a successful
attack step. To estimate the costs in aCosts, we considered several factors, in-
cluding the time needed to perform the attack, ease of exploitation, and tools
and requirements for performing the attack. To estimate the damage of an at-
tack step (costs imposed on the defender), we use the impact score provided by
the CVSS database, quantifying the outcome that an attacker can achieve as a
result of exploiting the vulnerability, as well as business security preferences.

Fig. 2: The architecture and attack steps

We considered three cases
of systems that can be de-
veloped with the architecture
presented in Fig. 2: a tax sys-
tem, an image hosting sys-
tem, and a hotel booking sys-
tem. Each has its own re-
quirements and preferences in
terms of service availability,
confidentiality, and integrity
of information. For the tax
system, the integrity of infor-
mation and the availability of

the system during operation are of utmost importance, making the cost of tak-
ing any service down very high. Patching, on the other hand, is of minor im-
portance. In the image hosting system, availability is important, but integrity
and confidentiality are less important. In the hotel booking system, all three as-
pects—availability, confidentiality, and integrity—result in some loss of revenue
and are therefore important. The cost of a defence varies from 0 to 500.

Results. We compute, with PRISM-games, the minimum or maximum prob-
ability of satisfying a property ψ that can be guaranteed by a coalition C
(⟨⟨C⟩⟩Popt [ψ], opt ∈ {min,max}). The maximum or minimum reward can be
computed similarly. We analyzed several properties for each game:

(1) The minimum cost (defence cost and damages caused by the attacker) to
defend against the attack and block it: ⟨⟨def⟩⟩RdCosts

min=? [F attackerBlocked].
(2) The maximum cost for the attacker to launch a DoS attack against the web

server plycent02: ⟨⟨def⟩⟩RaCosts
max=? [F DoS(plycent02)].

(3) The maximum probability with which the defender successfully blocks the
attack: ⟨⟨def⟩⟩Pmax=? [F attackerBlocked].

(4) The minimum probability which which the attacker achieves its final goal:
⟨⟨att⟩⟩Pmin=? [F DoS(plycent02)].
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We carried out experiments with different schedulers. The attacker performs 14
different types of actions in total, and we considered three different schedulers
that return control to the defender after an action of a specific type, e.g. when
a suspicious log-in occurs or traffic is observed. Table 2 shows a partial analysis
of the results. The first column shows the number of attacker action types af-
ter which control returns to the defender. For instance, a “2-actions” scheduler
means that the attacker performs two actions, after which control is returned to
the defender to apply a defense if necessary. The ‘Model Size’ column indicates
the number of states and transitions of the security game for different systems.

The results show that, with an increase in the number of actions to which
the defender can react, the size of model increases. This is expected, as more
transitions from the defender will be included in the model and this will increase
the state space. In addition, the minimum cost (both attacker damage and de-
fence costs) imposed on the system decreases with an increase in the number of
attacker actions to react to, e.g., the minimum cost to defend against the attack
in the tax system changes from 732 units to 205 when the number of actions with
a defence reaction changes from 2 to 6. This is because the defender has a better
chance of applying an effective countermeasure if control is returned more often.

Table 2: Results for varying scenarios
Scheduler Model

size
Property Case Result

2-actions

17.6K/
47K (1)

Tax System 732

Image Hosting 732
Hotel Reservation 732

(3) - 0.31

4-actions

47K/
121k (1)

Tax System 277

Image Hosting 266
Hotel Reservation 318

(3) - 0.67

6-actions

97K/
242K (1)

Tax System 205

Image Hosting 185
Hotel Reservation 245

(3) - 0.68

Furthermore, the minimum
cost for the attacker to
reach its final goal increases
slightly: with an increase in
the defence actions, it might
become more challenging for
the attacker to succeed and
it would need to try different
scenarios. In a similar fash-
ion, the probability that the
defender succeeds in block-
ing the attack increases, e.g.,
from 0.31 with two action

types to 0.68 for the case of 6 action types.

Performance Analysis. To evaluate the performance of our approach, we con-
ducted experiments on a real-life network system comprising 16 hosts offering
different services. We scanned the hosts and identified 155 types of software
vulnerabilities, all reported to the CVSS database during the period of 2017-
2018. All experiments were run on a machine with a 2.9 GHz Intel Core i7 CPU
and 16 GB RAM, running macOS Catalina. We conducted experiments with
different sets of observations, vulnerabilities, defence strategies, and objectives
on a real-life case study. To test the implementation of our prototype, we ran
approximately 1241 different experiments. Sample model files are available.4

The size of the game model depends on the size of the attack graph as well
as the defences. Defence strength indicates the percentage of possible defences
applied in the system. As the size of the attack graph and the defence strength

4 https://www.prismmodelchecker.org/files/sefm24/

https://www.prismmodelchecker.org/files/sefm24/
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(a) (b)

Fig. 3: (a) Model checking time for varying game sizes. (b) Games size for varying
defence strength and attack graph size (circle colour/size indicates the number
of states/transitions, in the ranges (0, 1.4∗106) and (0, 14.5∗106), respectively).

increase, the number of states and transitions increase accordingly, as illustrated
in Figure 3(b). In this figure, colour represents the number of states, and the
marker size denotes the number of transitions at each point. For larger attack
graphs with high defence strength, we encountered the state explosion problem.
Figure 3(a) shows the model checking time for four different properties based on
the number of model states. The marker size represents the number of transitions
at each point. The model checking time ranged from a few milliseconds for
smaller models to approximately 120 seconds for a model with around 1.4× 106

states, and generally increases with the size of the model.

Fig. 4: Model Size vs Partial observation

The number of transitions
in a security game under per-
fect and partial observation
for six different experiments
is presented in Fig. 4. The
x-axis shows the experiment
ID, and the y-axis the sum
of the number of transitions
and states for different obser-
vations. In these experiments,
the number of attacker action
types ranged from 9–16. We
ran each experiment under
five different observation con-
ditions, including full obser-
vation (Observable), and with
n unobservable actions, for 1 ≤ n ≤ 4. In this figure, n−Unobservable means that
n actions of the attacker have become unobservable. Actions that are challenging
to definitively associate with malicious activity are considered unobservable.

In some experiments, while the number of state variables remained fixed
(because the consequences of unobservable actions were partially observable,
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i.e., neither fully observable nor fully unobservable), the model size was reduced
significantly. With an increase in the number of unobservable actions, the number
of transitions decreased accordingly. For instance, in experiment 5, the model
size for the case of full observation is approximately 9.7M, while it reduces to
approximately 6.2M, 2.9M, 1.5M and 0.6M for 1 to 4 unobservable actions,
respectively. Our experiments show that this transformation can be used as a
state reduction technique to tackle the complexity of large-scale attack graphs.
We can transform a perfect security game with a large state space into a smaller
game, where some sub-scenarios that do not trigger any defence are abstracted
away by being considered as a single step. This results in a more abstract game
where the internal details of the attacker’s behaviour are hidden, and only their
interactions with the defender are taken into account.

6 Related Work

Games In Security. A recent survey by Hunt et al. [19] reviews research on
attacker-defender games, but it focuses solely on protecting physical assets and
does not address cybersecurity. The authors in [14] proposed a game-theoretic
approach for a network hardening problem where the attacker plan is repre-
sented as an attack graph and the defender seeks an optimal solution to deploy
honeypots into the network to deceive the attacker. A two-player strategic game
based on an extension of attack trees was constructed in [4], where the defender
wants to protect the system by buying countermeasures and the attacker tries
to exploit the vulnerabilities and gain some profit. The game is solved by finding
the Nash equilibria, with the goal of finding the most promising attack/defence
actions. Chowdhary et al. [13] use attack graphs to build a zero-sum stochastic
Markov game between the attacker and the defender to help the administrator
apply countermeasures in a cloud network.

None of the above approaches support partial observations. The authors in [1]
proposed a method for cyber-deception using game theory and reinforcement
learning, where the defender has partial observations of the attacker’s actions.
In contrast to [1,13,14] that are application-specific, our approach can be applied
to any type of attacks and defences. We believe the runtime for our method may
be faster than for [14]: we analyze a system with 53 vulnerabilities in under 1
second, whereas [14] needs up to 1000 seconds to analyze a network with 8 types
of vulnerabilities. But further investigation is needed to confirm this.

In [2], an extension of attack/defence trees with temporal ordering of ac-
tions is used to build a two-player stochastic game between the attacker and the
defender. They use probabilistic model checking techniques to formally verify
security properties of the attack-defence scenarios, and synthesize strategies for
attackers or defenders using PRISM-games. A similar approach is taken in [15],
but with some relaxed model assumptions and some additional optimizations.
Gadyatskay et al. define a stochastic timed semantics for attack-defence trees
in terms of a network of timed automata in [16]. They use the UPPAAL model
checker to perform a quantitative analysis and find attacker parameters that
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minimize cost. In contrast to [2,15], we use attack graphs that can be generated
fully automatically and we support partial observation, while automatic con-
struction of attack trees is still a major challenge despite the recent efforts [33].
Our security game is boolean which makes it more scalable for analysis of real-
istic network systems, as confirmed by our experiments results.

Analysis under Partial Observation. Partially observable Markov decision
processes (POMDPs) extend MDPs with partial observability and have many
applications in fields such as AI, scheduling and planning. The formal verification
community has studied POMDPs and presented both theoretical results, e.g.
[9,10] and practical methods, e.g. [5,6,26], the latter being implemented in the
popular model checkers PRISM [24] and Storm [17].

In [34], the problem of motion planning, that is often modeled as a POMDP,
is reduced to a two-player stochastic game and solved using PRISM-games. The
problem of controller synthesis for timed games under state-based partial obser-
vation has been studied in [8] and implemented in UPPAAL-TIGA [3]. Skandylas
et al. [30] proposed an approach to synthesize countermeasures for component-
based software systems, considering both the structure and the behaviour of the
system. We can only reason about the system behaviour. However, in contrast
to our work, they do not support partial observation.

7 Conclusions

In this paper, we propose a game-based approach for the analysis of attack
graphs under partial observation. We construct a two-player security game from
an attack graph and the defender’s behaviour, and use PRISM-games to an-
alyze the game and synthesize strategies for the players. To support defence
under partial observation, we introduce one-sided partially observable security
games and present an algorithm to transform them into perfect games, proving
soundness for a subclass of security games and objectives. Our experiments show
that the transformation algorithm is a promising state reduction technique to
handle large-scale attack graphs. We plan to integrate our approach into a self-
protection engine to support online defence, and also to extend our experiments
to study the impact of different factors on the effectiveness of the defence.
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