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Safe POMDP Online Planning among Dynamic
Agents via Adaptive Conformal Prediction

Shili Sheng1, Pian Yu2, David Parker2, Marta Kwiatkowska2, and Lu Feng1

Abstract—Online planning for partially observable Markov de-
cision processes (POMDPs) provides efficient techniques for robot
decision-making under uncertainty. However, existing methods
fall short of preventing safety violations in dynamic environ-
ments. This work presents a novel safe POMDP online plan-
ning approach that maximizes expected returns while providing
probabilistic safety guarantees amidst environments populated
by multiple dynamic agents. Our approach utilizes data-driven
trajectory prediction models of dynamic agents and applies Adap-
tive Conformal Prediction (ACP) to quantify the uncertainties in
these predictions. Leveraging the obtained ACP-based trajectory
predictions, our approach constructs safety shields on-the-fly to
prevent unsafe actions within POMDP online planning. Through
experimental evaluation in various dynamic environments using
real-world pedestrian trajectory data, the proposed approach has
been shown to effectively maintain probabilistic safety guarantees
while accommodating up to hundreds of dynamic agents.

Index Terms—Formal Methods in Robotics and Automation,
Planning under Uncertainty, Robot Safety, AI-Enabled Robotics

I. INTRODUCTION

THE partially observable Markov decision process
(POMDP) framework is a general model for decision

making under uncertainty [1], which finds application in vari-
ous robotic tasks, such as autonomous driving [2] and human-
robot collaboration [3]. Significant progress in POMDP online
planning, which interleaves policy computation and execution,
has been made to overcome computational challenges. For
instance, the widely adopted Partially Observable Monte Carlo
Planning (POMCP) algorithm [4] enhances scalability through
Monte Carlo sampling and simulation.

For many safety-critical robotic applications, computing
POMDP policies that satisfy safety requirements is crucial.
Existing methods for safe POMDP online planning often
represent safety requirements as cost or chance constraints,
aiming to maximize expected returns while reducing cumu-
lative costs or failure probabilities [5], [6]. However, these
methods cannot guarantee complete prevention of safety vi-
olations. In our previous work [7], we integrated POMCP
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with safety shields to ensure that, with probability one, goal
states are reached and unsafe states are avoided. But these
shielding methods are limited to static obstacles and fall short
in dynamic environments.

To tackle this limitation, in this work we investigate safe
POMDP online planning for a robotic agent travelling among
multiple unknown dynamic agents, such as pedestrians or other
robots. We consider a safety constraint, which specifies that
the minimum distance from the robotic agent to any of the
dynamic agents should exceed a predefined safety buffer. The
goal is to develop a safe POMDP online planning method that
computes an optimal policy maximizing the expected return
while ensuring that the probability of satisfying the safety
constraint exceeds a certain threshold.

This work addresses several key challenges. The first is
the modeling of dynamic agents. We use data-driven trajec-
tory models to predict the movements of these agents and
apply Adaptive Conformal Prediction (ACP) to quantify the
uncertainties in these predictions, as per [8]. The second
challenge involves the construction of safety shields that avert
collisions with dynamic agents. To this end, we propose a
novel algorithm that dynamically constructs safety shields to
accommodate the ACP-based prediction regions of dynamic
agents. The third challenge is integrating safety shields into
POMDP online planning. We enhance the POMCP algorithm
with safety shields by evaluating the safety of each action
during the Monte Carlo sampling and simulation process.

To the best of our knowledge, this is the first safe POMDP
online planning approach that offers probabilistic safety guar-
antees in environments with dynamic agents. We evaluate
the proposed approach through computational experiments in
various dynamic environments, utilizing real-world pedestrian
trajectory data.

A. Related Work

Safe POMDP online planning. Prior studies have explored
different methods for incorporating safety constraints into
online planning with POMDPs. Online algorithms for con-
strained POMDPs apply cost (or chance) constraints to limit
expected cumulative costs (or failure probability); however,
they do not guarantee the avoidance of constraint viola-
tions [5], [6]. An online method introduced in [9] synthesizes
a partial conditional plan for POMDPs with a focus on
safe reachability, aiming for specific probability thresholds
to reach goals or avoid static obstacles. Additionally, a rule-
based shielding method presented in [10] generates shields
by learning parameters for expert-defined rule sets. In our
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previous work [7], we devised shields to preemptively prevent
unsafe actions and incorporated these shields into the POMCP
algorithm to ensure safe online planning for POMDPs. How-
ever, these methods primarily focus on circumventing static
obstacles and are not directly applicable to safe planning in
dynamic environments. In [11], an online solver called Adap-
tive Belief Tree (ABT) was proposed for POMDP planning in
dynamic environments, which updates the POMDP model in
response to changes in the environment. However, this work
does not address how to identify these changes in the POMDP
model.

Planning among dynamic agents. Substantial research has
been conducted in the field of robotic planning involv-
ing dynamic agents, such as pedestrians. Some works treat
these dynamic agents as static obstacles, adapting to changes
through online replanning [12]. Other approaches make simple
assumptions about the dynamics of these agents; for example,
they may assume that pedestrians move at a constant veloc-
ity [13]. There are also more sophisticated methods that model
the intentions of dynamic agents. For instance, PORCA [14] is
a POMDP-based planning method that accounts for complex
models of pedestrians’ intentions and interactions. Addition-
ally, data-driven trajectory predictors have seen extensive use
in existing work (e.g., [15], [16]). However, numerous data-
driven prediction techniques, such as Long Short-Term Mem-
ory (LSTM), often lack mechanisms to convey uncertainty
in their predictions, potentially resulting in decisions that
compromise safety. In this work, we adopt LSTM-based trajec-
tory predictors and enhance them by incorporating uncertainty
estimation through conformal prediction.

Planning with conformal prediction. Conformal prediction
offers techniques for estimating statistically rigorous uncer-
tainty sets for predictive models, such as neural networks,
without making assumptions about the underlying distribu-
tions or models [17]. Adaptive Conformal Prediction (ACP)
extends these techniques to estimate prediction regions for
time series data [18]. Recently, there has been a surge in
integrating conformal prediction, including its adaptive variant,
into planning frameworks to accommodate the uncertainty in
predicted trajectories. For example, methods based on Model
Predictive Control (MPC) have been developed for safe plan-
ning in dynamic environments, which incorporate (adaptive)
conformal prediction regions of the predicted trajectories of
dynamic agents [19], [8]. Furthermore, conformal prediction
has been applied to quantify the uncertainty in trajectory
predictions derived from diffusion dynamics models, aiding in
planning and offline reinforcement learning applications [20].
Recent work [21] considered chance-constrained POMDPs,
and used adaptive conformal inference for estimation of failure
probability thresholds. In the realm of large language models,
conformal prediction has been leveraged to provide statistical
guarantees on the completion of robot tasks, enhancing the
reliability of language model-based planners [22].

In this work, we adopt the ACP-based trajectory predictor
proposed in [8] and develop a safe POMDP online planning
method that constructs shields on-the-fly incorporating ACP
prediction regions of dynamic agents.

II. PROBLEM FORMULATION

POMDP model. We model the dynamics of a robotic agent
as a POMDP, denoted as a tuple M = (S,A,O, T,R, Z, γ),
where S, A and O are (finite) sets of states, actions, and
observations, respectively; T : S × A × S → [0, 1] is the
probabilistic transition function; R : S×A → R is the reward
function; Z : S ×A×O → [0, 1] is the observation function;
and γ ∈ [0, 1] is the discount factor. At each timestep t,
the state st ∈ S transitions to a successor state st+1 ∈ S
with probability T (st, at, st+1) = Pr(st+1 | st, at) given an
agent’s action at ∈ A; the agent receives a reward R(st, at),
and makes an observation ot+1 ∈ O about state st+1 with
probability Z(st+1, at, ot+1) = Pr(ot+1 | st+1, at).

Given the partial observability of POMDP states, the agent
maintains a history of actions and observations, denoted by
ht = a0, o1, . . . , at−1, ot. A belief state represents the pos-
terior probability distribution over states conditioned on the
history, denoted by bt(s) = Pr(st = s|ht) for s ∈ S. Let b0
denote the initial belief state, representing a distribution over
the POMDP’s initial states. Let B be the set of belief states
of POMDP M. The belief support of a belief state b ∈ B is
defined as supp(b) := {s ∈ S|b(s) > 0}, i.e., the set of states
with positive belief. The set of belief supports of POMDP M
is defined as SB := {Θ ⊆ S | ∀s, s′ ∈ Θ, obs(s) = obs(s′)},
where obs : S → 2O is a function representing the set of
possible observations for a state.

A POMDP policy, denoted by π : B → A, is a mapping
from belief states to actions. At timestep t, executing a policy
π involves selecting an action at = π(bt) based on the current
belief state bt, and subsequently updating to belief state bt+1

after observing ot+1 according to Bayes’ rule:

bt+1(s
′) =

Z(s′, at, ot+1)
∑

s∈S T (s, at, s
′)bt(s)

η(ot+1 | b, a)
(1)

where η(ot+1 | b, a) is a normalizing constant representing the
prior probability of observing ot+1.

Let R(bt, at) :=
∑

s∈S R(s, at)bt(s) denote the expected
immediate reward of taking action at in belief state bt. The
expected return from following policy π starting at initial
belief state b0 is defined as:

V π(b0) := Eπ[

∞∑
t=0

γtR (bt, π(bt)) | b0]. (2)

Dynamic agents. Consider a robot operating in an envi-
ronment with N dynamic agents whose trajectories are a
priori unknown. Let Xt := (Xt,1, . . . , Xt,N ) denote the
joint agent state at timestep t, where Xt,i represents the i-
th dynamic agent’s state. In this work, we assume that Xt

is fully observable to the robot at timestep t. Assume the
agents’ trajectories adhere to an unknown distribution D. Let
X := (X0, X1, . . . ) ∼ D be a random trajectory sampled from
this distribution. We represent the safety constraint, which
requires the minimum distance from the robot to any of the
N dynamic agents to exceed a safety buffer ϵ ∈ R+, through
the following Lipschitz continuous constraint function:

c(st, Xt) := min
i∈{1,...,N}

∥st −Xt,i∥ − ϵ. (3)
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Given a belief state bt of the POMDP M, we compute the
probability of bt satisfying the safety constraint by summing
over the probabilities bt(s) for all states s ∈ supp(bt) that
meet the condition c(s,Xt) ≥ 0, denoted as:

ρ(bt, Xt) :=
∑

s∈supp(bt)

bt(s) · I{c(s,Xt)≥0}. (4)

We define the expected average probability of satisfying
the safety constraint across all potential POMDP executions
initiated from the initial belief state b0 under a policy π as:

ϕπ(b0) := Eπ[ lim
T→∞

1

T

T−1∑
t=0

ρ(bt, Xt) | b0, Xt ∼ D]. (5)

Problem. Given a POMDP model M for a robotic agent with
initial belief state b0, unknown random trajectories X ∼ D of
N dynamic agents, and a failure rate δ ∈ (0, 1), the objective
is to compute an optimal POMDP policy π∗ that maximizes
the expected return V π(b0) while ensuring that the expected
average probability of satisfying the safety constraint is at least
1− δ, denoted by ϕπ(b0) ≥ 1− δ.

III. PRELIMINARIES

To tackle the problem under consideration, we propose a
safe online planning approach for POMDPs that accounts for
the uncertainty of dynamic agents’ predicted trajectories. The
key idea is as follows. Initially, we convert the probabilistic
safety constraint concerning dynamic agents, i.e., ϕπ(b0) ≥
1 − δ, into an equivalent almost-sure safety constraint. This
conversion is facilitated through Adaptive Conformal Predic-
tion (ACP), a technique capable of adaptively quantifying the
uncertainty of trajectory predictors and generating prediction
regions with predefined probability thresholds. Subsequently,
safety shields are constructed to accommodate the previously
computed prediction regions of the dynamic agents, and they
are integrated into the Partially Observable Monte Carlo
Planning (POMCP) algorithm for online planning.

We now present the essential preliminaries on ACP for tra-
jectory prediction in Section III-A, and the POMCP algorithm
for online planning in Section III-B.

A. ACP-based Trajectory Prediction

Assume there exists a trajectory predictor capable of making
predictions about the future trajectories of dynamic agents for
a finite horizon H based on their past trajectories. Though our
proposed approach is agnostic to the prediction method, we
employ an LSTM model as the trajectory predictor in this work
and make no additional assumptions about the trajectory distri-
bution D. To consider the uncertainty of predicted trajectories,
which could influence the satisfaction of safety constraints, we
compute ACP prediction regions using the method described
in [8].

Let (X̂1
t , . . . , X̂

H
t ) represent the predicted trajectory of dy-

namic agents’ future states starting at timestep t and extending
to the prediction horizon H , where X̂τ

t := (X̂τ
t,1, . . . , X̂

τ
t,N )

is the predicted joint state of N agents made at timestep t
for horizon τ ∈ {1, . . . ,H}. However, we cannot evaluate

Fig. 1. Example gridworld with a robot navigating towards a flag while
avoiding a pedestrian. The robot moves east, south, west, or north, reaching
the adjacent grid cell with probability 0.1 or one cell further with probability
0.9. Gray shadow: robot’s belief state bt including state st. Red circles: ACP
prediction regions of uncertain predictions about pedestrian states. Yellow
shadow: unsafe states per one-step prediction at timestep t.

the prediction error for future states since the ground truths
(Xt+1, . . . , Xt+H) are unknown at timestep t. We adopt the
concept of time-lagged nonconformity score, as defined in [8],
which quantifies the τ step-ahead prediction error made τ
timesteps ago, denoted by βτ

t := ∥Xt − X̂τ
t−τ∥.

For each prediction horizon τ ∈ {1, . . . ,H}, we cal-
culate an ACP prediction region βτ

t ≤ Cτ
t based on

(βτ
t−K , . . . , βτ

t−1) with a sliding window of size K, ensuring
Pr(βτ

t ≤ Cτ
t ) ≥ 1 − δ, where δ ∈ (0, 1) denotes a failure

probability. The value of Cτ
t is determined by identifying the

⌈(K +1)(1− λτ
t )⌉th smallest value among (βτ

t−K , . . . , βτ
t−1),

with the parameter λτ
t updated recursively as follows:

λτ
t := λτ

t−1 + α(δ − I{Cτ
t−1<βτ

t−1}) (6)

where α ∈ (0, 1) is the learning rate and λ1
0 ∈ (0, 1) is a

constant for the initial value.

Example 1. Consider a robot navigating in a gridworld with
one dynamic agent (a pedestrian) as shown in Figure 1. Let
⟨x, y⟩ denote a two-dimensional position in the gridworld.
At timestep t, the dynamic agent’s (joint) state is Xt =
(⟨16.702, 9.726⟩). A trajectory predictor with the prediction
horizon H = 2 yields one-step and two-step ahead predictions
as X̂1

t = (⟨17.334, 9.711⟩) and X̂2
t = (⟨17.947, 9.743⟩),

respectively. We compute the time-lagged nonconformity score
β1
t = ∥Xt−X̂1

t−1∥ = 0.068, where X̂1
t−1 = (⟨16.650, 9.682⟩)

is the prediction about state Xt made one timestep ago at t−1.
Next we compute the ACP prediction region C1

t+1 to ensure
Pr(β1

t+1 ≤ C1
t+1) ≥ 1 − δ such that the prediction error

β1
t+1 = ∥Xt+1 − X̂1

t ∥ is bounded with the failure probability
δ = 0.05. Let the size of the sliding window be K = 30 and
the learning rate be α = 0.0008. Suppose C1

t = 0.736 and
λ1
t = 0.0495. We have λ1

t+1 = λ1
t + α(δ − I{C1

t <β1
t }) =

0.04954. We determine the value of C1
t+1 by finding the

⌈(K + 1)(1 − λ1
t+1)⌉th, which is the 30th smallest value

among (β1
t−29, . . . , β

1
t ). This process yields C1

t+1 = 0.736.
Similarly, the ACP prediction region to bound the prediction
error β2

t+2 = ∥Xt+2−X̂2
t ∥ is computed as C2

t+2 = 1.329. The
obtained ACP prediction regions are plotted as red circles in
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Figure 1, centered at X̂1
t and X̂2

t , with radii C1
t+1 and C2

t+2,
respectively. ■

B. Partially Observable Monte-Carlo Planning

We employ the Partially Observable Monte Carlo Planning
(POMCP) algorithm [4], a popular method for POMDP online
planning that interleaves the policy computation and execution.
Each timestep t starts with the POMCP algorithm deploying
Monte Carlo tree search [23] to navigate a search tree. The
root node of this tree is T (ht) = ⟨N (ht),V(ht),B(ht)⟩. Here,
N (ht) counts how often the history ht has been visited, V(ht)
calculates the expected return from all simulations starting at
ht, and B(ht) contains particles representing POMDP states
that estimate the belief state bt. The algorithm iterates through
four main steps:

(1) Selection: A state s is selected at random from the
particle set B(ht). (2) Simulation: If T (h) is a non-leaf node,
an action a is selected to maximize V(ha)+c

√
logN (h)
N (ha) using

the upper confidence bound (UCB) [24] to balance exploration
and exploitation. (3) Expansion: Upon reaching a leaf node
T (h), new child nodes are introduced for every action a ∈ A,
expressed as T (ha) = ⟨Ninit(ha),Vinit(ha), ∅⟩. Then, an
action a is selected based on a predefined rollout policy such
as uniform random selection. A state s′ is simulated using a
black-box simulator (s′, o, r) ∼ G(s, a) and added to B(hao).
This process runs until reaching a predetermined depth. (4)
Backpropagation: After simulation, the search tree nodes are
updated with new data from the path.

The planning phase at timestep t concludes once a target
number of these iterations has occurred or a time limit
is reached. The agent then takes the best action at =
argmaxa V(hta), receives a new observation ot+1, and pro-
ceeds to the next step, constructing a search tree from the
new root node T (htatot+1). POMCP is effective because it
mitigates the curse of dimensionality through state sampling
and the curse of history via history sampling with a black-box
simulator.

IV. APPROACH

We develop a novel approach that constructs safety shields
on-the-fly using ACP-based trajectory predictions for dynamic
agents, and shields unsafe actions in POMDP online planning.
We first define safety shields in Section IV-A, present an
algorithm for on-the-fly shield construction in Section IV-B,
describe the shielding method for safe online planning in
Section IV-C, and analyze the correctness and complexity of
the proposed approach in Section IV-D.

A. ACP-induced Safety Shield

Given a τ -step ahead prediction X̂τ
t made at timestep t

for the dynamic agents’ future state, and its corresponding
ACP region Cτ

t+τ computed as per Section III-A, we define
the safety constraint using the Lipschitz continuous function
described in Equation 3 as follows:

c(st+τ , X̂
τ
t ) ≥ L · Cτ

t+τ (7)

where L > 0 is the Lipschitz constant and τ ∈ {1, . . . ,H}
assuming prediction horizon H .

Denote by F τ
t := {s ∈ S | c(s, X̂τ

t ) < L ·Cτ
t+τ} the τ -step

ahead prediction region of X̂τ
t made at timestep t. It follows

from [8] that Pr(Xt+τ ∈ F τ
t ) ≥ 1 − δ, ∀τ ∈ {1, . . . ,H},

where Xt+τ is the true state of the dynamic agents at timestep
t+ τ . By ensuring that the prediction regions {F τ

t }τ∈{1,...,H}
are avoided almost-surely (i.e., with probability 1) at every
timestep t, it becomes possible to achieve the desired proba-
bilistic safety guarantee, i.e., ϕπ(b0) ≥ 1− δ, with regards to
the dynamic agents.

Example 2. We have X̂1
t = (⟨17.334, 9.711⟩) and C1

t = 0.736
from Example 1. Let the Lipschitz constant be L = 1 and
the safety buffer ϵ = 2. Suppose the robot’s actual state at
timestep t + 1 is st+1 = (18, 4). We have c(st+1, X̂

1
t ) =

∥st+1 − X̂1
t ∥ − ϵ = 3.7497 ≥ C1

t . Thus, the safety constraint
is satisfied. ■

In [25], it was demonstrated that, for enforcing almost-sure
safety specifications, belief probabilities are irrelevant and only
the belief support is important. Inspired by this observation,
we define a winning belief support and winning regions for a
given horizon h, which are used for shielding unsafe actions
during online planning.

We say that a POMDP policy π is winning from belief
state bt for a finite horizon h ≤ H iff every state in the
belief supports supp(bt+j) for j ∈ {0, . . . , h} of all possible
executions under the policy π satisfies the safety constraint of
Equation 7.

A belief state b ∈ B is considered winning for a horizon h
if there exists an h-step horizon winning policy π originating
from b, and the belief support, denoted as supp(b), is termed
a winning belief support for the horizon h. A set of belief
supports, denoted by W ⊆ SB , is termed a winning region for
an h-step horizon if every belief support Θ ∈ W is winning
for the horizon h. In the special case when h = 0, we say
that W is a winning region with a zero-step horizon iff all
states belonging to each belief support supp(b) ∈ W satisfy
the safety constraint of Equation 7.

To enforce safety, we can define a safety shield, denoted by
ξ : Θ → 2A, which restricts actions to those leading solely to
successor belief supports within the winning region W .

B. Computing Winning Regions for Shields

We present Algorithm 1 for computing a set of winning
regions, denoted by {W τ

t }Hτ=1, to construct safety shields on-
the-fly at timestep t, where each winning region W τ

t has a
winning horizon of H − τ .

First, given a winning belief state bt, we compute the set of
belief supports of the POMDP M that are reachable within
H steps, denoted by Sbt,H

B ⊆ SB .
Next, we construct the reachable fragment of a belief-

support transition system (BSTS) for the POMDP M,
denoted by a tuple Mbt,H

B = {Sbt,H
B × Q, s̄bt,HB , A, T bt,H

B },
where the state space is the product of Sbt,H

B and a
time counter Q = {0, 1, . . . ,H}, the initial state is
s̄bt,HB = ⟨supp(bt), 0⟩, the set of actions A are the
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Algorithm 1: Computing winning regions
Input: POMDP model M, a winning belief state bt, a set of

dynamic agents’ predicted states {X̂τ
t }Hτ=1 and ACP

prediction regions {Cτ
t+τ}Hτ=1.

Output: A set of winning regions {W τ
t }Hτ=1.

1 Compute the set of reachable belief supports Sbt,H
B

2 Construct a belief-support transition system Mbt,H
B

3 Compute the set of unsafe states Ψt in Mbt,H
B

4 WH
t ← Sbt,H

B \ {Θ ∈ Sbt,H
B | ⟨Θ, H⟩ ∈ Ψt}

5 for τ = H − 1 to 1 do
6 foreach Θ ∈ Sbt,H

B do
7 if ⟨Θ, τ⟩ /∈ Ψt then
8 foreach a ∈ A do
9 if post(⟨Θ, τ⟩, a) ⊆W τ+1

t then
10 insert Θ to W τ

t

11 return {W τ
t }Hτ=1

same as in the POMDP M, and the transition function
is given by T bt,H

B (⟨Θ, q⟩, a) = ⟨Θ′, q + 1⟩ if Θ′ ∈{⋃
s∈Θ{s′ ∈ S | T (s, a, s′) > 0 and o ∈ obs(s′)} | o ∈ O

}
.

The transition function T bt,H
B is constructed as follows. Given

a belief support Θ ∈ Sbt,H
B , a timestep q ∈ Q, and an action

a, our initial step involves calculating the set of all potential
successor states from Θ and a. This is accomplished by
determining the set of all possible successor states from each
state s ∈ Θ and then taking the union of these sets. Following
that, we reorganize these states into a set of belief supports
based on the principle that states within a belief support share
the same observation. Finally, the timestep is increased by 1.
Let post(⟨Θ, q⟩, a) := {Θ′ | T bt,H

B (⟨Θ, q⟩, a) = ⟨Θ′, q + 1⟩}
denote the set of all possible successor belief supports.

Given a set of dynamic agents’ predicted states {X̂τ
t }Hτ=1

and ACP regions {Cτ
t+τ}Hτ=1, we compute all possible

POMDP states where the safety constraint could be violated,
denoted as F τ

t := {s ∈ S | c(s, X̂τ
t ) < L · Cτ

t+τ}.
The set of unsafe states in the BSTS Mbt,H

B is defined as
Ψt := {⟨Θ, q⟩ ∈ Sbt,H

B ×Q | ∃s ∈ Θ such that s ∈ F q
t }.

We compute the set of winning regions {W τ
t }Hτ=1 recur-

sively in a backward manner. Let WH
t be the set of reachable

belief supports Θ ∈ Sbt,H
B , excluding those that result in

unsafe states where ⟨Θ, H⟩ ∈ Ψt. Starting from τ = H − 1,
we add a reachable belief support Θ ∈ Sbt,H

B to the winning
region W τ

t only if both of the following two conditions hold:
(C1) ⟨Θ, τ⟩ does not belong to the unsafe set Ψt; and (C2)
there exists an action a ∈ A that leads solely to winning
successor belief supports post(⟨Θ, τ⟩, a) ⊆ W τ+1

t from Θ in
the BSTS Mbt,H

B .

Example 3. Following previous examples, we compute the set
of unsafe POMDP states for a one-step prediction at timestep
t as F 1

t = {s ∈ S | c(s, X̂1
t ) < C1

t+1}. These states are
represented by the yellow shadow in Figure 1. Similarly, for a
two-step prediction at timestep t, we compute the set of unsafe
states as F 2

t = {s ∈ S | c(s, X̂2
t ) < C2

t+2}. The winning
region W 2

t is identified as the set of belief supports Sbt,2
B

that can be reached from bt within two steps, while excluding

Algorithm 2: Safe online planning via shielding
Input: POMDP model M, an initial belief state b0, a

distribution D of dynamic agents’ trajectories, a
prediction horizon H , and a failure probability δ.

Output: A safe POMDP policy π∗.
1 for t = 0 to ∞ do
2 predict dynamic agents’ trajectories {X̂τ

t }Hτ=1 ∼ D
3 compute ACP prediction regions {Cτ

t+τ}Hτ=1 w.r.t failure
rate δ

4 compute winning regions {W τ
t }Hτ=1 // Algorithm 1

5 π∗(bt)← shieldPOMCP(T (ht), {W τ
t }Hτ=1)

6 (ot+1, bt+1)← execute action π∗(bt)

7 return π∗

those that contain any unsafe states from F 2
t . We say that W 2

t

has a zero-step winning horizon, because we do not evaluate
the safety of actions leading to states beyond the prediction
horizon H = 2. The one-step horizon winning region W 1

t is
identified as the set of reachable belief supports that do not
contain unsafe states from F 1

t and can lead solely to successor
belief supports in W 2

t . ■

C. Safe Online Planning via Shielding

Algorithm 2 illustrates the proposed safe POMDP online
planning approach. At each planning step t, it first predicts
dynamic agents’ trajectories {X̂τ

t }Hτ=1 and computes ACP
regions {Cτ

t+τ}Hτ=1 as described in Section III-A. Then, Al-
gorithm 1 is applied to compute a set of winning regions
{W τ

t }Hτ=1 for the safety shield.
In Line 5, the procedure shieldPOMCP is called, integrating

shields with the POMCP algorithm (see Section III-B), which
navigates a search tree whose root node is T (ht). During the
simulation phase of the POMCP algorithm, when an action
a ∈ A is selected (either by the UCB rule or during rollout)
for the history ht+τ−1, with τ ∈ {1, . . . ,H}, and a black-box
simulator generates (s′, o, r) ∼ G(s, a), the procedure checks
if the particle set B(ht+τ−1ao)∪ {s′} belongs to the winning
region W τ

t . If the resulting particle set is not a winning belief
support, the branch of the tree starting from node T (ht+τ−1a)
is pruned, effectively shielding action a at node T (ht+τ−1). If
the simulation depth exceeds H , no shield is applied to actions
selected for any history beyond ht+H .

When the POMCP planning concludes at timestep t, the best
action at is selected from the set of allowed actions at node
T (ht) as the one that achieves the maximum value of V(hta).
We set the policy π∗ with π∗(bt) = at. The agent executes
at, receives an observation ot+1 and updates the belief state
bt+1 for the next step.

Example 4. At timestep t, consider a state s = ⟨17, 5⟩ sampled
from the particle set B(ht) at the root node T (ht). During
the POMCP simulation, suppose action a = east is chosen
for history ht, and a black-box simulator yields (s′, o, r) ∼
G(s, a) with s′ = ⟨18, 5⟩. We then check if B(htao) ∪ {s′}
falls within the winning region W 1

t ; it does, so the simulation
process advances with action a′ for history htao. Assuming
a′ = north leads to (s′′, o′, r′) ∼ G(s′, a′) with s′′ = ⟨18, 7⟩,
an unsafe state in F 2

t , the updated particle set B(htaoa
′o′) ∪
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Fig. 2. Example scenes of real-world pedestrians trajectories from benchmark datasets [26].

{s′′} falls outside of W 2
t . Therefore, action north is shielded

at node T (htao). ■

D. Correctness and Complexity

Correctness. The correctness of Algorithm 1 is stated in
Lemma 1 and the correctness of Algorithm 2, with respect
to the problem statement in Section II, is stated in Theorem 1.
The proofs are given in the Appendix.

Lemma 1: The output of Algorithm 1, denoted by
{W τ

t }Hτ=1, comprises a set of winning regions, with each W τ
t

representing a winning region for an (H − τ)-step horizon.
Theorem 1: Given a POMDP model M for a robotic agent

with initial belief state b0, the unknown random trajectories
X ∼ D of N dynamic agents with a prediction horizon H ,
and a failure probability δ ∈ (0, 1), the policy π∗ computed
by Algorithm 2 achieves the maximal expected return V π∗

(b0)
while ensuring safety, i.e., ϕπ∗

(b0) ≥ 1− δ.
It is important to note that, since POMCP is a sampling-

based algorithm, there is a risk that approximate belief
states might compromise safety guarantees. However, given
a sufficiently large particle set and a substantial number of
simulations, POMCP can yield near-perfect belief estimates
(at the cost of increased computational burden, as detailed in
the complexity analysis below). The above theorem operates
under this assumption.

Complexity. There are several components in the complexity
analysis of the proposed approach in Algorithm 2. The com-
plexity of predicting dynamic agents’ trajectories depends on
the underlying prediction model. The complexity of computing
ACP regions at timestep t is O(H ·N ·K · log(K)), depending
on the prediction horizon H , the number of agents N , and the
sliding window size K. The complexity of Algorithm 1 for
computing winning regions to construct shields is bounded
by O(H · |Sbt,H

B | · |A|), which depends on the prediction
horizon H , the number of H-step reachable belief supports
Sbt,H
B from belief state bt, and the size of the action set

A. The complexity of POMCP involves both time and space
dimensions and is scenario-dependent. It is influenced by
parameters such as the size of the particle set (i.e., the number
of particles used for approximating a belief state), the number
of simulations, the simulation depth, and the size of the state
and observation spaces. The overhead of adding shielding

to POMCP, specifically checking against safety shields, is
bounded by O

(
(|A| · |O|)H

)
per simulation. In practice, the

overhead is negligible, as demonstrated by the experimental
results in the next section.

V. EXPERIMENTS

We implemented the proposed approach and evaluated it
through various computational experiments. All experiments
were run on a MacBook Pro machine with 10-core 3.2 GHz
Apple M1 processor and 16 GB of memory.

Environments. We consider three gridworld environments,
where the movements of N dynamic agents follow real-world
pedestrians trajectories derived from benchmark datasets [26].
Specifically, we use three datasets: ETH, Hotel, and GC,
for which example scenes are illustrated in Figure 2. In
each gridworld environment, the robot aims to reach a target
destination while avoiding pedestrians. The robot can move
east, south, west, or north, reaching the adjacent cell with
probability 0.1 or one cell further with probability 0.9. The
robot has partial observability of its position within a 2 × 2
block but is unsure of the exact grid cell due to noisy sensors.
The reward function is defined as: 1, 000 for reaching the
destination, −1 per step, and −10 per collision.

Hyperparameters. Each pedestrian trajectory dataset is split
into training, validation, and test sets in a ratio of 16:4:5.
LSTM models with 64 hidden units are trained for the tra-
jectory prediction with a prediction horizon H = 3. We set
the failure probability δ = 0.05 and the safety buffer to be
ϵ = 0.5 grid. The ACP prediction regions are computed with
a learning rate α = 0.0008. The POMCP algorithm is set with
the following hyperparameters: the number of simulations is
4,096; the simulation depth is 200; and the number of particles
sampled from the initial state distribution is 10,000.

Results. We compare the performance of the proposed ap-
proach for safe online planning via ACP-induced shields with
two baselines: (i) No Shield, i.e., POMCP without shielding;
and (ii) Shielding without ACP, i.e., POMCP with shields that
do not account for ACP prediction regions, by modifying the
safety constraint in Equation 7 to c(st+τ , X̂

τ
t ) ≥ 0.

Table I shows the results averaged over 100 runs of each
method, for different environments and varying numbers N
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TABLE I
EXPERIMENT RESULTS

ETH Hotel GC

Method N Safety Rate Time (s) Min Distance N Safety Rate Time (s) Min Distance N Safety Rate Time (s) Min Distance

No Shield
45

0.893 21.1 0.28±0.19
35

0.944 20.1 0.42±0.21
160

0.91 39.3 0.22±0.13
Shielding without ACP 0.943 21.5 0.39±0.29 0.969 20.3 0.54±0.3 0.943 67.2 0.23±0.13

Shielding with ACP 0.974 22.1 0.51±0.29 0.988 20.6 0.8±0.49 0.963 71.4 0.28±0.16

No Shield
55

0.891 21.0 0.26±0.17
45

0.931 20.1 0.38±0.24
180

0.904 39.9 0.2±0.1
Shielding without ACP 0.951 21.8 0.41±0.25 0.959 20.1 0.48±0.24 0.938 66.8 0.23±0.12

Shielding with ACP 0.975 22.4 0.53±0.37 0.982 20.6 0.62±0.27 0.953 71.1 0.24±0.16

No Shield
65

0.872 21.2 0.24±0.13
55

0.921 20.2 0.36±0.18
200

0.895 39.6 0.22±0.11
Shielding without ACP 0.943 21.9 0.36±0.2 0.957 20.3 0.48±0.29 0.931 65.7 0.2±0.13

Shielding with ACP 0.967 22.6 0.42±0.26 0.982 20.3 0.6±0.24 0.951 74.3 0.25±0.15

of dynamic agents. Across all cases, the proposed approach
achieves a better safety rate (measured by the percentage of
time satisfying the safety constraint during a run) than the
baselines. All three methods result in comparable travel times
for the robot to reach the destination in the ETH and Hotel
environments, while shielding approaches lead to longer travel
times when the robot needs to avoid a significantly higher
number of pedestrians in the GC environment. Table I also
reports the mean and standard deviation of the minimum
distance between the robot and pedestrians; the proposed
approach is more conservative than the baselines, maintaining
a larger minimum distance for safety.

Finally, we observed that shielding does not significantly
add to the runtime of online planning. The average computa-
tion time for each planning step of POMCP without shields
is 0.28 seconds, compared to 0.35 seconds for the proposed
approach, incurring an additional 0.07 seconds for constructing
winning regions and shielding actions per step.

VI. CONCLUSION

This work developed a novel shielding approach aimed at
ensuring safe POMDP online planning in dynamic environ-
ments with multiple unknown dynamic agents. We proposed
to leverage ACP for predicting the future trajectories of these
dynamic agents. Subsequently, safety shields are computed
based on the prediction regions. Finally, we integrated these
safety shields into the POMCP algorithm to enable safe
POMDP online planning. Experimental results conducted on
three benchmark domains, each with varying numbers of
dynamic agents, demonstrated that the proposed approach
successfully met the safety requirements while adhering to a
predefined failure rate.

For future work, we will assess the effectiveness of the pro-
posed approach across diverse POMDP domains and deploy it
in real-world robotic tasks. Another important direction is to
explore methods for handling continuous POMDPs to enhance
scalability and generalization.
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APPENDIX

Lemma 1: The output of Algorithm 1, denoted by
{W τ

t }Hτ=1, comprises a set of winning regions, with each W τ
t

representing a winning region for an (H − τ)-step horizon.
Proof 1: We prove the lemma by induction on the increasing

horizon of winning regions.
Base case: By the definition of WH

t , for any belief state
bt+H whose belief support supp(bt+H) ∈ WH

t , every state
st+H ∈ supp(bt+H) satisfies the safety constraint, i.e.,
c(st+H , X̂H

t ) ≥ L · CH
t+H . Thus, WH

t is a winning region
for zero-step horizon.
Inductive step: Assume that W τ

t is the winning region for an
(H − τ)-step horizon. By definition, for every belief state
bt+τ whose belief support supp(bt+τ ) ∈ W τ

t , there exists
an (H − τ)-step horizon winning policy πt+τ originating
from bt+τ . For every belief state bt+τ−1 with belief support
supp(bt+τ−1) ∈ W τ−1

t , there exists at least one action
at+τ−1 ∈ A that leads to a successor belief support state

supp(bt+τ ) ∈ post(⟨supp(bt+τ−1), τ − 1⟩, at+τ−1) ⊆ W τ
t .

We can augment policy πt+τ into an (H−τ+1)-step horizon
winning policy πt+τ−1 with πt+τ−1(bt+τ−1) = at+τ−1. Thus,
W τ−1

t is the winning region for an (H − τ +1)-step horizon.
Conclusion: By induction, we have proved that Algorithm 1
outputs a set of winning regions {W τ

t }Hτ=1, with each W τ
t

having an (H − τ)-step winning horizon.
Theorem 1: Given a POMDP model M for a robotic agent

with initial belief state b0, the unknown random trajectories
X ∼ D of N dynamic agents with a prediction horizon H ,
and a failure probability δ ∈ (0, 1), the policy π∗ computed
by Algorithm 2 achieves the maximal expected return V π∗

(b0)
while ensuring safety, i.e., ϕπ∗

(b0) ≥ 1− δ.
Proof 2: Let at = π∗(bt) denote the action selected by the

policy π∗ at timestep t computed via Algorithm 2. By con-
struction, at is a safe action leading solely to successor belief
supports within the winning region W 1

t , which, according to

Lemma 1, has an (H − 1)-step winning horizon. Thus, for
each state st+1 ∈ supp(bt+1), we have

c(st+1, X̂
1
t ) ≥ L · C1

t+1. (8)

Based on Equation 8 and thanks to Lipschitz continuity of
function c, we derive that

0 ≤ c(st+1, X̂
1
t )− L · C1

t+1

≤ c(st+1, Xt+1) + L · ∥Xt+1 − X̂1
t ∥ − L · C1

t+1.

Hence, ∥Xt+1 − X̂1
t ∥ ≤ C1

t+1 is a sufficient condition for
c(st+1, Xt+1) ≥ 0, that is, Pr(c(st+1, Xt+1) ≥ 0) | ∥Xt+1 −
X̂1

t ∥ ≤ C1
t+1) = 1. Thanks to the law of total probability, we

have

Pr(c(st+1, Xt+1) ≥ 0) ≥ Pr(∥Xt+1 − X̂1
t ∥ ≤ C1

t+1). (9)

With the assistance of Corollary 3 in [8], it can be shown
that the ACP prediction regions C1

t+1 computed as per Sec-
tion III-A guarantee that

1

T

T−1∑
t=0

Pr(∥Xt+1 − X̂1
t ∥ ≤ C1

t+1) ≥ 1− δ − p1 (10)

with constant p1 :=
λ1
0+α
T ·α , where λ1

0 is the constant initial
value in Equation 6 and T is the number of times Equation 6
is applied. Combining Equation 9 and 10, we have

1

T

T−1∑
t=0

Pr(c(st+1, Xt+1) ≥ 0) ≥ 1− δ − p1. (11)

By definition of Equation 4, we have ρ(bt+1, Xt+1) =∑
s∈supp(bt+1)

bt+1(s) · I{c(s,Xt+1)≥0}. Since Equation 11
holds for all s ∈ supp(bt+1), we have

1

T

T−1∑
t=0

ρ(bt, Xt) =
1

T

T−1∑
t=0

bt+1(s) · Pr(c(st+1, Xt+1) ≥ 0)

≥ 1− δ − p1.

Since limT→∞ p1 = 0, we have

ϕπ(b0) = Eπ[ lim
T→∞

1

T

T−1∑
t=0

ρ(bt, Xt) | b0, Xt ∼ D] ≥ 1− δ.

Moreover, at = π∗(bt) is selected as the best action that
achieves the maximum value of V(hta), which calculates the
expected return from all simulations starting at ht, among all
safe actions enabled at timestep t. Thus, given a substantial
number of simulations, the expected return V π∗

(b0) at the
initial belief state b0 is optimal.

In conclusion, we have proved that the policy π∗ computed
by Algorithm 2 achieves the maximal expected return V π∗

(b0)
while ensuring safety, i.e., ϕπ∗

(b0) ≥ 1− δ.
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