Multi-Agent Verification and Control
with Probabilistic Model Checking

David Parker

Department of Computer Science, University of Oxford, Oxford, UK
david.parker@cs.ox.ac.uk

Abstract. Probabilistic model checking is a technique for formal auto-
mated reasoning about software or hardware systems that operate in the
context of uncertainty or stochasticity. It builds upon ideas and tech-
niques from a diverse range of fields, from logic, automata and graph
theory, to optimisation, numerical methods and control. In recent years,
probabilistic model checking has also been extended to integrate ideas
from game theory, notably using models such as stochastic games and
solution concepts such as equilibria, to formally verify the interaction of
multiple rational agents with distinct objectives. This provides a means
to reason flexibly about agents acting in either an adversarial or a col-
laborative fashion, and opens up opportunities to tackle new problems
within, for example, artificial intelligence, robotics and autonomous sys-
tems. In this paper, we summarise some of the advances in this area,
and highlight applications for which they have already been used. We
discuss how the strengths of probabilistic model checking apply, or have
the potential to apply, to the multi-agent setting and outline some of the
key challenges required to make further progress in this field.

1 Introduction

Probabilistic model checking is a fully automated approach for formal reasoning
about systems exhibiting uncertain behaviour, arising for example due to faulty
hardware, unpredictable operating environments or the use of randomisation.
Probabilistic models, such as Markov chains, Markov decision processes (MDPs)
or their variants, are systematically explored and analysed in order to establish
whether formal specifications given in temporal logic are satisfied. For models
such as MDPs, controllers (policies) can be automatically generated to ensure
that such specifications are met, or are optimised for.

Probabilistic model checking builds on concepts and techniques from a wide
array of other fields. Its roots lie in formal verification, and it relies heavily
on the use of logic and automata. Since models typically need to be solved
or optimised numerically, it also adopts methods from Markov chains, control
theory, optimisation and, increasingly, from various areas of artificial intelligence.

In the this paper, we discuss the integration of probabilistic model checking
with ideas from game theory, facilitating the verification or control of multi-
agent systems in the context of uncertainty. We focus on stochastic games, which

http://orcid.org/0000-0003-4137-8862

2 David Parker

model the interaction between multiple agents (players) operating in a dynamic,
stochastic environment. They were introduced in the 1950s by Shapley [26],
generalising the classic model of Markov decision processes [4] to the case of
multiple players, and techniques for their solution have been well studied [12].

In the context of formal verification, game-theoretic modelling has a number
of natural applications, in particular when an agent interacts with an adversary
that has opposing goals, for example a defender and an attacker in the context
of a computer security protocol or honest and malicious participants in a dis-
tributed consensus algorithm. For verification or control problems in stochastic
environments, game-based models also underlie methods for robust verification,
using worst-case assumptions of epistemic model uncertainty. Furthermore, game
theory provides tools for controller synthesis in a more cooperative setting, for
example via the use of equilibria representing strategies for collections of players
with differing, but not strictly opposing objectives.

Verification problems for stochastic games have been quite extensively stud-
ied (see, e.g., [5,27,6]) and in recent years, probabilistic model checking frame-
works and tools have been developed (e.g., [8,19,18]) and applied to a variety of
problem domains. In the next section, we summarise some of these advances. We
then go on to discuss the particular strengths of probabilistic model checking,
the ways in which these are applicable to multi-agent models and some of the
remaining challenges that exist in the field.

2 Model Checking for Stochastic Games

2.1 Turn-based stochastic games

Stochastic games comprise a set of n players making a sequence of decisions that
have stochastic outcomes. The way in which players interact can be modelled
in various ways. The simplest is with a turn-based stochastic game (TSG). The
state space S of the game is partitioned into disjoint sets S1W---WS,, = S, where
states in S; are controlled by player i. Players choose between actions from a
set A (for simplicity, let us assume that all actions are available to be taken in
each state) and the dynamics of the model is captured, like for an MDP, by a
probabilistic transition function P : S x A x S — [0, 1], with P(s,a,s’) giving
the probability to move to state s’ when action a is taken in state s.

A probabilistic model checking framework for TSGs is presented in [8], which
proposes the logic TPATL (and its generalisation rPATL*) for specifying zero-
sum properties of stochastic games, adding probabilistic and reward operators
to the well known game logic ATL (alternating temporal logic) [2]. A simple
(numerical) query is {(agq, ag5))Pmax=2|[F goal], which asks for the maximum
probability of reaching a set of states goal C S that is achievable by a coalition
of the players ag; and ag,, assuming that any other players in the game have
the directly opposing objective of minimising the probability of this event.

Despite a worse time complexity than MDPs for the core underlying prob-
lems (e.g., computing optimal reachability probabilities, for the query above, is

Multi-Agent Verification and Control with Probabilistic Model Checking 3

in NP Nco-NP, rather than PTIME), [8] shows that value iteration (dynamic
programming) is in practice an effective and scalable approach. For maximising
probabilistic reachability with two players, the values 2* defined below converge,
as k — oo, to the required probability for each state s:

1 s € goal
k_ 0 s ¢ goaland k=0
maXeea Y. yeg P(s,a,8) -zl s € 5 \goal and k > 0
mingea Y g P(s,a,5) ~x’:,_1 s € Sa\goal and k > 0

The computation yields optimal strategies for players, which are deterministic
(i.e., pick a single action in each state) and memoryless (i.e., do so regardless
of history). The model checking algorithm [8] extends to many other temporal
operators including a variety of reward (or cost) based measures.

Subsequently, various other aspects of TSG model checking have been ex-
plored, including the performance of different game solution techniques [17],
the use of interval iteration methods to improve accuracy and convergence [10],
trade-offs between multiple objectives [3,7] and the development of symbolic
(decision diagram based) implementations to improve scalability [21].

Despite the relative simplicity of TSGs as a modelling formalism, they have
been shown to be appropriate for various scenarios in which there is natural
turn-based alternation between agents; examples include human-robot control
systems [11,15] and self-adaptive software systems interacting with their envi-
ronment [9].

2.2 Concurrent stochastic games

To provide a more realistic model of the concurrent execution of agents, we can
move to the more classic view of player interaction in stochastic games, where
players make their decisions simultaneously and independently. To highlight the
distinction with the turn-based model variant discussed above, we call these
concurrent stochastic games (CSGs); the same model is referred to elsewhere as,
for example, Markov games or multi-agent Markov decision processes. In a CSG,
each player i has a separate set of actions A; and the probabilistic transition
function P : S x (A1 x---x A,,) xS — [0,1] now models the resulting stochastic
state update that arises for each possible joint player action.

Probabilistic model checking of CSGs against zero-sum objectives, again us-
ing the logic rPATL, is proposed in [19]. Crucially, optimal strategies for players
are now randomised, i.e., can choose a probability of selecting each action in
each state, however, a value iteration approach can again be adopted. Consider
again maximal probabilistic reachability for two players: instead of simply pick-
ing the highest value action for one player in each state, a one-shot matrix game
Z, indexed over action sets A; and As, is solved at each state:

1 s € goal
¢ =40 s¢goaland k=0 where Z,, = > P(s,(a,b),s) 2%
val(Z) s ¢goaland k>0 s'es

4 David Parker

The matrix game Z contains payoff values for player 1 and the value val(Z)
of Z is the optimal achievable value when player 2 minimises. This is solved
via a (small) linear programming problem over variables {p,|a € A} which
yields the optimal probabilities p, for player 1 to pick each action a. Despite the
increase in solution complexity with respect to TSGs, results in [19] show the
feasibility of building and solving large CSGs that model examples taken from
robotics, computer security and communication protocols. These also highlight
deficiencies when the same examples are modelled with TSGs.

2.3 Equilibria for stochastic games

Zero-sum objectives, for example specified in rPATL, allow synthesis of optimal
controllers in the context of both stochasticity and adversarial behaviour. But
there are many instances where agents do not have directly opposing goals. The
CSG probabilistic model checking framework has been extended to incorporate
non-zero-sum objectives such as Nash equilibria (NE) [19]. Informally, strategies
for a set of players with distinct, individual objectives form an NE when there
is no benefit to any of them of unilaterally changing their strategy.

It is shown in [19], that by focusing on social welfare NE, which also maximise
the sum of all players’ objectives, value iteration can again be applied. Extending
rPATL, we can write for example {(ag;:ags))max—7(P[F goal, |+P[F goal,]) to
ask for the social welfare NE in which two players maximise the probabilities of
reaching distinct sets of state goal; and goal,. Value iteration becomes:

(1,1) s € goal; N goaly
(L Pgoat,) s € goal;\goal,
oh = (Pmax 1) s € goaly\goal,
(0,0) s € (goal;Ugoal,) and k =0

val(Z1,Z?) s ¢ (goal,U goaly) and k > 0

where Z! , = > P(s,(a,b),s') AR ()

s’/

val(Z', Z?) is the value of a bimatriz game and Py, is the maximum prob-
ability of reaching goal, from state s, which can be computed independently
by treating the stochastic game as an MDP. The value of the (one-shot) game
defined by payoff matrices Z! for player i is a (social welfare) NE, computed
in [19] using an approach called labelled polytopes [22] and a reduction to SMT.
Optimal strategies (in fact, e-optimal strategies) can be extracted. They are, as
for zero-sum CSGs, randomised but also require memory.

The move towards concurrent decision making over distinct objectives opens
up a variety of interesting directions for exploration. Equilibria-based model
checking of CSG is extended in several ways in [20]. Firstly, correlated equi-
libria allow players to coordinate through the use of a (probabilistic) public
signal, which then dictates their individual strategies. These are shown to be

Multi-Agent Verification and Control with Probabilistic Model Checking 5

cheaper to compute and potentially more equitable in the sense that they im-
prove joint outcomes. Secondly, social fairness is presented as an alternative
optimality criterion to social welfare, which minimises the difference between
players’ objectives, something that is ignored by by the latter criterion.

3 Opportunities and Challenges

Probabilistic model checking is a flexible technique, which already applies to
many different types of stochastic models and temporal logic specifications. On
the one hand, the thread of research described above represents a further evo-
lution of the approach towards a new class of models and solution methods. On
the other, it represents an opportunity to apply the strengths of probabilistic
model checking to a variety of problem domains in which multi-agent approaches
to modelling are applicable and where guarantees on safety or reliability may
be essential; examples include multi-robot coordination, warehouse logistics, au-
tonomous vehicles or robotic swarms. We now discuss some of the key benefits
of probabilistic model checking and their relevance to the multi-agent setting.
We also summarise some of the challenges that arise as a result.

Temporal logic. Key to the success of model checking based techniques is
the ability to precisely and unambiguously specify desired system properties
in a formal language that is expressive enough to be practically useful, but
constrained enough that verification or control problems are practical.
Temporal logics such as rPATL and its extensions show that it is feasible to
combine quantitative aspects (probability, costs, rewards) with reasoning about
the strategies and objectives of multiple agents, for both zero-sum optimality
and equilibria of various types. This combines naturally with the specification of
temporal behaviour using logics such as LTL, from simple reachability or reach-
avoid goals, to more complex sequences of events and long-run specifications.
The latter have been of increasing interest in, for example, task specification
in robotics [16] or reinforcement learning [14]. Another key benefit here is the
continual advances in translations from such logics to automata, facilitating algo-
rithmic analysis. From a multi-agent perspective, specifically, challenges include
more expressive reasoning about dependencies between strategies or epistemic
aspects, where logic extensions exist but model checking is challenging.

Tool support and modelling languages. The main functionality for model
checking of stochastic games described in Section 2 is implemented within the
PRISM-games tool [18], which has been developed over the past 10 years. How-
ever, interest in verification for this class of models is growing and, for the sim-
pler model variant of TSGs, support now exists in multiple actively developed
probabilistic model checking tools [25,24,17,13].

Currently, these tools share a common formalism for specifying models, namely
PRISM-games’s extension to stochastic games of the widely used PRISM mod-
elling language. Although relatively simple from a programming language per-
spective, this has proved to be expressive enough for modelling across a large

6 David Parker

range of application domains. Key modelling features include the ability to de-
scribe systems as the parallel composition of multiple, interacting (sometimes
duplicated) components and the use of parameters for easy reconfiguration of
models. It also provides a common language for many different types of proba-
bilistic models through various features that can be combined, e.g., clocks (for
real-time modelling), observations (for partially observable models) and model
uncertainty such as transition probability intervals (for epistemic uncertainty).

Component-based modelling is of particular benefit for the multi-agent set-
ting, but challenges remain as the modelling language evolves. Examples include
dealing with the subtleties that arise regarding how components communicate
and synchronise, particularly under partial observability, and the specification
of particular strategies for some agents.

Exhaustive analysis. Traditionally, a strength of model checking based tech-
niques is their focus on an exhaustive model analysis, allowing them to identify
(or prove the absence of) corner cases representing erroneous or anomalous be-
haviour. In the stochastic setting this remains true, in particular for models that
combine probabilistic and nondeterministic behaviour. The subtle interaction
between these aspects can be difficult to reason about without automated tools,
and exhaustive approaches can in these cases be preferable to more approximate
model solution methods, such as those based on simulation.

Adding multiple players only strengthens the case for these techniques. For
example, [8] identifies weaknesses in a distributed, randomised energy manage-
ment protocol arising when some participants behave selfishly; a simple incen-
tive scheme is then shown to help alleviate this issue. Multi-agent models allow
a combination of control and verification, for example synthesising a controller
(strategy) for one player, or coalition of players, which can be verified to perform
robustly in the context of adversarial behaviour by other players.

A natural direction is to then deploy verification to controllers synthesised by
more widely applicable and more scalable approaches such as multi-agent rein-
forcement learning [1]. This brings challenges in terms of, for example, extending
probabilistic model checking to continuous state spaces, and tighter integration
with machine learning methods. Progress in this direction includes the extension
of CSGs to a neuro-symbolic setting [29,28], which incorporates neural networks
for specific model components, e.g. for perception tasks.

Further challenges. In addition to those highlighted above, numerous other
challenges exist in the field. One perennial issue with model checking approaches
is their scalability to large systems. Symbolic approaches, e.g., based on decision
diagrams, have proved to be valuable for probabilistic model checking, and also
extended to TSGs [21]. However it is unclear how to adapt these to CSGs: while
value iteration is often amenable to a symbolic implementation, methods such
as linear programming or bimatrix game solution are typically not.

The use of modelling formalisms like the PRISM-games language should also
encourage the development of compositional analysis techniques, such as counter
abstraction [23] or assume-guarantee methods, but progress remains limited in

Multi-Agent Verification and Control with Probabilistic Model Checking 7

these directions within probabilistic model checking. On a related note, while
human-created models naturally exhibit high-level structure, strategies synthe-
sised by model checking tools typically do not. This hinders comprehension and
explainability, which becomes more important when strategies, as here, are more
complex due to randomisation, memory and distribution across agents.

There are also major algorithmic challenges which arise as the techniques
are applied to new problems. For example, there have been steady advances
in verification techniques for partially observable MDPs, but much less work
on this topic for stochastic games. Finally, there are potential benefits from
further exploration of ideas from game theory, e.g., other equilibria, such as
Stackelberg (with applications, for instance, to security or automotive settings)
or the inclusion of epistemic aspects into logics and model checking algorithms.

Acknowledgements. This work was funded in part by the ERC under the Euro-
pean Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115).

References

1. Albrecht, S.V., Christianos, F., Schéfer, L.: Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press (2023)

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672-713 (2002)

3. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional strategy synthesis for
stochastic games with multiple objectives. IC 261(3), 536-587 (2018)

4. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

5. Chatterjee, K.: Stochastic w-Regular Games. Ph.D. thesis, University of California
at Berkeley (2007)

6. Chatterjee, K., Henzinger, T.: A survey of stochastic w-regular games. J. CSS
78(2), 394-413 (Mar 2012)

7. Chatterjee, K., Katoen, J.P., Weininger, M., Winkler, T.: Stochastic games with
lexicographic reachability-safety objectives. In: Proc. 32nd International Confer-
ence on Computer Aided Verification (CAV’20). LNCS, vol. 12225, pp. 398-420.
Springer (2020)

8. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. FMSD 43(1), 61-92 (2013)

9. Camara, J., Garlan, D., Schmerl, B., Pandey, A.: Optimal planning for architecture-
based self-adaptation via model checking of stochastic games. In: Proc. SAC’15.
pp. 428-435. ACM (2015)

10. Eisentraut, J., Kelmendi, E., Kretinsky, J., Weininger, M.: Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. Information
and Computation 285(Part), 104886 (2022)

11. Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Controller synthesis for au-
tonomous systems interacting with human operators. In: Proc. ICCPS’15. pp. 70—
79. ACM (2015)

12. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York,
NY, USA (1996)

http://www.fun2model.org

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

29.

David Parker

Fu, C., Hahn, E.M., Li, Y., Schewe, S., Sun, M., Turrini, A., Zhang, L.: EPMC
gets knowledge in multi-agent systems. In: Proc. VMCAI'22. LNCS, vol. 13182,
pp. 93-107. Springer (2022)

Hammond, L., Abate, A., Gutierrez, J., Wooldridge, M.J.: Multi-agent reinforce-
ment learning with temporal logic specifications. In: Proc. 20th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’21). pp. 583—
592. ACM (2021)

Junges, S., Jansen, N., Katoen, J.P., Topcu, U., Zhang, R.: Model checking for
safe navigation among humans. In: Proc. QEST’18. LNCS, vol. 11024, pp. 207—
222. Springer (2018)

Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic-based reactive mis-
sion and motion planning. IEEE Transactions on Robotics 25(6), 1370-1381 (2009)
Kretinsky, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of al-
gorithms for simple stochastic games. Information and Computation 289(Part),
104885 (2022)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochas-
tic game verification with concurrency, equilibria and time. In: Proc. CAV’20.
LNCS, vol. 12225, pp. 475-487. Springer (2020), prismmodelchecker.org/games/
Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automatic verification of
concurrent stochastic systems. Formal Methods in System Design 58, 188-250
(2021)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Correlated equilibria and
fairness in concurrent stochastic games. In: Proc. 28th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’22).
LNCS, vol. 13244, p. 60-78. Springer (2022)

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Symbolic verification and
strategy synthesis for turn-based stochastic games. In: Principles of Systems De-
sign: Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birth-
day. LNCS, vol. 13660. Springer (2022)

Lemke, C., J. Howson, J.: Equilibrium points of bimatrix games. J. Society for
Industrial and Applied Mathematics 12(2), 413-423 (1964)

Lomuscio, A., Pirovano, E.: A counter abstraction technique for verifying properties
of probabilistic swarm systems. Artificial Intelligence 305, 103666 (2022)
Meggendorfer, T.: PET - A partial exploration tool for probabilistic verification.
In: Proc. 20th International Symposium on Automated Technology for Verification
and Analysis (ATVA’22). LNCS, vol. 13505, pp. 320-326. Springer (2022)
Pranger, S., Konighofer, B., Posch, L., Bloem, R.: TEMPEST - synthesis tool
for reactive systems and shields in probabilistic environments. In: ATVA. Lecture
Notes in Computer Science, vol. 12971, pp. 222-228. Springer (2021)

Shapley, L.: Stochastic games. PNAS 39, 1095-1100 (1953)

Ummels, M.: Stochastic Multiplayer Games: Theory and Algorithms. Ph.D. thesis,
RWTH Aachen University (2010)

Yan, R., Santos, G., Norman, G., Parker, D., Kwiatkowska, M.: Strategy synthesis
for zero-sum neuro-symbolic concurrent stochastic games. arXiv.2202.06255 (2022)
Yan, R., Santos, G., Duan, X., Parker, D., Kwiatkowska, M.: Finite-horizon equi-
libria for neuro-symbolic concurrent stochastic games. In: Proc. 38th Conference
on Uncertainty in Artificial Intelligence (UAI’22). AUAI Press (2022)

https://www.prismmodelchecker.org/games/
http://arxiv.org/abs/2202.06255

	Multi-Agent Verification and Control with Probabilistic Model Checking

