
Uniform Sampling for Timed Automata with
Application to Language Inclusion

Measurement?

Benôıt Barbot1??, Nicolas Basset1, Marc Beunardeau2? ? ?, and Marta
Kwiatkowska1

1 Department of Computer Science, University of Oxford, United Kingdom
2 Ingenico Labs, Paris, France, and École Normale Supérieure, Paris, France

Abstract. Monte Carlo model checking introduced by Smolka and Grosu
is an approach to analyse non-probabilistic models using sampling and
draw conclusions with a given confidence interval by applying statisti-
cal inference. Though not exhaustive, the method enables verification
of complex models, even in cases where the underlying problem is un-
decidable. In this paper we develop Monte Carlo model checking tech-
niques to evaluate quantitative properties of timed languages. Our ap-
proach is based on uniform random sampling of behaviours, as opposed
to isotropic sampling that chooses the next step uniformly at random.
The uniformity is defined with respect to volume measure of timed lan-
guages previously studied by Asarin, Basset and Degorre. We improve
over their work by employing a zone graph abstraction instead of the
region graph abstraction and incorporating uniform sampling within a
zone-based Monte Carlo model checking framework. We implement our
algorithms using tools PRISM, SageMath and COSMOS, and demon-
strate their usefulness on statistical language inclusion measurement in
terms of volume.

1 Introduction

Since the seminal work of Alur and Dill [1], timed automata (TAs) have been
widely studied in the context of real-time systems verification. Several algo-
rithms from the classical automata-theoretic verification were successfully lifted
to the timed case. In spite of this, many problems become undecidable, the most
important being the inclusion of timed languages. One way to circumvent un-
decidability is to employ statistical methods, where results are given with some
confidence level. However, timed automata are non-stochastic models and it is
not clear a priori with what probability to sample runs when performing statis-
tical experiments. A natural answer is given by the maximal entropy principle:
“without knowledge a priori on the distribution of probability to be taken, the

? This work is supported by ERC AdG VERIWARE.
?? Now in LACL, Université Paris Est Créteil, France

? ? ? Contributed to the work during an internship funded by ERC AdG VERIWARE

one with maximal entropy should be preferred” [15]. A maximal entropy stochas-
tic process for timed automata was recently proposed in [7]. Essentially, this is
the stochastic process that yields the most uniform sampling when the length of
the timed words tends to infinity. By uniform sampling we mean that all timed
words of a given length have the same density of probability to be chosen.

In this paper we propose several algorithms to achieve uniform sampling of
timed words in timed languages. The methods are based on the theory of vol-
umetry of timed languages recently developed by Asarin, Degorre and Basset [3],
which provides means for quantitative measurement of languages in terms of vol-
ume. Here, we employ this theory to achieve statistical estimation of volume and
demonstrate its usefulness for language inclusion measurement. The accuracy of
statistical estimation depends on the ability to uniformly sample the executions.
The method provided in [7], where the transitions of a TA were annotated with
probability functions so that the resulting stochastic process enables random
simulation in the most uniform way possible, is based on spectral attributes of a
functional operator Ψ (an analogue in the TA context of the adjacency matrix of
a graph) [3]. Unfortunately, it is not practical, as it relies on the region graph ab-
straction and the computation of eigenfunctions. In this paper, we overcome this
problem by adopting a zone-based approach and approximating the probability
functions of [7] with quotients of the volume functions.

Contributions. (i) We provide a zone-based computation of volume functions for
TAs, which enables the first practical implementation of volumetry of timed lan-
guages. (ii) We develop three methods (Method 1-3) to sample in a (quasi) uni-
form manner timed words in a language recognised by a deterministic timed au-
tomaton (DTA). In particular, we propose a receding horizon framework that al-
lows us to approximate the maximal entropy stochastic process discussed above.
(iii) We apply uniform sampling for DTAs to uniform sampling and volume mea-
surement for arbitrary timed languages, provided the membership problem for
the language is decidable. (iv) We have implemented the algorithms presented
here in PRISM [16] (for the splitting of the DTA into zones), SageMath [20]
(for the computation of volume functions) and COSMOS [4] (for the random
generation of timed words and property checking) and illustrate them on several
examples, with encouraging results. Omitted proofs and further details can be
found in [5].

Related work. The theory of volumetry of timed languages has been studied and
applied to robustness analysis [3], timed channel coding [2] and combinatorics
of permutations [6], but has not yet been applied in practice.

The recursive method for uniform sampling is a well-known method in dis-
crete combinatorics [12] whose generalisation to the timed case (Method 1 here)
was already done for very specific timed languages in [6].

Monte Carlo model checking was proposed in [13] for discrete models to ran-
domly explore their behaviour by means of simulating execution paths. Similarly,
statistical model checking [21] uses simulation to verify temporal logic proper-
ties with statistical guarantees, and has been applied to stochastic timed/hybrid

2

systems [10]. This avoids state-space explosion, thus ensuring the feasibility of
verification of complex models, and has also been used to check undecidable
properties [10]. Here we implement Monte Carlo techniques for TAs.

Monte Carlo or statistical model checking usually employs an isotropic ran-
dom walk to explore the executions (as explained in [19,11] for discrete models).
This involves choosing uniformly at random, at each step of the simulation, the
next transition from those available. It has been argued that the isotropic meth-
ods are not able to efficiently perform uniform sampling of the behaviours (see
e.g. the pathological examples in [19] for sampling of lassos and [11] for sampling
paths in a finite-state automaton). Here we implement uniform sampling based
on the tool COSMOS, but the techniques are more generally applicable and can
be implemented in other tools, for example UPPAAL-SMC [10], which supports
user-defined distributions.

Statistical model checkers such as UPPAAL-SMC consider timed automata
augmented with probability distribution on transitions that are either user-
defined or given “by default”. Thus, the model to verify is already probabilistic
and specifications are written in temporal logic with probabilistic operators. Our
work addresses a different and novel question: how can one use statistical exper-
iments on a non-probabilistic timed language and draw conclusions about that
language, without being given probability distributions on it?

2 Preliminaries

2.1 Timed languages and volumetry

A timed word α = (t1, a1) . . . (tn, an) is a word over the alphabet R≥0 × Σ,
where R≥0 denotes the set of non-negative reals and Σ is a finite alphabet of
events. Times ti represent delays between events ai−1 and ai. Throughout this
paper, delays will be bounded3 by an integer constant M . A timed language L
is a set of timed words. Given n ≥ 0, we denote by Ln the timed language L
restricted to timed words of length n. For every timed language L and every
word w = a1 . . . an ∈ Σn, we define PLw = {(t1, . . . , tn) | (t1, a1) . . . (tn, an) ∈ L},
and denote by Vol(PLw) its (hyper-)volume.

Example 1 (Running example). Examples of such hyper-volumes are given in
Fig. 1. Anticipating what follows, these sets correspond to the timed language
restricted to timed words of length 2 of the TA depicted in Fig. 2 (Left).

For a fixed n, we define the n-volume of L as follows:

Vol(Ln) =
∑
w∈Σn

Vol(PLw) =
∑
a1∈Σ

∫ M

0

· · ·
∑
an∈Σ

∫ M

0

1PLw (t)dt1 · · · dtn.

Continuing the example; the hyper-volume for dimension 2 is calculated as

Vol(L2) = Vol(PLab) + Vol(PLaa) + Vol(PLba) + Vol(PLbb) = 3.5 + 2 + 4 + 2 = 11.5.

3 Our approach to timed languages is based on volume and does not apply, in its
present form, to unbounded delays that result in infinite volume.

3

0
0

1 2 t11.5

1

2

t2

0
0

2

t2

2 t1

1.5

1.5 0
0

2

t2

2 t11.50
0

2 t1

2

t2

Fig. 1. From left to right, languages PL
ab, P

L
aa, PL

ba and PL
bb for the running example

(Example 1). The darker areas corresponds to initial clock vector (x, y) = (0.5, 0).

q

a,
0 < x < 2,
0 < y < 4
y := 0

b,
0 < x < 3,
0 < y < 2
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0

b, x := 0

a, y := 0 b, x := 0

b, x := 0

a, y := 0

Fig. 2. Left: a DTA. Right: the same DTA obtained after applying the forward reacha-
bility algorithm. Entry zones are represented in red. Guards for a and b are the same in
the two TAs. The blue part represents clock vectors reachable through entry zones by
time elapsing. In location 2, the guard of transition b should be split along the dotted
line to obtain the split DTA of Fig 3.

We define the uniform probability distribution on a timed language L by assigning
weight 1/Vol(Ln) to every timed word of length n. The main purpose of this
article is to show how to sample according to that distribution when the language
is recognised by a timed automaton. For instance, the probability of a uniformly
sampled timed word to fall in the set E = {(t1, b)(t2, a) | t1 ∈ (0, 1), t2 ∈ (0, 2)}
is Vol(E)/Vol(L2) = 2/11.5 ≈ 0.17.

Given two timed languages L, L′ over the same alphabet of events Σ, we
say that L′ is a tight under-approximation of L if, for all w ∈ Σ∗, PL′w ⊆ PLw
and Vol(PLw \PL

′

w) = 0 ; hence Vol(PLw) = Vol(PL
′

w). In particular, timed words
uniformly sampled in L′ are uniformly sampled in L.

2.2 Timed automata

Let X be a finite set of non-negative real-valued variables called clocks. Here we
assume that clocks remain bounded by a constant M ∈ N. A clock constraint has
the form x ∼ c or x−y ∼ c where ∼∈ {≤, <,=, >,≥}, x, y ∈ X, c ∈ N. A guard
is a finite conjunction of clock constraints; it is called open if its constraints

4

involve only strict inequalities. A zone is a set of clock vectors x ∈ [0,M]X

satisfying a guard. For a clock vector x ∈ [0,M]X and a non-negative real t, we
denote by x+ t (resp. x− t) the vector x+ (t, . . . , t) (resp. x− (t, . . . , t)).

A timed automaton (TA) A is a tuple (Σ,X,Q, i0, F,∆) where Σ is a finite
set of events; X is a finite set of clocks; Q is the finite set of locations; i0 is the
initial location; F ⊆ Q is the set of final locations; and ∆ is the finite set of
transitions. Any transition δ ∈ ∆ has an origin δ− ∈ Q, a destination δ+ ∈ Q,
a label aδ ∈ Σ, a guard gδ and a reset function rδ determined by a subset of
clocks B ⊆ X: it resets to 0 all the clocks in B and does not modify the value
of the other clocks.

A timed transition is an element (t, δ) of A def
= [0,M] ×∆. The delay t rep-

resents the time before firing the transition δ. A state s = (q,x) ∈ Q× [0,M]X

is a pair of a location and a clock vector. Given a state s = (q,x) and a timed
transition α = (t, δ) ∈ A, the successor of s by α is denoted by sα and defined
as follows. If δ− = q and x + t satisfies the guard gδ then sα = (δ+, rδ(x + t))
else sα = ⊥. Here and in the rest of the paper ⊥ represents undefined states.
A sequence of timed transitions is called a timed path. We extend the successor
action to timed paths by induction: sε = s and s(αα′) = (sα)α′ for all states s,
timed transitions α ∈ A and timed paths α′ ∈ A∗. The initial state of the timed
automaton is s = (i0,0). The labelling of a timed path (t1, δ1) . . . (tn, δn) is the
timed word (t1, aδ1) . . . (tn, aδn) ∈ ([0,M]×Σ)∗. The timed language L(A) of a
timed automaton A is the set of timed words that are labellings of timed paths
α such that sα ∈ F × [0,M]X . We also write Ln(A) instead of (L(A))n.

For a guard g, we denote by TE−1(g) the set of clock vectors from which g can
be reached when time elapses; formally, TE−1(g) = {x | ∃t ≥ 0,x+ t ∈ g}. Given
a state s = (q,x) we denote by ∆(s) the set of transition available from s, that
is such that δ− = q and x ∈ TE−1(gδ). Given a state s = (q,x) and a transition

δ ∈ ∆(s), we define lbδ(s)
def
= inf {t|x+ t ∈ gδ} and ubδ(s)

def
= sup {t|x+ t ∈ gδ}

so that the condition x+ t ∈ gδ is equivalent to t ∈ (lbδ(s),ubδ(s)).

A deterministic timed automaton (DTA) is a TA such that no clock vector
can satisfy guards of pairwise distinct transitions with the same label and origin.
This implies that timed words and timed paths of a DTA are in one-to-one
correspondence. We are interested in the prefixes of infinite timed words of a
DTA. To be sure that Ln(A) contains exactly the prefixes of size n, we consider
only DTAs that satisfy the two following conditions: (i) every location is final,
(ii) from every reachable state, there is a timed transition that can be taken.

2.3 Equations on timed languages and volumes

Given a DTA A, we denote by Ln(s) the n-th timed language recognised from a
state s and defined inductively as follows: L0(s) = {ε}, and

Ln+1(s) =
⋃

δ∈∆(s)

⋃
t∈I(s,δ)

(t, aδ)Ln(s(t,δ)). (1)

5

For the running example and initial state [q, (0.5, 0)] we have:

L2([q, (0.5, 0)]) =
⋃

t∈(0,1.5)

(t, a)L1([q, (0.5 + t, 0)]) ∪
⋃

t∈(0,2)

(t, b)L1([q, (0, t)]). (2)

The language L2([q, (0.5, 0)]) is depicted in Fig 1.
We also parametrise the volume by the initial state and define the n-th vol-

ume function as vn(s) = Vol(Ln(s)). These functions can be defined recursively
by replacing union over intervals by integrals and union over transitions by finite
sums in (1). We obtain v0(s) = 1 and

vn+1(s) =
∑

δ∈∆(s)

∫ ubδ(s)

lbδ(s)

vn(s(t,δ))dt. (3)

For the running example, passing to volumes in (2) yields

v2([q, (0.5, 0)]) =

∫ 1.5

0

v1([q, (0.5 + t, 0)])dt+

∫ 2

0

v1([q, (0, t)])dt. (4)

A key idea used in [3,7] is to rewrite (3) as

vn+1(s) = Ψ(vn)(s) (5)

where Ψ is an integral operator defined by

Ψ(f)(s) =
∑

δ∈∆(s)

Ψδ(f)(s) with (6)

Ψδ(f)(s) =

∫ ubδ(s)

lbδ(s)

f(s(t,δ))dt. (7)

Thus, volume functions are defined via iteration of the operator Ψ on the constant
function 1: vn = Ψn(1). In [3,7], the state space was decomposed into regions,
which guaranteed algebraic properties such as polynomial volume functions at
the price of an explosion of the number of locations of the TA. A TA before
such a decomposition into regions has volume functions that are complicated
(piecewise defined), and hence difficult to handle in practice. Here we want to
keep volume functions simple (polynomial) while keeping the set of locations
small. For this we adopt a zone-based approach.

The idea of the zone-based decomposition described in the next section is to
split the state space into several pieces in which the functions lbδ(s) and ubδ(s)
have simple form, ensuring that every volume function vn = Ψn(1) restricted to
any location is polynomial (see Table 1).

3 Volume function computation for DTAs

In this section we explain how to transform a DTA A into a DTA A′ called split
DTA that facilitates efficient volume computation.

6

Table 1. First volume functions vn[li, (x, y)] associated to the TA of Fig. 3.

[l0, (0, 0)] [l1, (x, 0)] [l2, (0, y)] [l3, (x, 0)]

v0 1 1 1 1

v1 4 −x+ 4 −y + 4 −2x+ 5

v2 15 −4x+ 15 1
2
y2 − 4y + 15 − 1

2
x2 − 6x+ 35

2

v3
335
6

−15x+ 335
6
− 1

6
y3 + 2y2 − 15y + 335

6
− 1

6
x3 − 1

2
x2 − 25x+ 133

2

Decomposition into zones. We first apply a forward reachability algorithm, im-
plemented for instance in PRISM [16], which returns the so-called forward-
reachability graph, that is, a finite graph with annotations, which we view as
a DTA (the annotations are essentially, for each edge δ, the guard gδ and label
aδ and, for each location l, the zone Zl which is entered). Formally, we say that
a TA is decomposed into zones if, for every l ∈ Q, there is a zone Zl called
the entry zone of l, such that the entry zone of the initial state is {0} and, for
every transition δ, the successors of states in {δ−} × Zδ− through δ with some
delay are in {δ+} × Zδ+ , that is, {rδ(x + t) | x ∈ Zδ− ,x + t ∈ gδ} ⊆ Zδ+ . We
denote by S = ∪l∈Q{l} × Zl the set of states corresponding to entry zones. The
forward-reachability graph for the running example is given in Fig. 2 (Right).

Guard split. Let δ be the transition from location 2 to location 3 in the automa-

ton of Fig. 2 (Right), then gδ
def
= (0 < x < 3)∧(0 < y < 2). Then one can see that

ubδ(2, (x, 0)) = 2 if x ∈ (0, 1) (due to guard y < 2) and ubδ(2, (x, 0)) = 3 − x
if x ∈ (1, 2) (due to guard x < 3). The guard gδ thus needs to be split into two
(along the dotted line in the figure) to achieve a simpler form for ubδ. It is well
known how to get the tightest constraints of a guard and get rid of redundant
constraints using the Floyd-Warshall algorithm (see e.g. [8]). A guard is said
to be upper-split (lower-split) if there is at most one useful constraint (that is,
not implied by other constraints) of the form xj < a (xj > a). The guard gδ
discussed above is not upper-split as the two constraints x < 3 and y < 2 are
both useful. Analogous definitions hold for lower-bounds and a guard is said to
be split if it is both lower-split and upper-split.

Pre-stability. A second phenomenon we want to avoid is when the set of available
transitions ∆(q,x) is not constant on the entry zone of q. A TA decomposed
into zones is called pre-stable if, for every location q and clock vector x ∈ Zq,
the set of transitions ∆(q,x) is exactly the set of transitions δ whose origin
is q. Equivalently, a TA is pre-stable if Zδ− ⊆ TE−1(gδ) for every δ. In case
we detect a transition such that Zδ− 6⊆ TE−1(gδ) we will split the zone Zδ− to
isolate TE−1(gδ)∩Zδ− from its complement. Continuing the example above, after
splitting gδ the functions associated to each new guard are null for x ∈ (0, 1) or
x ∈ (1, 2). Location 2 is split into two locations of the final TA of Fig. 3: l1 for
(0, 1) and l3 for (1, 2). Every incoming transition to location 2 is split accordingly
into two transitions (one orange to l1 and one purple to l3).

7

Trimming. Last but not least, we say that a TA is trimmed if the set of outgoing
transitions of each location is non-empty. A TA is called split if it is pre-stable,
trimmed and all the guards of its transitions are split and open. It implies,
in particular, that, for every entry state s ∈ S, ∆(s) is not empty and for all
transition δ ∈ ∆(s) it holds that ubδ(s)− lbδ(s) > 0. Note that opening guards,
that is, transforming non-strict inequalities into strict ones is made wlog., as it
only removes part of the language that has a null volume measure.

Splitting algorithm. We propose an algorithm to transform a DTA into a split
DTA such that the language of the latter is a tight under-approximation of the
language of the former (see Theorem 1). First, we apply a forward reachability
algorithm to obtain a DTA decomposed into zones and open its guards. Then
we successively split zones that falsify pre-stability and guard split conditions,
until the conditions are satisfied in the DTA. The splitting algorithm maintains
a stack of transitions that need to be checked, which initially contains all the
transitions. As the algorithm proceeds, transitions are popped from the stack
and are checked against pre-stability and guard split conditions. If one test fails,
the zone (or guard) is split accordingly into several zones (or open guards) and
the transitions that are affected are added to the stack (incoming transitions to,
and outgoing transitions from the split zone). When no more transition need to
be checked (i.e. the stack is empty), the TA is split and the algorithm terminates.
This occurs in a finite number of steps since transitions are added to the stack
only when a zone is split into strictly smaller sub-zones, and there are finitely
many zones (as the clocks are bounded by a constant M).

Theorem 1. Given a DTA A, one can construct (using the algorithm sketched
above) a split DTA A′ that recognises a tight under-approximation of L(A).

The splitting algorithm and the proof can be found in the technical report [5].

Volume function of a split DTA. We have the following result.

Proposition 1. Given a split DTA A and n ∈ N, denote by c the maximal affine
dimension of an entry zone of A. One can compute the volume function vk for
k ≤ n in time and space complexity O(nc+2|QA|) using dynamic programming
based on the recursive equation (3). Each volume function vk restricted to a
location q is a polynomial of degree at most k that is positive on Zq.

Example 2. We have implemented the splitting algorithm sketched in Sect. 3 and
applied it to the DTA of Fig. 2 (Right) to obtain the DTA of Fig. 3. Our program
also returns for each transition δ of the output DTA the interval (lbδ,ubδ),
allowing us to compute with SageMath the operator Ψ as well as the volume
functions. On the example, for f : S→ R, (x, y) ∈ Zl with l ∈ {l0, . . . , l3},

Ψ(f)[l0, (0, 0)] =
∫ 1

0
f(l1, (t, 0))dt+

∫ 2

0
f(l2, (0, t))dt+

∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l1, (x, 0)] =
∫ 1−x
0

f(l1, (x+ t, 0))dt+
∫ 2

0
f(l2, (0, t))dt+

∫ 2−x
1−x f(l3, (x+ t, 0))dt;

Ψ(f)[l2, (0, y)] =
∫ 1

0
f(l1, (t, 0))dt+

∫ 2−y
0

f(l2, (0, y + t))dt+
∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l3, (x, 0)] =
∫ 3−x
0

f(l2, (0, t))dt+
∫ 2−x
0

f(l3, (x+ t, 0))dt.

8

0 1 2

1

2

3

l0

0 1 2

1

2

3

l1
0 1 2

1

2

3

3

4

l2

0 1 2

1

2

3

l3

y := 0

x := 0

y := 0, δ y := 0

y := 0
x := 0

y := 0

x := 0

Fig. 3. The split form of the running example (Example 1).

First volume functions computed using Equation (5) are given in Table 1.

4 Sampling methods for timed languages of DTAs

In this section we consider random sampling of timed words. We first give a
method that achieves exact uniform sampling when the length of timed words
to be generated is finite; we speak of finite horizon. When the length is infinite
or too long to be treated by the previous method, we consider a receding horizon
method, where, at the k-th step of the generation, the next timed letter is chosen
according to the volume of the timed words for the next m steps; these possible
futures constitute a finite receding horizon. At the limit, where the receding
horizon becomes infinite (m→∞), this can be interpreted as a stochastic process
over runs of maximal entropy [7].

Parametric probability distributions. A discrete probability distribution (DPD)
on a finite set A is a function dpd : A → [0, 1] such that

∑
a∈A dpd(a) = 1. A

probability density function (PDF) on an interval (a, b) is a Lebesgue measurable

function pdf : (a, b) → R≥0 such that
∫ b
a
pdf(t)dt = 1. Values of DPD and

PDF are referred to as weights. The DPD isoDPD(A) on a set A (resp. the
PDF isoPDF(a, b) on an interval (a, b)) that attributes the same weight to every
a ∈ A (resp. t ∈ (a, b)) is called isotropic. In other words, isoDPD(A)(a) = 1/|A|
for every a ∈ A (resp. isoPDF(a, b)(t) = 1/(b − a) for every t ∈ (a, b)). PDFs
considered in the following are just polynomials on the delay variable t. Their
coefficients depend on the current state (location and clock values) and on the
transition to fire. Choosing a delay t according to a PDF can be done using
the inverse method : a random number r is drawn uniformly in (0, 1), and the

output t ∈ (a, b) is the unique solution of
∫ t
a
pdf(t′)dt′ − r = 0. In the case of

the isotropic PDF on (a, b), the output t is just a+ r(b− a).
Random generation of timed words in Ln(s) for a given state s ∈ S is

done as follows: for k = 1..n, pick randomly the next transition δ according
to a DPD dpdks parametrised by the current state s, then chose the delay t in
(lbδ(s),ubδ(s)) according to a PDF pdfks,δ parametrised by the current state s
and the transition just chosen; take the successor of s by (t, δ) as the new current
state s; output (t, aδ) and repeat the loop.

9

Isotropic Receding horizon m=0 Receding horizon m=9

Fig. 4. Trajectories of the running example (Fig. 3) sampled using isotropic sampling
(Left) and Method 2 with receding horizon m = 0 (Middle) and m = 9 (Right). Each
point of a given colour corresponds to a clock vector where a transition of that colour
occurs. Each plot visualises a single trajectory with 200, 000 transitions. The receding
horizon m = 9 visibly yields the most uniform sampling. The receding horizon sampling
with m = 0 is already more uniform than the isotropic sampling as the former assigns

weights to transitions proportional to lengths of intervals
(
dpds = ubδ(s)−lbδ(s)

v1(s)

)
.

This random generation outputs timed words of Ln(s) with weights given by

Weight[(t1, a1) · · · (tn, an)]
def
=

n∏
k=1

dpdksk−1
(δk)pdfksk−1,δk

(tk). (8)

where, for every k = 1..n, sk−1 is the state before the kth sampling loop, (tk, δk)
is the kth timed transition randomly picked during the kth sampling loop and
ak is the label of δk.

Isotropic and uniform sampling. Isotropic sampling4 relies on using in each
step the isotropic DPD isoDPD(∆(s)) and the isotropic PDF isoPDF(I(s, δ)).
These distributions are particularly simple to sample, but when the length of
samples grows the probability concentrates on small sections of the runs, see
Fig. 4 (Left). By contrast, uniform sampling for Ln(s) assigns the same weight
1/vn(s) to every timed word. In other words, for any measurable set B ⊆ Ln(s)
the probability Vol(B)/vn(s) to fall in this set is proportional to its measure.

The recursive method for uniform sampling. The idea of the recursive method
for uniform sampling of n-length timed words from a state s is to choose the first
delay t and transition δ according to well chosen DPD and PDF that depend on
the volume functions vn and vn−1, and then recursively apply uniform sampling
to generate an (n− 1)-length timed word from the updated state s(t,δ).

4 Note that some works, consider instead sampling the delay first and then the tran-
sitions available in the state updated by the delay (see [9]).

10

Define, for every function f : S → R>0 and state s, the DPD ω(f, s) : δ 7→
Ψδ(f)(s)
Ψ(f)(s) . If moreover δ is given, define the PDF ϕ(f, s, δ) : t 7→ f(s(t,δ))

Ψδ(f)(s)
from

(lbδ(s),ubδ(s)) to R>0.

Method 1 (Exact uniform sampling) Given a split DTA and n ∈ N, pre-
compute the volume functions v0 = 1, . . . , vn = Ψn(1) (see Proposition 1), then
the uniform sampling of n-length timed words can be achieved in linear time us-
ing the following sequences of DPDs and PDFs: (ω(vn−k, s), ϕ(vn−k, s, δ))k=1..n

Proof. Using the same notation as in (8), it holds that

Weight[(t1, a1) · · · (tn, an)] =

n∏
k=1

ω(vn−k, sk−1)(δk)ϕ(vn−k, sk−1, δk)(tk)

=

n∏
k=1

Ψδ(vn−k)(sk−1)

vn−k+1(sk−1)

vn−k(sk)

Ψδ(vn−k)(sk−1)
=
v0(sn−1)

vn(s0)
=

1

vn(s0)
.

Example 3. We illustrate the DPDs and PDFs used in the last but one step of
the uniform random sampling for the running example, obtained from volume
functions of Table 1. Consider the state s = (l1, (x, 0)) with x ∈ (0, 1) and δ
the self-loop on l1 (see Fig. 3). Then (lbδ(s),ubδ(s)) = (0, 1 − x) and s(t,δ) =
(l1, (x+ t, 0)). The DPD used to choose δ is

dpdn−1s (δ) =
1

v2(s)

∫ ubδ(s)

lbδ(s)

v1(s(t,δ))dt =

∫ 1−x

0

4− x− t
15− 4x

dt =
7− 8x+ x2

30− 8x

The PDF used to choose t is

pdfn−1s,δ (t) =
1t∈(lbδ(s),ubδ(s))

dpdn−1s (δ)

v1(s(t,δ))

v2(s)
= 1t∈(0,x)

8− 2x− 2t

7− 6x+ x2

Random sampling with finite receding horizon. With the previous method, the
k-th timed transition of a run of length n is sampled according to DPD and
PDF that depend on k and n. This dependency on k and n is not suitable for
large n as it requires storage of as many polynomials as the length of the run
to generate n. Also, one might wish to randomly generate arbitrarily long runs
without a prescribed bound on the length. To take the kth timed transition in
the recursive method for uniform sampling, we use DPD and PDF that depend
on vn−k, that is, on the volume measure of the possible (n− k) step future. The
idea of the following method is to replace (n − k) by a fixed m � n at every
step of the sampling. The constant m can be seen as a receding horizon used in
control theory [17]. At each step we consider only the possible m step future to
generate the next timed transition.

Method 2 (Random sampling with finite receding horizon m) Given a
split DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then sample n-length timed words in linear time using
the same DPD ω(vm, s) and PDF ϕ(vm, s, δ) for every k = 1..n.

The precomputation is polynomial in m. Hence this methods is more efficient
than Method 1 when m� n, but it does not yield exact uniform sampling.

11

Table 2. Table for Example 4.

m (C+/C−)− 1 n0.01

0 3 1
1 0.3229 2
2 1.659× 10−2 3
3 4.444× 10−3 6

m (C+/C−)− 1 n0.01

4 3.272× 10−4 35
5 8.431× 10−5 124
6 9.308× 10−6 1 076
7 1.409× 10−6 7 069

m (C+/C−)− 1 n0.01

8 2.364× 10−7 42 098
9 2.520× 10−8 394 801
10 5.304× 10−9 1.8760× 106

11 4.487× 10−10 2.2178× 107

Quasi-uniform random sampling. We now present a trade-off between exact uni-
form sampling (Method 1) and the finite receding horizon sampling (Method 2).
We give bounds on the distance to uniformity for this method, which we con-
jecture to be small in practice for small horizon m. This conjecture is supported
by theoretical results of previous works [3,7,5] and by practical experiments (no-
tably in Example 4 below).

Method 3 (Switching method for quasi-uniform sampling) Given a split
DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then generate the n−m first letters as in Method 2
and use Method 1 from the current state for the last m steps.

This method ensures quasi-uniform sampling in the following sense.

Theorem 2. If in Method 3 there exist constants C−, C+ ∈ R>0 such that
C−vm+1 ≤ vm ≤ C+vm+1, then the weight of every timed word lies in the
interval [(1−εm,n)/vn(s0), (1+εm,n)/vn(s0)], with εm,n = (C+/C−)(n−m−1)−1.

Example 4. For the running example (Example 1) we determine the tightest

constraints C−
def
= infs∈S vm(s)/vm+1(s) and C+ def

= sups∈S vm(s)/vm+1(s) for
m = 0..11. We observe empirically that C+/C− tends to 1 exponentially fast
when m grows (see Table 2). Given a maximal tolerated error of ε, one can
determine for every m the maximal n, called nε, such that εm,n ≤ ε for every

n ≤ nε; formally, nε
def
= m + 1 + blog(C+/C−)(1 + ε)c. First values of n0.01 as

a function of m are given in Table 2; for instance, using receding horizon for
m = 11 one can generate timed words of length 20, 000, 000 with a divergence
to uniformity less than 1%.

Our sampling method requires the computation of a complete zone graph,
as opposed to on-the-fly techniques used in state-of-the-art statistical model
checkers; this is the price we pay for statistical evaluation of quantities of timed
words in complex sub-languages as described in the next section.

5 Applications and experiments

5.1 Tackling general timed languages

It is well known that language inclusion for languages recognised by non-deterministic
TAs (NTAs) is undecidable, even when a robust semantics is considered [14].

12

The situation is even worse for stopwatch automata, hybrid automata, etc., for
which the reachability problem is undecidable. However, we can handle a sta-
tistical variant of the inclusion problem when, first, an overapproximation of
the language described by a DTA is known and, second, the languages admit
decision procedures for the membership problem defined as: given a language L
and a word w, is w ∈ L? Our method is based on statistical volume estimation
that relies on the quasi-uniform random sampling developed in the previous sec-
tion. The complexity results given below are expressed in terms of the number
of membership queries one has to solve.

Application 1 (Statistical volume estimation) Given a timed language L,
n ∈ N, a confidence level θ, an error bound ε, and an over-approximation
of the language recognised by a DTA C, that is, Ln ⊂ Ln(C), define N ≥
(1/ε2) log (θ/2) (Chernoff-Hoeffding bound); draw N samples uniformly at ran-
dom in Ln(C) and answer N queries for membership in L to return a value p
such that Vol(Ln)/Vol(Ln(C)) lies in [p− ε, p+ ε] with confidence 1− θ.

Application 2 (Inclusion measurement) Given two timed languages L′, L′′
and an over-approximation of the two languages recognised by a DTA C one can
use the previous application with L = L′\L′′ to evaluate the volume Vol(L′n\L′′n).
If a positive value is returned, a timed word in L′n \ L′′n has been detected and
one can surely claim L′n 6⊆ L′′n. Otherwise, a null value allows one to claim
with confidence 1− θ that either the inclusion holds or the difference of the two
languages is smaller than εVol(Ln(C)).

Application 3 (Uniform sampling) Given a timed language L and n ∈ N,
and an over-approximation of the language recognised by a DTA C, that is, Ln ⊆
Ln(C), draw samples uniformly at random in Ln(C) until one falls in Ln.

The sampling is uniform: every timed word of Ln has the same density of
probability to be output. The expected number of samplings in Ln(C) to sample
one timed word in Ln is Vol(Ln)/Vol(Ln(C)). The choice of C is crucial, since if
Ln(C) is a too coarse approximation of Ln the probability of a sample from Ln(C)
to be in Ln is small and the methods become inefficient. We leave as future work
the design of heuristics that, given a general timed language L, automatically
generate a DTA that recognises a good over-approximation of L.

5.2 Implementation and experiments

We implemented the techniques using three tools: PRISM [16], SageMath [20]
and COSMOS [4]. The workflow is depicted in Fig. 5. We modify the tools to
meet our needs. We adapted PRISM’s forward reachability algorithm to imple-
ment the splitting algorithm of Sect. 3. We also export the split zone graph in a
file format easy to read for SageMath. We use SageMath to compute distributions
and weights of transitions as rational functions of clock valuations, which are ex-
ported and read by COSMOS in the form of a Stochastic Petri Net with general

13

distributions. COSMOS then samples trajectories of this model, checks the mem-
bership of the language of a given NTA, and returns the probability. We have
modified COSMOS to handle distributions given by arbitrary rational functions
and to compute the membership of a timed word in an NTA. Our implementation
can be found at http://www.prismmodelchecker.org/files/qest16.

Split

DTA

COSMOS

model

Trajectory
DTA

NTA

ResultForward
Reachability

Splitting
Volume and
Distribution
Computation

Sampling Membership

PRISM SageMath COSMOS

Fig. 5. Tool workflow. For the running example (Example 1), the DTA is the automa-
ton in Fig. 2 (Left), the zone graph is the automaton in Fig. 3, the COSMOS model
is the zone graph annotated with probability distributions as described in Example 3,
and examples of trajectories are depicted in Fig. 4.

z := 0

a

x := 0

b, x ≥ 1

y := 0

a, x ≤ 3 ∧ y ≥ 1

z ≤ 10

a, ba, b a, b a, b

l1 l2 l3 l4

Fig. 6. The NTA B for Example 5. Every transition has a guard z ≤ 10 omitted.

Example 5. Let A be the DTA of the running example (Example 1). The NTA
B of Fig. 6 recognises the timed words that contain aba as a subword within
the first 10 time units, where the latter a occurs at most 3 time units after
the former and there is at least 1 time unit between b and both as. We have
estimated Vol(L10(A) ∩ L10(B))/Vol(L10(A)) by implementing Application 1.
Sampling was performed using Method 2 with m = 5. The result is in the interval
[0.679, 0.688] with confidence level 0.99; 58, 000 simulations were used in 5s.

A case study. We additionally consider a larger case study of a failure and
repair system modelled as an NTA (see [5] for more details). We consider a
model with K machines that need to be fully repaired for the overall system to
work properly. Each machine contains N levels of failure and can fail at most nb
times between two full repairs. The model is implemented by an NTA A with
Nnb locations and K + 1 clocks. The property we are interested in is encoded
in another NTA B with 4 locations and 2 clocks. We apply our method by over-

approximating the NTA A with a DTA C with R
def
= KN locations and 2 clocks.

The results are reported in Table 3. We use our approach to sample timed words
of length 50 of the DTA C and check their membership in L50(A) and L50(B). We
compare receding horizon sampling to isotropic sampling. We observe that for
isotropic sampling the probability for a timed word in L50(A) to be in L50(B)
(denoted by P50(B|A)) tends to 1 quickly when R increases, which, for large
values of R, might be interpreted as an inclusion of the languages. On the other

14

http://www.prismmodelchecker.org/files/qest16

Table 3. Result of receding horizon sampling compared to isotropic sampling for the
case study with two machines (K = 2). “Pre Time” is the pre-computation time, “Sim
Time” is the simulation time. The meaning of R, P50(A|C) and P50(B|A) is described
in the text. The receding horizon is 8 +R. The number of samples is 100, 000.

R Receding horizon Isotropic
Pre Time #Zones Sim Time P50(B|A) P50(A|C) Sim Time P50(B|A) P50(A|C)

4 45s 380 133s 0.999977 0.86539 36s 0.990439 0.03347
6 99s 581 369s 0.997717 0.58701 39s 0.975795 0.05123
8 219s 783 5005s 0.930944 0.06111 56s 0.995179 0.07052
10 417s 985 5773s 0.509091 0.00275 55s 0.999893 0.09325
12 745s 1187 7954s 0.0344828 0.00029 64s 1 0.1019

hand, with the receding horizon sampling the same probability (P50(B|A)) tends
to zero, which shows that the model does not satisfy the property. This result
demonstrates the necessity of (quasi)-uniform sampling to explore the behaviour
of the model, since the results of isotropic simulation significantly diverge from
those of (quasi)-uniform simulation, and thus do not yield reliable information
about the system.

We also observe that the probability for timed words in the over-approximation
L50(C) to fall in L50(A) (denoted by P50(A|C)) tends to zero, meaning that it
becomes too crude for large values of R. Thus, tight over-approximations are
important to obtain efficient simulation of an NTA through a DTA.

The time required for receding horizon simulation is high compared to isotropic,
since it requires sampling of complex distributions involving many polynomials.

6 Conclusion and further work

We have developed the foundations for the practical application of volumetry of
timed languages to quantitative and statistical verification of complex properties
for TAs. We implemented our work in a tool chain and provide first experiments.

On the theoretical side, we want to show that constants in Method 3 and
Theorem 2 can be chosen to guarantee arbitrarily small divergence from exact
uniform sampling and consider extending the theory to probabilistic TAs. We
would also like to implement membership checking in COSMOS for general timed
languages (e.g. recognised by stopwatch automata, LHA, etc.). We also plan to
use our random sampling algorithms to detect forgetful cycles described in [3],
which are needed to synthesise controllers robust to timing imprecision [18].

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

2. Eugene Asarin, Nicolas Basset, Marie-Pierre Béal, Aldric Degorre, and Dominique
Perrin. Toward a timed theory of channel coding. In FORMATS’12, LNCS 7595,
2012.

15

3. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of regular timed
languages. Information and Computation, 241:142–176, 2015.

4. Paolo Ballarini, Benôıt Barbot, Marie Duflot, Serge Haddad, and Nihal Peker-
gin. Hasl: A new approach for performance evaluation and model checking from
concepts to experimentation. Performance Evaluation, 90(0):53 – 77, 2015.

5. Benôıt Barbot, Nicolas Basset, Marc Beunardeau, and Marta Kwiatkowska. Uni-
form sampling for timed automata with application to language inclusion measure-
ment. Technical Report CS-RR-16-04, University of Oxford, 2016.

6. Nicolas Basset. Counting and generating permutations using timed languages. In
LATIN, LNCS 8392, pages 502–513. Springer, 2014.

7. Nicolas Basset. A maximal entropy stochastic process for a timed automaton.
Information and Computation, 243:50–74, 2015.

8. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, 2003.

9. Dimitri Bohlender, Harold Bruintjes, Sebastian Junges, Jens Katelaan, VietYen
Nguyen, and Thomas Noll. A review of statistical model checking pitfalls on real-
time stochastic models. In Leveraging Applications of Formal Methods, Verification
and Validation., volume LNCS 8803. Springer, 2014.

10. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. STTT, 17(4):397–415, 2015.

11. Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Las-
saigne, Johan Oudinet, and Sylvain Peyronnet. Coverage-biased random explo-
ration of large models and application to testing. STTT, 14(1):73–93, 2012.

12. Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for
the random generation of labelled combinatorial structures. Theoretical Computer
Science, 132(1):1–35, 1994.

13. Radu Grosu and Scott A. Smolka. Monte carlo model checking. In TACAS’05,
2005.

14. Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of timed
and hybrid systems. In HSCC 2000, 2000.

15. E. T. Jaynes. Information Theory and Statistical Mechanics. II. Physical Review
Online Archive (Prola), 108(2):171–190, October 1957.

16. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proc. CAV’11, 2011.

17. Richard M Murray, John Hauser, Ali Jadbabaie, Mark B Milam, Nicolas Pe-
tit, William B Dunbar, and Ryan Franz. Online control customization via
optimization-based control. Software-Enabled Control: Information Technology for
Dynamical Systems, page 149, 2003.

18. Youssouf Oualhadj, Pierre-Alain Reynier, and Ocan Sankur. Probabilistic robust
timed games. In CONCUR’14, 2014.

19. Johan Oudinet, Alain Denise, Marie-Claude Gaudel, Richard Lassaigne, and Syl-
vain Peyronnet. Uniform monte-carlo model checking. In FASE, volume 6603,
pages 127–140, 2011.

20. W. A. Stein et al. Sage Mathematics Software (Version 6.9). The Sage Develop-
ment Team, 2015. http://www.sagemath.org.

21. H.L.S. Younes and R.G. Simmons. Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. and Comput., 204(9):1368–1409, 2006.

16

http://www.sagemath.org

	Uniform Sampling for Timed Automata with Application to Language Inclusion Measurement

