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Abstract

Probabilistic model checking is a quantitative verification technique that aims to verify

the correctness of probabilistic systems. Nevertheless, it suffers from the so-called state

space explosion problem. In recent years, many model reduction techniques have been

introduced to reduce the impact of this problem in the context of probabilistic verification.

In this thesis, we propose two new model reduction techniques to improve the efficiency

and scalability of verifying probabilistic systems, focusing on the commonly used model

of discrete-time Markov chains (DTMCs). In particular, unlike most existing approaches,

our emphasis is on verifying quantitative properties that bound the time or cost of an

execution. We also focus on methods that avoid the explicit construction of the full state

space, which can be a bottleneck for some existing techniques.

We first present a finite-horizon variant of probabilistic bisimulation for DTMCs, which

preserves a bounded fragment of PCTL, the most widely used temporal logic for specifying

properties of this model. The goal is to enable a more aggressive reduction of the model

than can be achieved when preserving the full logic. We propose two techniques to perform

minimisation with respect to this notion of bisimulation: a standard partition-refinement

based algorithm and an on-the-fly finite-horizon approach, based on a backwards traversal

of the Markov chain, directly from a high-level model description.

We also propose another model reduction technique that reduces what we call linear

inductive DTMCs, a class of models whose state space grows linearly with respect to a

parameter. We devise methods that automatically detect and extract such models from



a high-level model description, and then perform model checking via construction and

solution of a set of recurrence relations. We also show how verifying step-bounded and

cost-bounded probabilistic reachability properties on arbitrary DTMCs reduces to the

problem of verifying linear inductive DTMCs.

All the techniques presented in this thesis were developed as a complete implemen-

tation in the PRISM model checker. We demonstrate the effectiveness of our work by

applying it to a selection of existing benchmark probabilistic models, showing that both

of our two new approaches can provide significant reductions in model size and in some

cases outperform the existing implementations of probabilistic verification in PRISM.
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CHAPTER 1

Introduction

Computerised systems are now integral to all aspects of our society, including safety-

critical domains such as the embedded systems in everything from cars to planes to

medical devices. Formal verification is an approach that uses mathematical techniques

to confirm the correctness of a computerised system during its design phase. Given a

model of a design, some description of the environment where the system will be executed

and specifications of correctness properties that are to be satisfied by the system, formal

verification enables us to ensure the absence of errors. In addition to this, it often allows

us to detect scenarios that could invalidate the specifications. In contrast to testing, an

alternative non-exhaustive approach to check correctness of a system, formal verification

is expensive in terms of computational resources and this can be a potential bottleneck.

In the early stages, most research in formal verification focused on developing tech-

niques for analysing qualitative properties of critical systems, for example, whether a mes-

sage is eventually delivered, or a certain pair of parallel process never violates a mutual

exclusion property. However, systems with probabilistic behaviour and real-time delays

requires analysis of quantitative properties. The following properties: “the probability of

an airbag failing to deploy within 0.01s” or “the expected power usage of a sensor network
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over 1 hour” are examples of quantitative properties. Quantitative verification is a formal

technique that generalises formal verification and examines correctness of quantitative

properties of a complex system.

The term model checking [17] refers to a formal verification technique that automati-

cally verifies whether a finite state model of a system satisfies its specifications, which are

typically expressed in temporal logic. In contrast to traditional techniques such as sim-

ulation and testing, this technique exhaustively explores through the whole state space.

This approach has been successfully applied in industry to benefit in the verification of

various complex designs. For example, Clarke et al. have constructed an exact model

of the cache coherence protocol, which is described in the IEEE Futurebus1 Standard

896.1-1991, in the SMV input language [69] and concluded that the resulting transition

system satisfied a formal specification of cache coherence [15]. In addition to this, they

have identified a number of possible errors and ambiguities that had not been detected by

the informal techniques which were applied before to validate the protocol. This was the

first time that formal methods were used to find non-trivial errors in a proposed IEEE

standard.

Probabilistic model checking is a quantitative verification technique and a generali-

sation of model checking that builds a probabilistic model and analyses it based on the

formally specified properties. In this formal method, specifications of complex systems

are expressed in quantitative extensions of temporal logic and the systems are modelled as

finite state probabilistic models such as Markov chains and Markov decision process. The

use of temporal logic gives formal and unambiguous definitions of properties to be veri-

fied against the model. This approach allows a user to verify if a finite state probabilistic

model satisfies a given specification. A probabilistic model checker is a tool that allows a

user to query such models and provides answers or counterexamples to the given queries.

The two most widely used probabilistic model checkers are PRISM [59] and MRMC [56].
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Probabilistic model checking has been applied in various domains such as communi-

cation and security protocols, biological modelling and so on. For example, probabilistic

model checking was used as part of a failure analysis for a car airbag system in [1]. The

analysis discovered that certain specification were violated in the one-processor variant

of the system. Moreover, the use of counterexamples revealed the critical aspect of this

violation was the failure of the micro-processor.

Overall, probabilistic model checking has proven to be a powerful formal verification

method. Nevertheless, it requires exhaustive state space exploration of a given system,

where the state space may increase exponentially along with the complexity of the system.

As a consequence, these verification techniques suffer from the so-called state space explo-

sion problem. In the context of model checking, many researchers [71, 10, 68, 29, 30, 80,

55, 62] have developed various model reduction techniques to combat this problem. Some

examples of model reduction techniques are symmetry reduction, abstraction refinement,

bisimulation equivalences and partial order reduction.

In this thesis, we propose two novel model reduction techniques which aim to tackle

the state space explosion problem. In particular, we focus on quantitative properties,

which impose bounds on either the time or cost needed for some event. Another goal

is to avoid the explicit construction of the full state space of the model, which can be a

bottleneck for some other model reduction approaches.

We first present a model reduction technique for verifying finite-horizon properties

on DTMCs. We have formalised the notion of finite-horizon bisimulation minimisation

and clarified the subset of probabilistic computation tree logic that it preserves. The

motivation of this technique is to perform more aggressive reduction of the model by re-

stricting the expensive iterations of the minimisation process. We have implemented both

a partition-refinement minimisation algorithm and an on-the-fly approach, implemented

in both a symbolic (based on satisfiability modulo theories) and explicit-state manner.
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We also present an inductive model reduction technique for verifying reachability prop-

erties on linearly inductive DTMCs, a class of models whose state space grows linearly

with respect to a parameter. We introduce methods to automatically detect and extract

such models from a high-level modelling description, in our case, the PRISM modelling

language and give techniques for model checking the reduced model by building and solv-

ing a set of recurrence relations. The result is a function which can be used to verify

the model for any value of the parameter. This approach is extended to verify step-

bounded and cost-bounded reachability properties on normal DTMCs, which reduces to

the problem of verifying linearly inductive DTMCs.

We have implemented both of the two model reduction techniques in the PRISM model

checker. We demonstrate the effectiveness of our approaches by applying them to several

benchmark models. We show that both methods can provide significant reductions in

model size and are sometimes also able to outperform the existing implementations of

probabilistic verification in PRISM.

1.1 Publications

The finite-horizon bisimulation approach, presented in Chapter 4, has been published as a

jointly-authored paper [50]. A paper describing the inductive model reduction technique

presented in Chapter 5 is currently in preparation.

1.2 Thesis outline

The thesis is structured as follows. In Chapter 2, we introduce the relevant background

material that is required to understand the work presented in this thesis. This includes

details of DTMCs, PCTL, the computation of probabilistic reachability, probabilistic

bisimulation and, fundamental definitions of recurrence relations and generating func-

tions. Chapter 3 provides a literature review of closely related work and discusses the
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difference between our work, presented in this thesis, and the existing related work. In

Chapter 4, we present a finite-horizon bisimulation minimisation technique for DTMCs,

which preserves a bounded fragment of PCTL. In Chapter 5, we introduce another model

reduction technique that reduces linearly inductive models with respect to a parame-

ter. Finally, we summarise all the work presented in this thesis and point out possible

extensions of the current work as future directions in Chapter 6.
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CHAPTER 2

Background Material

In this chapter, we present the relevant background material for this thesis. In Sec-

tion 2.1 and 2.2, we present the formal definitions of discrete-time Markov chains and

the probabilistic computation tree logic. We explain the underlying computation for the

model checking of reachability properties in Section 2.3. Section 2.4 presents the formal

definitions relevant to probabilistic bisimulation. Finally, Section 2.6 and Section 2.7

presents the formal definitions of relevant recurrence relations and generating functions

for Chapter 5.

2.1 Discrete-time Markov Chains

A discrete-time Markov chain (DTMC) can be thought of as a state transition system

where transitions between states are annotated with probabilities.

Definition 2.1.1 (DTMC) A DTMC is a tuple D = (S,Sinit ,P,AP ,L), where:

• S is a finite set of states and Sinit ⊆ S is a set of initial states;

• P : S × S → [0, 1] is a transition probability matrix, where, for all states s ∈ S, we

have ∑s′∈S P(s, s′) = 1;
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• AP is a set of atomic propositions and L : S → 2AP is a labelling function giving

the set of propositions from AP that are true in each state.

For each pair s, s′ of states, P(s, s′) represents the probability of going from s to s′. If there

is no outgoing transition from si to sj, P(si, sj) = 0. If P(s, s′) > 0, then s is a predecessor

of s′ and s′ is a successor of s. A state s ∈ S is called absorbing when P(s, s) = 1. For a

state s and set C ⊆ S, we will often use the notation P(s, C) := ∑
s′∈C P(s, s′).

A path σ of a DTMC D is a finite or infinite sequence of states σ = s0s1s2 . . . such

that ∀i > 0, si ∈ S and P(si, si+1) > 0, where s0 ∈ Sinit . The ith state of the path σ is

denoted by σ[i]. We let PathD(s) denote the set of infinite paths of D that begin in a state

s. To reason formally about the behaviour of a DTMC, we define a probability measure

Prs over the set of infinite paths PathD(s) [57]. We usually consider the behaviour from

some initial state s ∈ Sinit of D.

DTMCs can also be augmented with cost structures, which attach non-negative costs

to transitions [64]. In this thesis, we assume that these costs are always integers. Formally,

a cost structure is a function C : S × S → N, where C(s, s′) > 0 implies P(s, s′) > 0.

Formally, for a DTMC D = (S,Sinit ,P,AP ,L), a reward structure is defined as a pair

(%, ι), where they represent state and transition rewards, respectively. The state rewards

are assigned to states by using the reward function % : S → R>0, which is a vector. The

state reward %(s) is the reward received when a DTMC is in the state s for one time

step. Meanwhile, the transition rewards are assigned to transitions by using the rewards

function ι : S × S → R>0, which is a matrix. The transition reward ι(s, s′) is the reward

collected when a transition occurs between states s and s′.

2.2 Probabilistic Computation Tree Logic

Properties of probabilistic models can be expressed using Probabilistic Computation Tree

Logic (PCTL) [43] which extends Computation Tree Logic (CTL) with time and prob-
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abilities. In PCTL, state formulae φ are interpreted over states of a DTMC and path

formulae ψ are interpreted over paths.

Definition 2.2.1 (PCTL) The syntax of PCTL is as follows:

φ ::= true
∣∣∣ a ∣∣∣ ¬φ ∣∣∣ φ ∧ φ ∣∣∣ P./p[ψ ]

ψ ::= φ1 U6k φ2

where a is an atomic proposition, ./∈{<,6,>, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.

The main operator in PCTL, in addition to those that are standard from propositional

logic, is the probabilistic operator P./p[ψ], which means that the probability measure of

all the paths that satisfy ψ is within the bound ./ p. For path formulae ψ, we allow the

(bounded) until operator φ1 U6k φ2. If φ2 becomes true within k time steps and φ1 is true

until that point, then φ1 U6k φ2 is true. In the case where k equals ∞, the bounded until

operator becomes the unbounded until operator and is denoted by U. For simplicity of

presentation, in this paper, we omit the (Xφ) operator, but this could easily be added.

Definition 2.2.2 (PCTL semantics) Let D = (S,Sinit ,P,AP ,L) be a DTMC. The

satisfaction relation �D for PCTL formulae on D is defined by:

• s �D true ∀s ∈ S

• s �D a iff a ∈ L(s)

• s �D ¬φ iff s 2D φ

• s �D φ1 ∧ φ2 iff s �D φ1 and s �D φ2

• s �D P./p[ψ] iff Prs{σ ∈ PathD(s) | σ �D ψ} ./ p

• σ �D φ1 U6k φ2 iff ∃i ∈ N.(i 6 k ∧ σ[i] �D φ2 ∧ (∀j.0 6 j < i.σ[j] �D φ1))

9



For example, a PCTL formula P<0.01[¬fail1 U6k fail2] can be interpreted as the probability

of type 2 failure occurring within k time-steps, given that the type 1 failure does not

occur until type 2 failure has taken place, is less than 0.01. Common derived operators

are Fφ ≡ true Uφ, which means that φ eventually becomes true, and F6k φ ≡ true U6k φ,

which means that φ becomes true within k steps.

The reward-based properties of DTMC can be expressed by extending the logic PCTL

with additional operators [63].

R./r[C6k] | R./r[I=k] | R./r[Fφ] | R./r[S]

where r ∈ R>0, k ∈ N, ./ holds the same definition as before and φ is a PCTL formula.

The four reward-based operators given above respectively refer to the reward cumulated

over k time steps, the state reward at time instant k, the reward cumulated before a state

satisfying φ and the long-run (steady-state) rate of reward accumulation. However, in this

thesis, we will make use of cost-bounded properties of the form P./p[F6c φ], which state

that the probability of reaching a state satisfying φ and whilst accumulating a cost of at

most c satisfies ./ p. Logics and model checking algorithms for these types of properties

can be found in [3].

2.3 Probabilistic Reachability

Probabilistic reachability is the most fundamental property considered for probabilistic

models, and is the main computational task required to perform PCTL model checking.

In particular, we need to compute reachability probabilities, i.e. the probability, from some

state s of DTMC D, of reaching a set of states target ⊆ S, or the step-bounded reachability

probabilities, i.e. the probability of reaching target within k steps.

For the former, reachability probabilities are computed as follows. We first divide all
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states into three disjoint sets: Syes,Sno,S?. The set Syes represents all the states that

has the probability value equal to one; this includes all s ∈ target. The set Sno contains

all the states that cannot reach any s ∈ target. The set S? represents all the states

s ∈ S \Syes∪Sno. The graph traversal algorithm presented in [38] can be used to identify

the sets Syes and Sno. The reachability probability for set S? can be computed by solving

the linear equation system in variables xs, where s ∈ S.

xs =



1 if s ∈ Syes

0 if s ∈ Sno

∑
s′∈S

P(s, s′) · xs′ if s ∈ S?

For the case of step-bounded reachability probabilities, we can compute the probability

for k steps as the value xk
s inductively:

xk
s =



1 if s ∈ target

0 if s 6∈ target and k = 0
∑

s′∈S
P(s, s′) · xk−1

s′ otherwise

2.4 Probabilistic Bisimulation

Larsen and Skou [67] defined (strong) probabilistic bisimulation for discrete probabilistic

transition systems, which is an equivalence relation used to identify states with identical

labellings and (probabilistic) step-wise behaviour.

Definition 2.4.1 (Probabilistic bisimulation) Let D = (S,Sinit ,P,AP ,L) be a DTMC

and R an equivalence relation on S. Then R is a (strong) probabilistic bisimulation on
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D if, for (s1, s2) ∈ R:

(i) L(s1) = L(s2) and (ii) for all C ∈ S/R : P(s1, C) = P(s2, C)

where S/R denotes the set of equivalence classes of set S by relation R. States s1, s2 are

bisimilar if there exists a bisimulation on D containing (s1, s2).

Two states that are probabilistically bisimilar will satisfy the same properties, includ-

ing both infinite-horizon (long-run) and finite-horizon (transient) properties. Aziz et al. [5]

proved that any property in the temporal logic PCTL is also preserved in this manner.

Thanks to these results, the analysis of the original Markov chain, such as probabilistic

model checking of PCTL, can be equivalently performed on the quotient Markov chain,

in which equivalence classes of bisimilar states are lumped together into a single state.

Usually, we are interested in the coarsest possible probabilistic bisimulation for a

DTMC D (or, in other words, the union of all possible bisimulation relations). We denote

the coarsest possible probabilistic bisimulation by ∼. The quotient model D/∼ derived

using this relation is defined as follows.

Definition 2.4.2 (Quotient DTMC) Given DTMC D = (S,Sinit ,P,AP ,L), the quo-

tient DTMC is defined as D/∼ = (S ′,S ′init ,P′,AP ,L′) where:

• S ′ = S/∼ = {[s]∼ | s ∈ S}

• S ′init = {[s]∼ | s ∈ Sinit}

• P′([s]∼, [s′]∼) = P(s, [s′]∼)

• L′([s]∼) = L(s)

and [s]∼ denotes the unique equivalence class of relation ∼ containing s.
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2.5 The PRISM Modelling language

The PRISM modelling language is a simple, state-based language based on the Reactive

Modules formalism of Alur and Henzinger [1]. In this section, we briefly explain the

relevant components of the language using a simple PRISM model description. Details

about this language can be found in [25].

The core components of the PRISM language are modules and variables. A variable

can either be boolean or integer and can be defined locally or globally. A PRISM model

is made up of one or more modules and they can interact with each other. A module

contains a number of variables. These variables are local to the module and their values

depend on the state of the module at any given time.

The behaviour of each module is described by a set of commands. A command takes

the form:

[] g → p1 : u1 + ...+ pn : un;

The guard g is a predicate over all the variables in the model . An update ui describes

a transition which the module can make if the guard is satisfied. The expression pi is

used to attach the probabilities to their corresponding transitions. A simple DTMC model

described using the PRISM language is shown in Figure 2.1. This model includes only one

module called example. In this model, N is defined as a global integer constant whereas

the variable x is defined as a local integer. The upper bound of the variable x is defined

using N . The command shown in line 7 can be interpreted as follows: the model is allowed

to make two different transitions when the value of the variable x is less than (N − 1).

The first transition of this command is represented by the update that increments the x

by one with the probability of 0.3. The second update can be interpreted in a similar

way.
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1 dtmc
2
3 const int N ;
4
5 module example
6 x : [0..N ];
7 [] x < N − 1 → 0.3 : (x ′=x + 1) + 0.7 : (x ′=x + 2);
8 [] x = N → (x ′=0);
9 endmodule

Figure 2.1: The PRISM model description with single module

2.6 Recurrence relations

The nature of a recurrence relation can be classified based on the following properties:

order of the relation, homogeneous or non-homogeneous, linear or non-linear and constant

coefficients or not. In relation to Chapter 5, we are only interested in the first-order linear

recurrence relations with constant coefficients, which can be either homogeneous or non-

homogeneous. We formally define the relevant recurrence relations below.

Definition 2.6.1 (Linear Recurrence Relation) A sequence an (for n > 0) satisfies

a linear recurrence relations of order k with coefficients c1(n), c2(n), · · · , ck(n) if

an = c1an−1 + c2an−2 + · · ·+ ckan−k + α(n), ck 6= 0, n > k

where α(n) is the particularity function of n. This linear recurrence relation is called

homogenous when α(n) = 0 for all n > k and said to have constant coefficients when

c1(n), c2(n), · · · , ck(n) are constants.

Definition 2.6.2 (Linear Homogeneous Recurrence Relation) Homogenous linear

recurrence relations of order k with coefficients can also be written in the following form,

c0an + c1an−1 + c2an−2 + · · ·+ ckan−k = 0, n > k
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where c0 6= 0 and ck 6= 0. The characteristic equation, which is solved to find a matrix’s

eigenvalues, of the corresponding recurrence relation is a polynomial equation of the form

c0a
k + c1a

k−1 + · · ·+ ck−1a+ ck = 0

where the polynomial on the left hand side is called the characteristic polynomial. The

solutions of this characteristic equation are called the characteristic roots of the respective

recurrence relation.

2.7 Generating Functions

Generating functions are very useful as they transform the problems of sequences into

problems of functions. These generating functions can be used to solve a large class of

recurrence relations as there is a relationship between the denominator of a generating

function and a recurrence relation which define the same series. Any infinite sequence

a0, a1, · · · can be encoded as a formal infinite power series

a0x
0 + a1x+ a2x

2 + · · ·

where the elements of the sequence are treated as the coefficients of a series expansion.

The sum of this infinite series is called the generating function. There are many types of

generating functions; we are interested in ordinary generating functions. The definition

of an ordinary generating function is given below.

Definition 2.7.1 ((Ordinary) Generating Function) The ordinary function of a se-

quence an is given in the form of

A(x) =
∞∑

n=0
anx

n
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where the respective sequence is treated as the coefficients of the formal power series called

Maclaurin series [74].
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CHAPTER 3

Review of Related Work

This chapter sets the scene for the subsequent chapters by presenting a literature review

of the closely related work to this thesis. We start with mentioning about the model

reduction techniques that are widely used in the context of model checking. There-

after, we review the so called “bisimulation minimisation” technique in detail for both

the non-probabilistic and probabilistic settings in Section 3.1. We also review the other

relevant model reduction techniques in Section 3.2. Afterwards, the work closely related

to parametric model checking is discussed briefly with respect to Chapter 5. Finally, we

summarise the whole literature review with respect to this thesis.

The state space explosion problem [79], which refers to the size of a state space of a

system growing exponentially in the number of its processes and variables, has drawn the

attention of many researchers in the field of model checking. As a result of this, numerous

novel model reduction algorithms have been introduced to mitigate the impact of this

problem over the past years. Among them, bisimulation minimisation [29, 52], abstraction

refinement[16, 54] and partial-order reduction [2] are three most widely used approaches.

All of these algorithms have different characteristics. For example, the resulting reduced

model of some algorithms preserves all the properties of the original model whereas others
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lose some information irrelevant to accomplish the goal of model checking [9].

This thesis considers the work that revolves around the bisimulation minimisation

technique as the closely relevant literature to Chapter 4. Nevertheless, the literature

about the approximate bisimulation and abstraction refinement are still connected to this

chapter as the ultimate goal of them is also alleviating the impact of the state space

explosion problem. Therefore, we will review the literature about the bisimulation min-

imisation in depth while the literature of the other two concepts is briefly reviewed in the

following sections.

3.1 Bisimulation Minimisation

A labelled transition system (LTS) consists of a collection of states and a collection of

transitions between them [53]. In the context of model checking, the notion of bisimulation

is an equivalence relation between states in a LTS. States in an LTS are equivalent under

bisimulation when the atomic propositions of interest and the transitions to other classes

of equivalent states are the same. In the process of bisimulation minimisation, equivalent

states are merged, i.e. replaced by a single state that exhibits the same behaviour, and

the coarsest model is obtained at the end. The notion of bisimulation was initially applied

only to non-probabilistic systems. Later, this notion was adapted to apply to probabilistic

systems as well. Thus, we will review the literature with regards to non-probabilistic

systems in the upcoming subsection which will be immediately followed by the literature

of bisimulation for probabilistic systems.

3.1.1 Non-Probabilistic Bisimulation

The notion of bisimulation was introduced by Park [73] and Milner [70] in the context of

concurrency theory. Later, Kanellakis and Smolka have successfully used this notion of

bisimulation to combat the so called state space explosion problem [51]. The computation
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of bisimulation minimisation can be processed using two different strategies. One is a

positive strategy in which the process starts with the finest partition and gradually the

quotient model is constructed by merging bisimilar classes. Another is a negative strategy

in which the processes starts with the coarsest partition and step by step it splits classes

until the partition becomes stable, i.e when there are no further possible refinements. In

[46], Hopcroft has proposed an algorithm for minimising the number of states in a finite

automaton and also for determining the equivalence of two automata. This algorithm

uses the negative strategy to obtain the quotient model. The time and space complexity

of the presented algorithm in [46] is bounded by respectively O(n log n) and O(n) where

n is the number of states.

Later, Kanellakis and Smolka have clearly drawn the boundary between the partition

problem and the state space reduction of a finite automaton based on the difference of

having a set that contains only states and having a set with states where each of them has

many transitions [51]. Henceforth, they have generalised Hopcroft’s work to develop an

efficient partition refinement algorithm with time complexity O(mn) for minimising the

state space of a deterministic finite automaton. In this context, the number of observable

state processes and the transitions of each state are denoted as n and m, respectively.

The underlying idea of this algorithm is to iterate the splitting process on the initial

partition using a splitter with respect to certain actions until there is no further possible

refinement in the current partition. Paige et al. [72] have also studied a variant of the

coarsest partition problem which was addressed in [46]. As a result of this study, they

have successfully presented a new algorithm to solve this problem in O(n) space and time.

In [51], Kanellakis and Smolka have also conjectured that there exists an algorithm

that reduces the time complexity of the partition refinement algorithm from O(mn) to

O(m log n). Paige and Tarjan have proposed an algorithm in [71], that has further im-

proved the time bounds of [51] and yielded a time complexity of O(m log(n) + n) for

19



strong equivalence classes, i.e. the classes that contain states with same transitions to

any other equivalence classes. This algorithm refines the larger equivalence classes into

smaller classes, i.e. starting with an initial partition of set of states and refines it until no

further refinement is possible.

Fernandez [33] has established a relationship between bisimulation equivalence and

the relational coarsest partition problem which was solved by Paige and Tarjan in [71].

The process of identifying a suitable coarsest partition for a given initial partition and

binary relation is considered to be a challenging task. Fernandez has stated that com-

puting bisimulation equivalence can be seen either as an instance or a generalisation of

this problem. He has adapted the algorithm presented in [71] to come up with a more

efficient algorithm to minimise the labelled transition systems modulo bisimulation equiv-

alence. Similarly, many other researchers [32, 10, 68, 29] have adapted and optimised the

algorithm proposed in [71] that improves the solution to the relational coarsest partition

problem.

A state s is reachable when P(s0, s) > 0, where s0 ∈ Sinit . A block, which is a set of

states,is reachable when it contains at least one reachable state. Reachable blocks may

also contain unreachable states. A block B1 is stable with respect to block B2 iff either all

states in B1 have transitions to states in B2 or no states in B1 has a transition to a state

in B2. In the case when B1 is not stable with respect to B2, B2 is called a splitter of B1.

The bisimulation minimisation algorithm presented by Paige and Tarjan has stabilised

both reachable and unreachable blocks. Afterwards, Bouajjani et al. [10] have improved

it by choosing only reachable blocks during each iteration for stabilizing. Nevertheless,

this still could stabilize an unreachable block that was separated from the reachable block

being processed in the respective iteration.

Later, this problem was addressed by Lee and Yannakakis [68], who have completely

avoided stabilising the unreachable blocks. In [36], Fisler and Vardi have studied the
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three bisimulation minimization algorithms presented in [71, 10, 68] and created a novel

on-the-fly model checker (constructs the state space during the exploration) for invariant

properties based on these algorithms. Later, they have compared their on the fly model

checker with a traditional model checker that leveraged a backward reachability approach.

As a result of this study, they have established close correlations between the set of

states computed during the minimisation and those computed during invariant property

verification through backward reachability. This correlation clearly shows that in the

context of testing invariant properties minimisation and backward reachability are similar.

In the context of non-probabilistic model checking, Fisler and Vardi have proven that

the cost of bisimulation outweighs the model checking through comparing the minimum

number of operations of various kinds and an experimental analysis on a suite of designs.

3.1.2 Probabilistic Bisimulation

The notion of bisimulation for discrete probabilistic transition systems was initially defined

by Larsen and Skou [67]. Probabilistic bisimulation is an equivalence relation where any

two related states have the same probability of making a transition to any equivalence class

of states. In this case, the term “minimisation” is also referred to either as “lumping”

or “aggregation”. Aziz et al. [5] have proved that the logic PCTL is expressive with

respect to probabilistic bisimulation equivalence on Markov chains by developing a notion

of bisimulation for Markov processes.

In [8], Baier et al. have presented an algorithm for bisimulation equivalence in

probabilistic labelled transitions systems. This algorithm has runtime complexity of

O(mn(logm + log n)) and is considered to be efficient enough to be used in verifica-

tion tools. By using this algorithm, verifications tools do not have to analyse the whole

system, instead they analyse only the quotient state space of the respective system. In

contrast to non-probabilistic setting, bisimulation minimisation may help probabilistic
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model checking to cope more with the state space explosion problem.

Later, Cattani and Segala [12] have defined a splitter for both weak and strong prob-

abilistic bisimulation relations based on [71], where weak bisimulation is a bisimulation

with possibly unobservable actions interspersed. Although the authors have obtained a

polynomial time algorithm for strong probabilistic bisimulation, they only managed to

produce a exponential time algorithm for the weak probabilistic bisimulation (for more

detail see [7]).

However, both Baier et al. [8] and, Cattani and Segala [12] could not achieve an efficient

algorithm as Paige and Tarjan have attained in non-probabilistic bisimulation. Derisavi

et al. [29] have proved that the optimal lumping quotient of a finite Markov chain can be

constructed in O(m log n) time by using statically optimal trees (e.g., splay trees [75]), for

n state observable processes and m transitions. Like any other algorithm, this one is also

based on the splitting technique of Paige and Tarjan to compute bisimilarity of labelled

transition systems. Their research yielded that using the other balanced binary search

trees result in the worst case running time of the algorithm, which is O(m log2 n). On the

other hand, when they used splay trees, they have managed to take the O(log n) factor

out of the time complexity from the previously obtained results with help of the static

optimality property of splay trees. Bisimulation minimisation techniques can be grouped

into two types. They are:

1) state-level minimisation

2) model-level minimisation

State level lumping technique exploits the lumping properties of the given model and

generates the the smallest quotient model (e.g. [29],[80]). On the other hand, model level

lumping technique identifies the necessary lumping properties by analysing the higher

level formalism and constructs the quotient model directly instead of building the original
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model and performing the lumping process on it (e.g. [62]). Unfortunately, this technique

cannot always find the smallest possible quotient model because this is limited only to

the properties that can be identified from the given model description.

Derisavi has implemented two variants of the state level lumping algorithm; one of

them uses splay trees while the other one uses red-black trees to represent sub block

trees. Although the splay tree variant is proven to be theoretically faster [29], the results

of the experiments in [28] show that, in practice and for virtually all cases, the red-

black tree variant is 10% faster comparing to the splay tree variant. The state level

lumping algorithm presented in [29] with O(m log n) time complexity is the fastest known

algorithm in the context of probabilistic setting. They have also proved a lower bound

of O(m + n log n) on the running time of any state level lumping algorithm. There is a

noticeable gap between these two time complexities.

Derisavi’s algorithm consists of three general phases. During the first phase, the

necessary variables for the bisimulation process will be initialised. Then as a second

(main) phase of the algorithm, the refinement of the original partition will take place to

produce the coarsest ordinary lumping partition. Finally, the quotient Markov chain will

be constructed from the coarsest partition. These three general phases can be reused to

construct a new algorithm to perform bisimulation minimisation on probabilistic models.

The algorithm presented in [80] also uses these general phases to achieve the goal of

bisimulation minimisation.

Derisavi et al. have also conjectured that the time complexity O(mlog(n)) could be

achieved using a simpler solution than splay trees. In other words, the proposed algorithm

for the Markov chain lumping perhaps needs an efficient sorting algorithm for weights. In

[80], Valmari and Franceschinis have presented an algorithm that sorts the weights with a

combination of so called possible majority algorithm and any O(k log k) sorting algorithm,

where k is the number of items to be sorted. Also they have pointed out an essential issue
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in the description of the algorithm presented in [29], i.e. if a block is used as a splitter,

and then itself split into sub blocks, then it is enough to use all of them as a potential

splitter except for one (the largest block will not be used). In the case that the main block

is not a splitter then every resulting block must be used as a splitter. The MRMC model

checker [56] implements the time-optimal partition refinement algorithm presented in [29].

In this implementation, they have replaced the splay tree with a heapsort data structure

which has approximately the same performance as the splay tree implementation.

Bisimulation can be performed in two different perspectives, which are forward and

backward stochastic bisimulation. Forward stochastic bisimulation determines the equiv-

alence of states by identifying the relation between their outgoing transitions. But back-

wards stochastic bisimulation determines the equivalence between these states by looking

at the relations between their incoming transitions. The benefit of the latter over forward

stochastic bisimulation is: states that reside under an equivalence class have an equal

probability, for both the transient and steady-state distributions and for a certain con-

dition on the initial distribution of the concrete system. Thus, both the transient and

steady-state probabilities for the concrete system can be computed from the backward

stochastic bisimulation quotient. Sproston and Donatelli [77] have presented a study of

backward stochastic bisimulation in the context of model checking for continuous-time

Markov chains (CTMC) against continuous stochastic logic properties. In this study, it is

proven that backward stochastic bisimulation can outperform forward stochastic bisimu-

lation. The property that they have used to reduce the state space of the concrete system

is that the states within a equivalence class either should satisfy a temporal logic formula

or not. Therefore, it enables to reason at the level of equivalence classes rather than in-

dividual states, since these equivalence classes allows to determine the set of states which

satisfy a particular formulas.

All of these bisimulation minimisation algorithms require the exploration of the whole
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state space, which is a stumbling block in this approach. However, in [25] Dehnert et al.

have introduced a completely different technique which is directly extracting the bisim-

ulation quotient from a high-level description using satisfiability modulo theories (SMT)

solvers [20, 22]. The main focus of this approach is applying the partition refinement

bisimulation minimisation on a probabilistic system, which is described using the PRISM

language [59] that consists of guarded commands, in a truly symbolic way while avoiding

the generation of whole state space.

3.2 Other Model Reduction Techniques

In the probabilistic context, the notion of bisimulation can be too restrictive and sensitive

when considering processes with approximately identical behaviour, i.e. processes that

differ only by a small value ε. It is well-known that the probabilities computed for

probabilistic models are often approximate estimations from experiments. Thus, this

notion is not always robust in the case of probabilistic models. A small perturbation in

the estimation of probabilities can end up resulting two bisimilar states into non-bisimilar

states. Thus, the notion of equivalence for stochastic processes is found to be sometimes

not suitable to be used in practice. In [39], Giacalone et al. have pointed out that the

notion of distance between probabilistic processes is more suitable in practice comparing

to the notion of equivalence. Thus, the study of the notion of approximate bisimulation

has drawn attention in the probabilistic context.

Dean et al. have addressed this problem for the related model of Markov Decision

Process (MDP) by introducing a property of state space partitions which is called ε-

homogeneity [23]. An ε-homogeneous partition comprises states such that their behaviours

are approximately similar under all or some subset of policies. In other words, the states

that reside in the same block can have transitions to other blocks with different proba-

bilities, where the difference in probabilities should be less than or equal to ε. Generally
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ε-homogeneous partitions are smaller and sometimes much smaller than the actual small-

est homogeneous partition. The algorithm presented in [23] allows us to reduce a larger

factored MDP into a possibly much smaller “bounded parameter” MDP (it is a family of

traditional MDPs defined by specifying upper and lower bounds on the transition prob-

abilities and rewards) with the help of homogeneous partitions and provides methods to

select actions from the “bounded parameter” MDPs, where these methods enable the anal-

ysis of the concrete MDPs. Later, Ferns et al. [34] have presented metrics for measuring

the similarity of states in a finite MDP, based on the notion of bisimulation for MDPs,

with the main focus of addressing the same problem. These metrics allow to aggregate

states in the same way they are aggregated in an equivalence relation. In this approach,

the states will be clustered together when they are in the same α-neighbourhood, where

α is a tolerance parameter.

Chen et al. [14] have proved that the probabilistic bisimilarity pseudometrics can

be computed exactly in polynomial time for labelled Markov chains using the ellipsoid

algorithm, where they consider pseudometrics as a solution of a linear program. However,

the ellipsoid algorithm is considered to be inefficient in practice. In [6], Bacci et al. have

proposed an algorithm for exact computation of bisimilarity distances between DTMCs

which was introduced in [31]. In this approach, the distance between given states is

computed exactly and the exhaustive state space exploration is avoided. This on-the-fly

algorithm addresses the problem in [14] by using a greedy strategy. Successively, it refines

the over-approximations of the target distances, so that it explores the state space further

only when the current approximations are improved.

Abstraction of a concrete model intentionally leaves out some details that are not

relevant to the objective of the abstraction, i.e. to the property that is to be verified. Re-

finement is a process that refines an abstraction by adding more detail to it and produces a

new abstraction. A typical abstraction-refinement process works in the following way. As
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a first step, the abstract model of the concrete system will be automatically constructed

based on the chosen partition of the state space. Afterwards, the constructed abstract

model will be checked for the desired property and if the abstract model is error-free then

so is the concrete system. If not, an abstract counter-example, that shows the violation

of the property, will be produced. Finally, it will be checked whether a corresponding

concrete counter-example exists in the original system for the produced abstract counter-

example. If one exists, then an error has been found on the original system. Otherwise,

more detailed descriptions will be added to the previous abstraction since it does not

provide enough information to verify the given property.

The application of abstraction refinement varies for DTMCs and CTMCs. An abstrac-

tion can be obtained for DTMCs by replacing the transition probabilities within a class

where upper and lower bounds serve as respectively upper and lower approximations. In

the case of continuous-time setting, abstraction is performed on a uniform CTMC, where

the uniform CTMC is derived from a general CTMC. During the abstraction, the proba-

bilistic transitions will be replaced by intervals. Hence, the model checking can be reduced

to verify time-bounded reachability probabilities in continous-time MDPs. The semantics

for the abstractions were presented as two-valued semantics [16] and three valued seman-

tics [54]. Recently, a novel abstraction technique based on Erlang’s method of stages

for CTMCs was proposed in [55], improves the work presented in [54] by persevering a

simulation relation on CTMCs.

3.3 Parametric and Incremental Model Checking

In parametric model checking, the model checking process depends on parameters from

the high-level model description (e.g. the PRISM language). The parametric model

checking verifies whether a property holds for different values of the parameters. In [19],

Daws has first proposed a language-theoretic approach to symbolic probabilistic model
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checking of PCTL over DTMCs. This approach is based on the conversion of the DTMC

to a finite automaton (where the alphabet represents the set of strictly positive transition

probabilities), from which a regular expression is derived using the technique called state

elimination [47]. Later, the regular expression is evaluated to a rational function over the

unspecified parameters which defines the probability of reaching the target.

However, Gruber and Johannsen have shown that the conversion of deterministic finite

automata accepting finite languages into regular expressions explodes in size of nΘ(logn),

where n denotes the number of states. In practice, the numerical values are largely

simplified in the process, thus the length of the expression mostly relies on the number of

parameters. In [41], Hahn et al. have provided an improved algorithm that intertwines

the state elimination and the computation of the rational functions. As a result, they have

avoided the computation of regular expressions; thus, managed to stay within the domain

of Markov chains throughout the process. The authors have also presented a strategy that

reduces the state space before the main algorithm by applying bisimulation minimisation

technique. These techniques were implemented in the model checking tools PARAM [40]

and PRISM [59]. A more recent tool, PROPhESY [24] includes further optimisations (e.g.

using decomposition into strongly connected components [49]); henceforth, it outperforms

the state-of-the-art tools.

An approach to efficiently verifying models with repeated structure is incremental

model checking, where model checking is performed many times, e.g. over a range of

model parameter values, but each run of model checking re-uses results from previous

runs. The first incremental algorithm in the context of non-probabilistic systems was

presented in [76]. Later, various other incremental techniques have been proposed, e.g.

[45, 18, 44], in the same context. In probabilistic verification, the transition probabilities

varies due to changes in the real system over time. Thus, the incremental verification

techniques are necessary to improve the efficiency of probabilistic verification.
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In [66], Kwiatkowska et al. have presented efficient incremental techniques for quan-

titative verification of MDPs. These techniques divides the state space into strongly

connected components and performs verification on them individually. If a change occurs

in the transition probabilities, verification is performed only on the affected components

and the old results of the unaffected components are reused. This way the efficiency of

probabilistic verification is significantly improved. Later, the authors have reported fur-

ther improvement on these techniques in [61]. Unlike [66], the techniques presented in

[37] considers the changes at modelling language description level and allows changes in

the model structure.

3.4 Summary

Our work on finite-horizon bisimulation minimisation from Chapter 4 is slightly different

from the techniques that we discussed in the literature. The signature-based bisimulation

approach computes a fingerprint for each state such that states can only be bisimilar if they

have identical fingerprints. Our first partition-refinement algorithm adapts the signature-

based approach, which has been studied in [29, 83]. The SMT-based bisimulation min-

imisation technique proposed in [25] is also relevant which, like our on-the-fly algorithm,

avoids the construction of the full model when minimising. Our SMT-based algorithm has

an additional benefit in that it works on model descriptions with state-dependent proba-

bilities. Other probabilistic verification methods have been developed based on backwards

traversal of a model, for example for probabilistic timed automata [60], but this is for a

different class of models and does not perform minimisation. Della Penna et al. consid-

ered finite-horizon verification of Markov chains [26], but using disk-based methods, not

model reduction.

The techniques in Chapter 5 can be seen as a form of parametric model checking. Most

work on parametric model checking focuses on the case where the underlying graph struc-
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ture of the Markov chains is fixed, and the parameters are used to define the probabilities

attached to the transitions. Most subsequent work in this area, similar to Daws [19], fo-

cuses on the probabilistic reachability problem for DTMCs, as also tackled in Chapter 5.

Following a similar motivation to the techniques we propose in Chapter 5, parametric

model checking has been successfully used to improve the efficiency of probabilistic model

checking in scenarios where it needs to be applied repeatedly with different parameter

values, for example in run-time verification contexts [35]. These methods all assume

that parameters are used only to define transition probabilities, which differs from our

approach in Chapter 5, where parameters control the size of an inductively defined model.

Chapter 5 also considers the case where the parameter represents a time-bound in

a bounded probabilistic reachability query. The parametric model checking techniques

presented in [42, 11, 13] are more relevant as they also work on time-bounded properties,

using either discretisation or iterative division techniques. However, these all work on the

alternative model of CTMCs, where the problem of computing time-bounded reachability

probabilities is very different to the case of DTMCs.

The basic idea behind the methods in Chapter 5 is to exploit the structure of DTMCs

that are defined inductively, and where a fragment of the model is repeated multiple

times. Similar ideas are often used to define infinite-state models, for example quasi-birth

death (QBD) models or matrix-geometric models. Model checking techniques for the

former were proposed in [58], by constructing finite abstractions to solve time-bounded

properties. However, the underlying model is again different (a CTMC) and the approach

is quite varied, based on building abstractions with interval Markov chains, rather than

the recurrence relation approach we defined in Chapter 5. Most relevant to the work

in this thesis is the idea of incremental model construction. The methods proposed in

[37, 78], like our work, look for repeated structure in a model described in the PRISM

modelling language. However, they focus on MDPs, which is a more general model than
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DTMCs, and do not construct a reduced model, like in Chapter 5.
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CHAPTER 4

Finite-Horizon Bisimulation Minimisation

As discussed earlier, a widely used approach to combat the state space explosion problem

is probabilistic bisimulation [67], an equivalence relation over the states of a probabilistic

model which can be used to construct a smaller quotient model that is equivalent to

the original one (in the sense that it preserves key properties of interest to be verified).

Typically, it preserves both infinite-horizon properties, e.g., “the probability of eventually

reaching an error state”, finite-horizon (transient, or time-bounded) properties, e.g. “the

probability of an error occurring within k time-steps”, and, more generally, any property

expressible in an appropriate temporal logic such as PCTL [43]. It has been shown that,

in contrast to non-probabilistic verification, the effort required to perform bisimulation

minimisation can pay off in terms of the total time required for verification [52].

In this chapter, we consider model reduction techniques for finite-horizon properties of

Markov chains. We propose a finite-horizon variant of probabilistic bisimulation, which

preserves stepwise behaviour over a finite number of steps, rather than indefinitely, as

in standard probabilistic bisimulation. This permits a more aggressive model reduction,

but still preserves satisfaction of PCTL formulae of bounded depth (i.e., whose interpre-

tation requires only a bounded exploration of the model). Time-bounded properties are

33



commonly used in probabilistic verification, e.g., for efficiency (“the probability of task

completion within k steps”) or for reliabilty (“the probability of an error occurring within

time k”).

We formalise finite-horizon probabilistic bisimulation, define the subset of PCTL that

it preserves and then give a partition-refinement based algorithm for computing the

coarsest possible finite-horizon bisimulation relation, along with a corresponding quotient

model. The basic algorithm is limited by the fact it requires the full Markov chain to be

constructed before it is minimised, which can be a bottleneck. So, we then develop on-

the-fly approaches, which construct the quotient model directly from a high-level model

description of the Markov chain, based on a backwards traversal of its state space. We

propose two versions: one symbolic, based on SMT solvers, and one explicit-state.

We implemented all algorithms in PRISM and evaluated them on a range of examples.

First, we apply the partition-refinement based approach to some standard benchmarks

to investigate the size of the reduction that can be obtained in a finite-horizon setting.

Then, we apply the on-the-fly approach to a class of problems to which it is particularly

well suited: models with a large number of possible initial configurations, on which we

ask questions such as “from which initial states does the probability of an error occurring

within 10 seconds exceed 0.01?”. We show that on-the-fly finite-horizon bisimulation can

indeed provide significant gains in both verification time and scalability, demonstrated in

each case by outperforming the existing efficient implementations in PRISM.

The remaining sections of this chapter are organised as follows. Section 4.1 outlines

the mathematical definitions of this work. Section 4.2 discusses corresponding minimisa-

tion algorithms and their implementations in depth. Section 4.3 describes the on-the-fly

finite-horizon bisimulation and its various implementations in the PRISM model checker.

Section 4.4 describes the experiments carried out on both conventional and on-the-fly

variants of the finite-horizon bisimulation and presents a discussion based on the results.
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4.1 Finite-Horizon Bisimulation Preliminaries

We now formalise the notion of finite-horizon bisimulation, a step-bounded variant of stan-

dard probabilistic bisimulation for Markov chains [67], which is discussed in Section 2.4.

We fix, from this point on, a DTMC D = (S,Sinit ,P,AP ,L). Intuitively, a k-step finite-

horizon bisimulation, for non-negative integer k, preserves the stepwise behaviour of D

over a finite horizon of k steps. We use the following inductive definition.

Definition 4.1.1 (Finite-horizon bisimulation) A k-step finite-horizon bisimulation,

for k ∈ N>0, is an equivalence relation Rk ⊆ S ×S such that, for all states (s1, s2) ∈ Rk,

the following two conditions are satisfied:

(i) L(s1) = L(s2);

(ii) P(s1, C) = P(s2, C) for each equivalence class C ∈ S/Rk−1,

where Rk−1 is a (k−1)-step finite-horizon bisimulation. A 0-step finite-horizon bisimula-

tion is an equivalence relation R0 satisfying only condition (i) above.

Definition 4.1.2 (Finite-horizon bisimulation equivalent) We say states s1, s2 are

(k-step) finite-horizon bisimulation equivalent ( bisimilar), denoted s1 ∼k s2, if there exists

a k-step finite-horizon bisimulation Rk such that (s1, s2) ∈ Rk.

Two states s1 and s2 satisfying s1 ∼k s2 have the same stepwise behaviour over k steps.

The following proposition gives a connection between the relation ∼k and standard prob-

abilistic bisimulation relation (see 2.4), as well as some simple, but useful properties of

∼k.

Proposition 4.1.1 Let s1, s2 ∈ S be two states. Then:

(a) if s1 ∼k s2, then s1 ∼j s2 for any 0 6 j 6 k.
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(b) if s1 ∼ s2, then s1 ∼k s2 for any k > 0.

(c) if s1 ∼k s2 and s1 → s′1, then s′1 ∼k−1 s
′
2 for some state s′2 such that s2 → s′2.

From a model checking perspective, if s1 ∼k s2, then s1 and s2 satisfy the same PCTL

formulae up to a bounded depth k. We formalise this as follows.

Definition 4.1.3 (Formula depth) The depth of a PCTL formula Φ, denoted d(Φ), is

a value in N ∪ {∞} defined inductively as follows:

• d(true) = d(a) = 0 for atomic proposition a;

• d(¬Φ) = d(Φ);

• d(Φ1 ∧ Φ2) = max(d(Φ1), d(Φ2));

• d(P./p[Φ1 U6j Φ2]) = j + max(d(Φ1)−1, d(Φ2)).

For example, if a and b are atomic propositions, we have

• d(P./p[true U65 a]) = 5,

• d(P./p[true U65 a] ∧ P./p[true U66 a]) = 6

• d(P./p[true U65 P./p[a U63 b]]) = 8

If states s1 and s2 are (k-step) finite-horizon bisimilar, then they satisfy exactly the

same PCTL formulae of depth at most k, which we state formally as follows.

Theorem 4.1.1 Let s1 and s2 be two states such that s1 ∼k s2, and Φ be a PCTL formula

with depth d(Φ) 6 k, then s1 |= Φ if and only if s2 |= Φ.

Proof 4.1.1 We prove the result by induction over the structure (see Definition 2.2.1) of

PCTL formula Φ. Propositional operators are straightforward since s1 and s2 satisfy the
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same atomic propositions, by the definition of ∼k, and, for Φ = ¬Φ1 or Φ = Φ1 ∧ Φ2,

the subformulae Φ1 and Φ2 have depth at most k so, by induction, we can assume that

s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}.

The remaining case to consider is Φ = P./p[Φ1 U6j Φ2]. We know, from Definition 4.1.3,

that the depths d(Φ1) and d(Φ2) of the two subformulae are at most k − j + 1 and k − j.

From the semantics of PCTL, we have that, for any state s:

s |= P./p[ Φ1 U6j Φ2 ] ⇔ Prs(Φ1 U6j Φ2) ./ p

which means it suffices to show that:

Prs1(Φ1 U6j Φ2) = Prs2(Φ1 U6j Φ2) (1)

We in fact show this to be true for any states s1, s2, values j 6 k and PCTL subformulae

Φ1,Φ2 satisfying s1 ∼k s2 and max(d(Φ1)− 1, d(Φ2)) 6 k− j, which we prove inductively

over j. From the model checking algorithm for PCTL [43], we know that, for any state s:

Prs(Φ1 U6j Φ2) =



1 if s |= Φ2

0 if s |= ¬Φ1∧¬Φ2

0 if s |= Φ1∧¬Φ2 and j = 0∑
s′∈S P(s, s′)Prs′(Φ1 U6j−1 Φ2) if s |= Φ1∧¬Φ2 and j > 0.

For the base case j = 0, only the first three cases of the definition above can apply,

and we know that s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}, so we have that Prs1(Φ1 U60 Φ2) =

Prs2(Φ1 U60 Φ2). For the inductive case, where j > 0, we can assume that Prs1(Φ1 U6j−1 Φ2) =

Prs2(Φ1 U6j−1 Φ2), as long as s1 ∼j−1 s2. Considering again the possible cases in the above

definition, the first two follow as for j = 0 and the third cannot apply since j > 0. For

the fourth case, since j > 0, we know there exists a (j−1)-step finite-horizon bisimulation
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Rj−1. Let us further assume an (arbitrary) function rep : S/Rj−1 → S, which selects a

unique representative from each equivalence class of Rj−1. We have:

Prs1(Φ1 U6j Φ2)

= ∑
s′∈S P(s1, s

′)Prs′(Φ1 U6j−1 Φ2) by definition

= ∑
C∈S/∼j−1

∑
s′∈C P(s1, s

′)Prs′(Φ1 U6j−1 Φ2) since ∼j−1 partitions S

= ∑
C∈S/∼j−1 Prrep(C)(Φ1 U6j−1 Φ2)∑s′∈C P(s1, s

′) by induction on j

= ∑
C∈S/∼j−1 Prrep(C)(Φ1 U6j−1 Φ2)P(s1, C)

= ∑
C∈S/∼j−1 Prrep(C)(Φ1 U6j−1 Φ2)P(s2, C) since s1 ∼j s2

= ∑
C∈S/∼j−1 Prrep(C)(Φ1 U6j−1 Φ2)∑s′∈C P(s2, s

′)

= ∑
C∈S/∼j−1

∑
s′∈C P(s2, s

′)Prs′(Φ1 U6j−1 Φ2) since s′ ∼j−1 rep(C)

= ∑
s′∈S P(s2, s

′)Prs′(Φ1 U6j−1 Φ2) since ∼j−1 partitions S

= Prs2(Φ1 U6j Φ2) by definition

which proves (1), as required, and concludes the proof. ut

In a similar fashion to the standard (non-finite-horizon) case, we are typically inter-

ested in the coarsest possible k-step finite-horizon bisimulation relation for a given DTMC

(labelled with atomic propositions) and time horizon k, which we denote by ∼k. We can

also define this as the union of all possible k-step finite-horizon bisimulation relations.

Furthermore, for ∼k (or any other finite-horizon bisimulation relation), we can define a

corresponding quotient DTMC, whose states are formed from the equivalence classes of

∼k, and whose k-step behaviour is identical to the original DTMC D.

This is similar, but not identical, to the process of building the quotient Markov

chain corresponding to a full minimisation (see Definition 2.4.2). We must take care

since, unlike for full bisimulation, given a state B ∈ S/∼k of the quotient model, the

probabilities P(s, B′) of moving to other equivalence classes B′ ∈ S/∼k can be different

for each state s ∈ B (according to the definition of ∼k, probabilities are the same to go to
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Figure 4.1: (a) Example DTMC; (b-c) Finite-horizon quotient DTMCs for k = 0, 1.

states with the same (k−1)-step, not k-step, behaviour). However, when they do differ,

it suffices to pick an arbitrary representative from B. We formalise the quotient DTMC

construction below, and then present some examples.

Definition 4.1.4 (Finite-horizon quotient DTMC) If D = (S,Sinit ,P,AP ,L) is a

DTMC and ∼k is a finite-horizon bisimulation on D, then a quotient DTMC can be

constructed as D/∼k = (S ′,S ′init ,P′,AP ,L′) where:

• S ′ = S/∼k = {[s]∼k
| s ∈ S}

• S ′init = {[s]∼k
| s ∈ Sinit}

• P′(B,B′) = P(rep(B), B′) for any B,B′ ∈ S ′

• L′(B) = L(rep(B)) for any B ∈ S ′,

where rep : S/∼k→ S is an arbitrary function that selects a unique representative from

each equivalence class of ∼k, i.e., B = [rep(B)]∼k
for all B ∈ S ′.

Example 4.1.1 Fig. 4.1 illustrates finite-horizon bisimulation on an example DTMC,

shown in part (a). Fig.s 4.1 (b) and (c) show quotient DTMCs for 0-step and 1-step

finite-horizon bisimulation minimisation, respectively, where quotient state names indicate

their corresponding equivalence class (e.g., B23 corresponds to DTMC states s2 and s3).
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For 2-step minimisation (not shown), blocks B23 and B01 are both split in two, and only

the states s4 and s5 remain bisimilar.

From the above, we see that s2 ∼1 s3, but s2 6∼2 s3. Consider the PCTL for-

mula Φ = P./p[true U6k a], which has depth d(Φ) = k. Satisfaction of Φ is equiva-

lent in states s2 and s3 for k = 1, but not for k = 2. To give another example, for

Φ′ = P>0[P>0.5[true U62 a] U61 a], which has d(Φ′) = 1 + 2 − 1 = 2, we have s3 |= Φ′, but

s2 6|= Φ′.

In constructing the 1-step quotient model (Fig. 4.1 (c)), we used s1 as a representa-

tive of equivalence class B01 = {s0, s1}, which is why there is a transition to B23. We

could equally have used s0, which would yield a different quotient DTMC, but which still

preserves 1-step behaviour.

4.2 Finite-Horizon Bisimulation Minimisation

Bisimulation relations have a variety of uses, but our focus in this thesis is on using them

to minimise a probabilistic model prior to verification, in order to improve the efficiency

and scalability of the analysis. More precisely, we perform finite-horizon bisimulation

minimisation, determining the coarsest possible finite-horizon bisimulation relation∼k, for

a given k, and then constructing the corresponding quotient Markov chain. Theorem 4.1.1

tells us that it is then safe to perform verification on the smaller quotient model instead.

We begin, in this section, by presenting a classical partition-refinement based minimi-

sation algorithm, which is based on an iterative splitting of an initially coarse partition

of the state space until the required probabilistic bisimulation has been identified. In the

next section, we will propose on-the-fly approaches which offer further gains in efficiency

and scalability.
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4.2.1 A Partition-Refinement Based Minimisation Algorithm

The standard approach to partition refinement is to use splitters [71, 29], individual

blocks in the current partition which show that one or more other blocks contain states

that should be split into distinct sub-blocks. An alternative approach is to use a so-

called signature-based method [27]. The basic structure of the algorithm remains the

same, however the approach to splitting differs: rather than using splitters, a signature

corresponding to the current partition is computed at each iteration for each state s.

This signature comprises the probability of moving from s in one step to each block in the

partition. In the next iteration, all states with different signatures are placed in different

blocks.

Because each iteration of the signature-based algorithm considers the one-step be-

haviour of every state in the model, it is relatively straightforward to adapt to finite-

horizon bisimulation minimisation. Algorithm 4.1 shows the finite-horizon minimisation

algorithm MinimiseFiniteHorizon. It takes a DTMC D and the time horizon k as

input. The partition Π is first initialised to group states based on the different combina-

tions of atomic propositions, i.e., states with identical labellings are placed in one block.1

The partition is then repeatedly split, each time by computing the signatures for each

state and splitting accordingly. The loop terminates either when k iterations have been

completed or no further splitting is possible. Finally, the quotient model is constructed,

as described in the previous section.

Correctness. The correctness of MinimiseFiniteHorizon, i.e. that it generates the

coarsest k-step finite-horizon bisimulation, can be argued with direct reference to Defini-

tion 4.1.1. For k = 0, only the initialisation step at the start of the algorithm is needed.

For k > 0 the ith iteration of the loop produces a partition Π which groups precisely the

1In the algorithm, we store the signatures with the partition, so Π is a list of pairs of blocks (state-sets)
and signatures (distributions).
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equivalence classes of ∼i, which are constructed from those of ∼i−1, as in Definition 4.1.1.

It is also clear that we group all equivalent states at each step, yielding the coarsest

relation. If the algorithm terminates early, at step j, then ∼i=∼k for all j 6 i 6 k.

Algorithm 4.1: MinimiseFiniteHorizon
Input: D = (S,Sinit ,P,AP,L), k

1 Π,Π′ := ∅ ; // Initialise partition

2 for A ⊆ AP do
3 BA := {s ∈ S | L(s) = A}
4 if BA 6= ∅ then Π := Π ∪ {({BA}, 〈〉)};

5 i := 1 ; // Splitting loop
6 while i 6 k ∧ Π 6= Π′ do
7 Π′ := Π ; Π := ∅
8 for s ∈ S do
9 Sig := 〈〉 ; // Compute signature

10 for B ∈ Π′ do Sig(B) := 0;
11 for s→ s′ do
12 Bs′ := block of Π′ containing s′
13 Sig(Bs′) := Sig(Bs′) + P(s, s′)

14 Bs := block of Π′ containing s
15 if ∃(B′, Sig) ∈ Π ∧B′ ⊆ Bs then
16 B′ := B′ ∪ {s} ; // New blocks
17 else
18 Π := Π ∪ {({s}, Sig)}

19 i := i+ 1

20 S ′ := ∅ ; S ′init := ∅ ; // Build quotient
21 for (B,Sig) ∈ Π do
22 S ′ := S ′ ∪ {B}
23 if B ∩ Sinit 6= ∅ then S ′init := S ′init ∪ {B};
24 P′(B, ·) := Sig
25 L′(B) := L(s) for any s ∈ B

26 return D′ = (S ′,S ′init ,P′,AP,L′)

4.3 On-the-Fly Finite-Horizon Minimisation

A key limitation of the partition-refinement approach presented in the previous section is

that it takes as input the full DTMC to be minimised, the construction of which can be
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expensive in terms of both time and space. This can remove any potential gains in terms

of scalability that minimisation can provide.

To resolve this, we now propose methods to compute a finite-horizon bisimulation min-

imisation in an on-the-fly fashion, where the minimised model is constructed directly from

a high-level modelling language description of the original model, bypassing construction

of the full, un-reduced DTMC. In our case, the probabilistic models are described using

the modelling language of the PRISM model checker [59], which is based on guarded com-

mands. Our approach works through a backwards traversal of the model, which allows us

to perform bisimulation minimisation on the fly. For simplicity, we focus on preserving

the subclass of PCTL properties comprising a single P operator, more precisely, those of

the form P./p[ b1 U6k b2 ] for atomic propositions b1 and b2. This is the kind of property

most commonly found in practice. The bounded reachability property is a special case of

unbounded reachability property P./p[F b2].

4.3.1 The On-the-Fly Minimisation Algorithm

The basic approach to performing finite-horizon minimisation on the fly is shown as

FiniteHorizonOnTheFly, in Algorithm 4.2. This takes model, which is a descrip-

tion of the DTMC, B1 and B2, the sets of states satisfying b1 and b2, respectively, in

the property P./p[ b1 U6k b2 ], and the time horizon k. The algorithm does not make any

assumptions about how sets of states are represented or manipulated. Below, we will

discuss two separate instantiations of it.

The algorithm is based on a backwards traversal of the model. It uses a separate al-

gorithm FindMergedPredecessors(model, target, restrict), which queries the DTMC

(model) to find all (immediate) predecessors of states in target that are also in restrict

(the restrict set will be used to restrict attention to the set B1 corresponding to the left-

hand side b1 of the until formula). The algorithm also groups the predecessor states in
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Algorithm 4.2: FiniteHorizonOnTheFly
Data: model, B1, B2, k

1 P := {FindMergedPredecessors(model, B2, B1)} ; P ′ := ∅
2 Π := {(B2, 〈〉)}
3 i := 1
4 while P 6= ∅ ∧ i 6 k do
5 (B,D) := pop(P ) ; // block B, (sub)distribution D
6 for (B′, D′) ∈ Π ∧B 6= ∅ do
7 if B′ ∩B 6= ∅ then
8 replace (B′, D′) in Π with (B′ \B), D′) and (B′ ∩B,D′ ∪D)
9 B := B \B′

10 refine all (B′′, D′′) ∈ Π and (B,D) with respect to the split of B′
11 end
12 end
13 if B 6= ∅ then
14 Π := Π ∪ {(B,D)}
15 P ′ := P ′ ∪ {FindMergedPredecessors(model, B, B1)}
16 end
17 if (P = ∅ ∧ P ′ 6= ∅) then
18 P := P ′ ; P ′ := ∅
19 i := i+ 1
20 end
21 end
22 return FiniteHorizonQuotient(Π)

blocks according to the probabilities with which they transition to target and returns these

too. As above, each instantiation of Algorithm 4.2 will use a separate implementation of

the FindMergedPredecessors algorithm as the merging process is different between

explicit and SMT-based approaches.

The main loop of the algorithm iterates backwards through the model: after the ith

iteration, it has found all states that can reach the target set B2 within i steps with

positive probability. The new predecessors for each iteration are stored in a set of blocks

P . A separate set P ′ is used to store predecessors of blocks in P , which will then be

considered in the next iteration.

More precisely, P (and P ′) store, like in Algorithm 4.1, a list of pairs (B,D) where B
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Algorithm 4.3: FiniteHorizonQuotient
Data: Π

1 S ′ := {Bsink}; L′(Bsink) = ∅; S ′init := ∅; P′(Bsink , ·) := 〈Bsink → 1〉;
2 for (B,D) ∈ Π do
3 S ′ := S ′ ∪ {B}
4 if B ∩ Sinit 6= ∅ then S ′init := S ′init ∪ {B};
5 psink = 1−

∑
(B′,D′)∈ΠD(B′)

6 P′(B, ·) := D ∪ 〈Bsink → psink〉
7 L′(B) := L(s) for any s ∈ B
8 end
9 return D′ = (S ′,S ′init ,P′,AP,L′)

is a block (a set of states) and D is a (partial) probability distribution storing probabilities

of outgoing transitions (from B, to other blocks). The set Π, which is used to construct

the partition representing the finite-horizon bisimulation relation, is also stored as a list

of pairs.

Algorithm 4.2 begins by finding all immediate predecessors of states in B2 that are

also in B1 and putting them in P . In each iteration, it takes each block-distribution pair

(B,D) from P one by one: it will add this to the current partition Π. But, before doing

so, it checks whether B overlaps with any existing blocks B′ in Π. If so, B′ is split in

two, and the overlap is removed from B. At this point, the partition Π is refined to take

account of the splitting of block B′. We repeatedly recompute the probabilities associated

with each block in Π and, if these are then different for states within that block, it is also

split.

Each iteration of the main loop finishes when all pairs (B,D) from P have been dealt

with. If i < k, then newly found predecessors P ′ are copied to P and the process is

repeated. If i = k, then the time horizon k has been reached and the finite-horizon

bisimulation has been computed.

Finally, the quotient model is built as shown in Algorithm 4.3. The basic construction

is as in Algorithm 4.1 but, since on-the-fly construction only partially explores the model,
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we need to add an extra sink state to complete the DTMC.

Computing predecessors. One of the main challenges in implementing the on-the-

fly algorithm is determining the predecessors of a given set of states from the high-level

modelling language description. The PRISM language, used here, is based on guarded

commands, for example:

c > 0 → c/K : (c′ = c− 1) + 1− c/K : (c′ = c+ 1);

The meaning is that, when a state satisfies the guard (c > 0), the updates (decrementing

or incrementing variable c) can be executed, each with an associated probability (c/K or

1 − c/K). We assume here a single PRISM module of commands (multiple modules can

be syntactically expanded into a single one [84]).

In the following sections, we describe two approaches to finding predecessors: one

symbolic, which represents blocks (sets of states) as predicates and uses an SMT (satisfia-

bility modulo theories) [21] based implementation; and one explicit-state, which explicitly

enumerates the states in each block.

4.3.2 Symbolic (SMT-based) Minimisation

Our first approach represents state sets (i.e., blocks of the bisimulation partition) sym-

bolically, as predicates over PRISM model variables. If target is a predicate representing

a set of states, their predecessors, reached by applying some guarded command update

update, can be found using the weakest precondition, denoted wp(update, target). A

weakest precondition is an expression which describes the possible valuations of a set of

state variables, when an update is reverted on a target states expression. The resulting

expression simply represents the set of states that are the predecessors of the given target

states expression. More precisely, if the guard of the command is guard, and bounds

represents the lower and upper bounds of all model variables, the following expression
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captures the set of states, if any, that are predecessors:

bounds ∧ guard ∧ wp(update, target)

We determine, for each guarded command update in the model description, whether states

can reach target via that update by checking the satisfiability of the expression above using

an SMT solver. FindMergedPredecessors (see Algorithm 4.4) is used to determine

predecessors in this way. It also restricts attention to states satisfying a further expression

restrict.

The probability attached to an update in a guarded command is in general a state-

dependent expression prob (see the earlier example command) so this must be analysed

when FindMergedPredecessors groups states according to the probability with which

they transition to target. If the SMT query in the algorithm is satisfiable, a valid prob-

ability is also obtained from the corresponding valuation (p′ in Algorithm 4.4). The

conjunction of the expression predecessor and p = prob denotes the set of predecessors

with the same probability. To obtain all such probabilities, the algorithm adds a blocking

expression prob 6= p′ to the query and repeats the process.

SMT-based methods for probabilistic bisimulation minimisation have been developed

previously [25]. One key difference here is that our approach handles transition proba-

bilities expressed as state-dependent expressions, rather than fixed constants, which are

needed for some of the models we later evaluate.

4.3.3 Explicit-State Minimisation

As an alternative to the symbolic approach using SMT, we developed an explicit-state

implementation of finite-horizon minimisation in which the blocks of equivalent states

are represented by explicitly listing the states that comprise them. As in the previous

algorithm, the blocks are refined at each time step such that states residing in the same
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Algorithm 4.4: FindMergedPredecessors (SMT-based)
Data: model, target, restrict

1 P := ∅
2 bounds := variable bounds from model

3 foreach (guard, updates) in model do
4 foreach (prob, update) in updates do
5 predecessor := restrict ∧ bounds ∧ guard ∧wp(update, target)
6 query := predecessor ∧ (p = prob)
7 while query is satisfiable do
8 p′ := value of p in query
9 if (B, 〈target → p′〉) ∈ P for some B then

10 replace (B, 〈target → p′〉) in P with (B ∨ predecessor , 〈target → p′〉)
11 else
12 P := P ∪ {(predecessor , 〈target → p′〉)}
13 end
14 query := query ∧ (prob 6= p′)
15 end
16 end
17 end
18 return P

block have equal transition probabilities to the required blocks. To improve performance

and store states compactly, we hash them based on the valuation of variables that define

them. This is done in such a way that the hash values are bi-directional (one-to-one).

The algorithm explicitly computes the predecessor state for each update and each state

in the set target, the transition probability is then computed for each predecessor state

and these are collected in order to group states into sets. The set restrict is not stored

explicitly, but rather as a symbolic expression which is then evaluated against each state’s

variable values to compute the intersection. This symbolic expression simply represents

all states that satisfying the predicates.

4.4 Experimental Results

We have implemented the bisimulation minimisation techniques presented in this chapter

as an extension of the PRISM model checker [59], and applied them to a range of bench-
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mark models. For both the partition-refinement based minimisation of Section 4.2, and

the on-the-fly methods in Section 4.3, we build on PRISM’s “explicit” model checking

engine. For the SMT-based variant, we use the Z3 solver [20], through the Z3 Java API.

All our experiments were run on an Intel Core i7 2.8 GHz machine, using 2 GB of RAM.

Our investigation is in two parts. First, we apply the partition-refinement algorithm

to several DTMCs from the PRISM benchmark suite [65] to get an idea of the size of

reductions that can be obtained on some standard models. We use: Crowds (an anonymity

protocol), EGL (a contract signing protocol) and NAND (NAND multiplexing). Details

of all models, parameters and properties used can be found at [85]. A common feature

of these models is that they have a single initial state, from which properties are verified.

Since on-the-fly approaches explore backwards from a target set, we would usually need

to consider time horizons k high enough such that the whole model was explored.

So, to explore in more depth the benefits of the on-the-fly algorithms, we consider

another common class of models in probabilistic verification: those in which we need to

exhaustively check whether a property is true over a large set of possible configurations.

We use Approximate majority [4], a population protocol for computing a majority value

amongst a set of K agents, and two simple models of genetic algorithms [82] in which a

population of K agents evolves over time, competing to exist according to a fitness value

in the range 0, . . . , N−1. In the first variant, tournament, the agent with the highest

value wins; in the second, modulo, the sum of the two scores is used modulo N . Again,

details of all models, parameters and properties used can be found at [85].

4.4.1 The partition-refinement algorithm

Fig. 4.2 shows results for the partition-refinement algorithm. The top row of plots shows

the number of blocks in the partition built by finite-horizon bisimulation minimisation

for different values of k on the first three benchmark examples. For the largest values of
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k shown, we have generated the partition corresponding to the full (non-finite-horizon)

bisimulation. In most cases, the growth in the number of blocks is close to linear in k,

although it is rather less regular for the NAND example. In all cases, it seems that the

growth is slow enough that verifying finite-horizon properties for a range of values of k

can be done on a considerably smaller model than the full bisimulation.

The bottom row of plots shows, for the same examples, the time required to perform
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Figure 4.2: Results for partition-refinement. Top: quotient size for varying time horizon
k. Bottom: time for finite-horizon (black) and full (grey) minimisation/verification.
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bisimulation minimisation and then verify a k-step finite-horizon property (details at

[85]). The black lines show the time for finite-horizon minimisation, the grey lines for full

minimisation. The latter are relatively flat, indicating that the time for verification (which

is linear in k) is very small compared to the time needed for minimisation. However, we

see significant gains in the total time required for finite-horizon minimisation compared

to full minimisation.

However, despite these gains, the times to minimise and verify the quotient model are

still larger than to simply build and verify the full model. This is primarily because the

partition refinement algorithm requires construction of the complete model first, the time

for which eclipses any gains from minimisation. This was the motivation for the on-the-fly

algorithms, which we evaluate next.

4.4.2 On-the-Fly Algorithms

Table 4.1 and Table 4.2 shows model sizes and timings for the on-the-fly algorithms on

a range of models and scenarios. The left four columns show the model (and which on-

the-fly algorithm was used), any parameters required (N or K) and the time horizon k.

Next, under the headings ‘Full Red.’ and ‘Finite Horiz.’, we show the reductions in model

size obtained using full (non-finite-horizon) and finite-horizon minimisation (for several

k), respectively. In the first case, ‘States’ and ‘Blocks’ show the size of the full DTMC and

the fully reduced quotient model, respectively. For the second case, ‘Blocks’ is the size of

the finite-horizon quotient model and, to give a fair comparison, ‘States’ is the number of

states in the full DTMC that can reach the target of the property within k steps (i.e., the

number of states across all blocks). The rightmost three columns show the time required

to build the model in three scenarios: ‘Finite Horiz.’ uses the on-the-fly approach over k

steps; ‘Full Red.’ builds the full (non-finite-horizon) quotient by repeating the on-the-fly

algorithm until all states have been found; and ‘PRISM’ builds the full model using its
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most efficient (symbolic) construction engine.

Model
Param.s

k
Full Red. Finite Horiz. Time (s)

N K States Blocks States Blocks PRISM Full Red. Finite Horiz.

Approx.
majority n/a

100
20

20300 10201
242 122

11.0 14.2
0.2

40 882 442 0.3

60 1922 962 0.4

150
100

45450 22801
5202 2602

46.1 83.1
1.2

150 11552 5777 5.1

200 20402 10202 15.6

200
250

80600 40401
31752 15877

memout 293.5
40.8

300 45602 22802 93.9

350 61952 30977 180.8

250
375

125750 63001
71064 35533

memout 773.5
247.8

400 80802 40402 323.2

425 91164 45583 416.6

Genetic alg.
tournament

8

22
8

1184040 22
6435 10

19.2 5.3
0.3

9 11440 11 0.4

10 19448 12 0.4

23
8

1560780 23
6435 10

31.1 7.0
0.3

9 11440 11 0.4

10 19448 12 0.4

10

21
8

10015005 21
24310 10

59.0 43.6
0.5

9 48620 11 0.6

10 92378 12 0.7

22
8

14307150 22
24310 10

61.3 51.3
0.5

9 48620 11 0.6

10 92378 12 0.7

Genetic alg.
modulus

7

19
8

177100 29565
22179 3638

0.4 475.3
6.8

9 39404 6491 21.6

10 66002 10914 64.3

20
8

230230 38431
22179 3637

0.5 778.6
6.9

9 39404 6488 20.3

10 66068 10914 65.9

9

11
6

75582 12707
24822 3435

0.3 79.9
7.7

7 51756 8084 32.3

8 70448 11745 58.3

12
6

125970 21145
24906 3450

0.3 253.5
7.8

7 54440 8482 37.4

8 88642 14207 102.4

Table 4.1: Experimental results for on-the-fly bisimulation minimisation : Explicit variant
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Model
Param.s

k
Full Red. Finite Horiz. Time (s)

N K States Blocks States Blocks PRISM Full Red. Finite Horiz.

Genetic alg.
tournament

4

9
3

165 9
20 5

0.03 155
4.5

4 35 6 11.1

5 56 7 23.5

10
3

220 10
20 5

0.03 215
9.3

4 35 6 15.1

5 56 7 31.1

5

9
3

330 9
35 5

0.04 723.4
22.1

4 70 6 70.7

5 126 7 180.9

10
3

495 10
35 5

0.04 1998.7
48.8

4 70 6 82.0

5 126 7 233.7

Table 4.2: Experimental results for on-the-fly bisimulation minimisation : SMT variant

First, we note that finite-horizon minimisation yields useful reductions in model size in

all cases, both with respect to the full model and to normal (non-finite horizon) minimi-

sation. Bisimulation reduces models by a factor of roughly 2 and 5, for the Approximate

majority and Modulus examples, respectively. For Tournament, a very large reduction

is obtained since, for the property checked, the model ends up being abstracted to only

distinguish two fitness values. Finite-horizon minimisation gives models that are smaller

again, by a factor of between 2 and 10 on these examples, even for relatively large val-

ues of k on the Approximate majority models. Comparing columns 7 and 8 in Table 4.1

shows that much of the reduction is indeed due to merging of bisimilar states, not just to

a k-step truncation of the state space from the backwards traversal.

Regarding performance and scalability, we first discuss results for the SMT-based

implementation, which is shown in Table 4.2. We were only able to apply this to the

Tournament example, where a very large reduction in state space is achieved. On a

positive note, the SMT-based approach successfully performs minimisation here and gives

a symbolic (Boolean expression) representation for each block. However, the process is

slow, limiting applicability to DTMCs that can already be verified without minimisation.
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Our experiments showed that the slow performance was largely caused by testing for

overlaps between partition blocks resulting in a very large number of calls to the SMT

solver. An example of SMT queries for the tournament game model are provided in

Appendix A.

The explicit-state on-the-fly implementation performed much better and Table 4.1

shows results for all three models. In particular, for the Tournament example, finite-

horizon minimisation and verification is much faster than verifying the full model using

the fastest engine in PRISM. This is because we can bypass construction of the full

models, which have up to 14 million states for this example. For the Modulus example,

the model reductions obtained are much smaller and, as a result, PRISM is able to

build and verify the model faster. However, for the Approximate Majority example, the

minimisation approach can be applied to larger models than can be handled by PRISM.

For this example, although the state spaces of the full model are manageable, the models

prove poorly suited to PRISM’s model construction implementation (which is based on

binary decision diagram data structures).

4.5 Conclusions

We have presented model reduction techniques for verifying finite-horizon properties on

discrete-time Markov chains. We formalised the notion of k-step finite-horizon bisimu-

lation mininisation and clarified the subset of PCTL that it preserves. We have given

both a partition-refinement algorithm and an on-the-fly approach, implemented in both

a symbolic (SMT-based) and explicit-state manner as an extension of PRISM. Exper-

imental results demonstrated that significant model reductions can be obtained in this

manner, resulting in improvements in both execution time and scalability with respect to

the existing efficient implementations in PRISM.
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CHAPTER 5

Parametric Model Checking of Linear Inductive

Models

In the previous chapter, we have presented a novel algorithm to combat the so called “state

space explosion problem” for finite-horizon properties. Most of the existing algorithms

which we discussed in this thesis so far are using the bisimulation minimisation technique

to reduce the size of the state space of the original model, including the novel algorithm

discussed in the last chapter.

The bisimulation minimisation technique aggregates the equivalence classes of bisimi-

lar states into single states, hence, reducing the original model into a quotient model. The

resulting quotient model is equivalent to the original model as it preserves both long-run

and transient properties. This minimisation process requires the exploration of the entire

state space of a given model. This whole process can be executed in two different ways.

In the first case, the complete exploration of the original model is performed prior to

the application of the minimisation. In the second case, the exploration is carried out in

parallel to the minimisation (on-the-fly). The minimisation process along with complete

exploration of the original model can consume considerable computational resources for

55



larger state spaces. After going through such an expensive process, the reduction factor

(i.e. the state space ratio of the quotient and original models) may not be very high

for certain models. In such cases, it is not preferable to apply bisimulation minimisa-

tion techniques as the gain may be overshadowed when comparing to the performance of

conventional model checking. The probabilistic models with such lower reduction factors

require different strategies to overcome the state space explosion problem.

In this chapter, we introduce a novel strategy to handle linear inductive DTMCs, i.e.

a class of models whose state space grow linearly with respect to a parameter, which

is referred to as a recurrence parameter. In these linear inductive models, a particular

segment of the state space is repeated multiple times corresponding to a recurrence pa-

rameter. We devise methods that automatically detect and extract such models from a

high-level model description, and derive underlying recurrence relations from the repeat-

ing segment of this model. We then form a function with respect to recurrence parameter

using the solutions of derived recurrence relations and perform model checking using this

function. A complete implementation of this inductive model reduction technique is de-

veloped as an extension of the PRISM model checker. We also show that this technique

is extended to verify step-bounded and cost-bounded reachability properties on arbitrary

DTMCs, reduces to the problem of verifying linear inductive DTMCs.

The result of the experiments carried out clearly show that the proposed approach

contributes to the alleviation of the state space explosion for the given class of models

compared to the conventional model checking with and without the application of bisim-

ulation minimisation. In addition to that, this research raises opportunities for more

research in the direction of model reduction techniques for inductive models with non-

linear state space growth.

The remaining sections of this chapter are structured as follows. Section 5.2 describes

the specific class of models, referred to as inductive models, used in this work. Section 5.3
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formally explains linear inductive DTMCs. Section 5.4 describes the novel algorithm in-

troduced as the end product of this work. Section 5.5 explains in detail the numerical

computations that are used in this work to produce a function with respect to the re-

currence parameter. Section 5.6 describes the experiments carried out on two different

properties of interest, unbounded and cost-bounded, and analyses the results.

5.1 Terminology

In this section, we explain all the terminology that is introduced in this chapter. A block

is a set of states which may assign one of its states as its representative. A recurrence

parameter λ, which is a constant, acts as either a lower or upper bound for recurrence

variables. A recurrence variable Λ causes a block to repeat a number of times, where

the repeating block is called a recurrent block. A recurrent block differs from another

recurrent block only by the valuation of Λ. The width of recurrent block B1, which is

max(ΛB1) − min(ΛB1) + 1 , is called the recurrent interval. The term recurrent

borderline Ω refers to the scope of the (recurrent) region, which is within the range of

Λ, where all the recurrent blocks resides.

The region before the recurrent borderline is called the initial region, which has

a width δ1(= (min(Ω) −min(Λ))/n), where n is the number of blocks in the respective

region. The width of the recurrent region is denoted by δ2(= (max(Ω)−min(Ω)+1)/n).

The region that lies after the recurrent region is called the end region which has a width

δ3(= (max(Λ) − max(Ω))/n). The initial and end regions contain only one block each

whereas the recurrent region contains more than one (recurrent) blocks. The recurrence

relationship exhibited by the recurrent blocks are solved to form a function f(λ), which

allows us to verify the property of interest for the various values of λ.
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5.2 Inductive Models

The growth of the state space of the inductive models varies with respect to their param-

eters. In Table 5.1, the state space growth in relation to parameters of both NAND and

EGL inductive models, which are from the PRISM benchmark suite, has been presented.

In the case of NAND model, the state space grows linearly with respect to the parameter

K. On the other hand, the state space growth of the EGL model grows non-linearly in

accordance to the parameter N . In this research, we mainly focus on the inductive models

that exhibits linear recurrence behaviour in relation to a single parameter.

Model Parameters States Growth
factorN K

NAND

14
11 98457

1084312 109300
13 120143

15
11 125048

1378412 138832
13 152616

NAND

Model Parameters States Growth
factorL N

EGL

5
5 95230 359424

↓
1658880

6 454654
7 2113534

6
5 115710 437248

↓
2019328

6 552958
7 2572286

EGL

Table 5.1: The state space growth of inductive models: NAND with respect to its param-
eters N and K, and EGL in relation to its parameters L and N

The models whose state space grow non-linearly with respect to a parameter are not

the models of our interest as they cannot encompass the linear recurrence behaviour. We

can clearly conjecture that only the inductive models whose state space grow linearly, such

as NAND, may have the potential to comprise the linear recurrence behaviour. In addition

to this, we also notice that among the parameters of NAND, parameter K induces a linear

growth whilst the parameter N causing a non-linear growth in the state space. In this

chapter, we refer to parameters that enforce linear state space growth, e.g. the parameter

K of NAND, whilst encompassing the linear recurrence behaviour in the corresponding

inductive model as recurrence parameters.
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Figure 5.1: An example inductive model that grows linearly with respect
to parameter K and encompasses the linear recurrence behaviour

We have introduced an example model in Figure 5.1 with the purpose of illustrating

the properties of a linear inductive model that exhibits linear recurrence behaviour. The

model description of this example is shown in Figure 5.2 for a clear understanding of the

core components of the model description that will be later detailed in Section 5.4.2. This

particular model grows linearly with respect to parameter K. In this example model, the

recurrence variable is denoted as Λ and its upper bound is recurrence parameter K. The

recurrent interval of this example model is 1 as the value of Λ within a recurrent block is

the same. In the case of example model, the recurrent borderline is 1 to K−2 as the block

of states with similar transition behaviour repeats within this range. Therefore, we claim

that this model clearly incorporates the linear recurrence behaviour as a certain block of

states are repeated based on Λ, where the repeating set of states are behaving similar in

relation to Λ. This example model will be used throughout this chapter to explain the

properties of a linear inductive model.
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1 dtmc
2
3 module inductive model
4
5 const int K ;
6
7 x : [0..7];
8 y : [0..K ];
9
10 [] x=0 & y=0 → 0.5 : (x ′=1) & (y′=y + 1) + 0.5 : (x ′=2) & (y′=y + 1);
11 [] x=1 → 0.1 : (x ′=3) + 0.3 : (x ′=4) + 0.6 : (x ′=5);
12 [] x=2 → 0.2 : (x ′=3) + 0.5 : (x ′=4) + 0.3 : (x ′=5);
13 [] x=3 & y < (K − 1) → 0.3 : (x ′=1) & (y′=y + 1) + 0.7 : (x ′=2) & (y′=y + 1);
14 [] x=4 & y < (K − 1) → 0.4 : (x ′=1) & (y′=y + 1) + 0.6 : (x ′=2) & (y′=y + 1);
15 [] x=5 & y < (K − 1) → 0.1 : (x ′=1) & (y′=y + 1) + 0.9 : (x ′=2) & (y′=y + 1);
16 [] x=3 & y = (K − 1) → 0.4 : (x ′=6) & (y′=y + 1) + 0.6 : (x ′=7) & (y′=y + 1);
17 [] x=4 & y = (K − 1) → 0.5 : (x ′=6) & (y′=y + 1) + 0.5 : (x ′=7) & (y′=y + 1);
18 [] x=5 & y = (K − 1) → 0.1 : (x ′=6) & (y′=y + 1) + 0.9 : (x ′=7) & (y′=y + 1);
19 [] x>5 & x<8 → true;
20 endmodule

Figure 5.2: The PRISM model description of the inductive example shown in Figure 5.1

5.3 Linear Inductive DTMCs

In this section, we explain more formally the class of models with linear recurrence be-

haviour that we are able to handle with the techniques in this chapter. We call these

linear inductive DTMCs and they are divided into three regions: a first (initial) region, a

second (inductive) region and a third (final) region. A DTMC is constructed by compos-

ing one copy of the first and third regions, with some number (say, N > 1) copies of the

second region in between. States in a region can only transition either to the current, or

to the next region. That is, states in region 1 can only transition to the same region or to

the first instance of region 2; states in an instance of region 2 can only transition to the

same or the next instance (or to region 3 if it is the final instance); and states in region

3 can only transition to other states in region 3.
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States of a linear inductive DTMC are of the form (s,Λ), where s is a local state and Λ

is an integer variable. We use δ1, δ2 and δ3 to denote the widths of the three regions, i.e.,

the number of different (consecutive) values of Λ that can appear in each of the regions.

For simplicity, we assume that the lowest value of Λ is 0. So, the range of possible values of

Λ is {0, . . . , δ1+Nδ2+δ3−1}. The model is defined by three separate transition probability

matrices P1,P2,P3 and three separate labelling functions L1,L2,L3. Formally the model

is defined as follows.

Definition 5.3.1 (Linear Inductive DTMC) A linear inductive DTMC is a tuple D =

(S, (δ1, δ2, δ3),Sinit , (P1,P2,P3),AP , (L1,L2,L3)), where:

• S is a finite set of local states;

• δ1,δ2 and δ3 are the widths of the first, second and third regions of D;

• Sinit ⊆ S × {0, . . . , δ1−1} is a set of initial states;

• P1,P2,P3 are transition probability matrices for the 3 regions:

– P1 : (S × {0, . . . , δ1−1})× (S × {0, . . . , δ1+δ2−1})→ [0, 1]

– P2 : (S × {0, . . . , δ2−1})× (S × {0, . . . , 2δ2−1})→ [0, 1]

– P3 : (S × {0, . . . , δ3−1})× (S × {0, . . . , δ3−1})→ [0, 1]

• AP is a set of atomic propositions; and

• L1,L2,L3 are labelling functions for the 3 regions:

– L1 : (S × {0, . . . , δ1−1})→ 2AP

– L2 : (S × {0, . . . , δ2−1})→ 2AP

– L3 : (S × {0, . . . , δ3−1})→ 2AP
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In the case of example model shown in Figure 5.1, we have S = {0, 1, 2, 3, 4, 5, 6, 7}.

The lower and upper bounds of the recurrent borderline Ω is 1 and K − 2, respectively.

The width of initial, recurrent and end regions are δ1 = (1− 0)/1 = 1, δ2 = (K − 2− 1 +

1)/(K − 2) = 1, δ3 = (K − (K − 2))/1 = 2 and N = K − 2.

A DTMC, constructed from this inductive definition, and comprising N copies of

region 2, is called an expanded DTMC and is defined as follows.

Definition 5.3.2 (Expanded DTMC) Given a linear inductive DTMC defined by the

tuple (S, (δ1, δ2, δ3),Sinit , (P1,P2,P3),AP , (L1,L2,L3)) and integer N > 1, the expanded

DTMC is (S × {0, . . . , δ1+Nδ2+δ3−1},Sinit ,P,AP ,L) where, for any s, s′ ∈ S:

• P((s, i), (s′, i′)) = P1((s, i), (s′, i′)) for any 0 6 i < δ1, 0 6 i′ < δ1+δ2

• P((s, δ1+jδ2+i), (s′, δ1+jδ2 + i′)) = P2((s, i), (s′, i′)) for any 0 6 i < δ2, 0 6 i′ < 2δ2

and 0 6 j < N

• P((s, δ1+Nδ2+i), (s′, δ1+Nδ2+i′)) = P3((s, i), (s′, i′)) for any 0 6 i < δ3, 0 6 i′ < δ3

and P1,P2,P3 are otherwise 0.

Similarly, the labelling function L is defined, for any s ∈ S, as:

• L((s, i)) = L1((s, i)) for any 0 6 i < δ1

• L((s, δ1+jδ2+i)) = L2((s, i)) for any 0 6 i < δ2 and 0 6 j < N

• L((s, δ1+Nδ2+i)) = L3((s, i)) for any 0 6 i < δ3

5.4 Main Algorithm

We propose a novel algorithm in this section that overcomes the bottleneck of handling

inductive models. As we discussed earlier, the existing algorithms are not promising to

handle this class of models effectively for larger values of their parameters. However, this
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proposed algorithm elegantly forms a function with respect to a recurrence parameter for

a particular property of interest as the end result. This algorithm can be broken into six

core functionalities as shown in Algorithm 5.1. They are as follows:

• Preprocess : DTMC models, with property of interest either time or cost, are

preprocessed during this phase such that they can be used as inductive models.

• DeriveRecurrentIntervalAndBorderline : The recurrent interval is computed

as a first step in this phase. Thereafter, the borderline of the recurrence region is

determined using the recurrent interval and the guard of each command.

• ConstructRegion : The regions: first, second (recurrence region) and third are

constructed during this phase.

• IsRecurring : This phase ensures whether the assumption about the recurrence

region is valid within the recurrent borderline by comparing a sample repeating set

of states in relation to the recurrence parameter.

• Extract : The recurrence relations and their base cases are extracted from the

constructed regions. This process also differs with respect to the employed approach.

• Solve : This phase involves numerical computations to solve the extracted recur-

rence relations. As the end result of this phase, a function is formed with respect

to the recurrence parameter. This function can answer the property of our interest

for various values of the recurrence parameter.

As shown in Algorithm 5.1, the model description m, property of interest p and re-

currence parameter λ have to be passed as the inputs to start the algorithm. Currently,

the algorithm cannot infer λ automatically, however, this can be achieved by testing all

the parameters against the conditions mentioned in 5.4.2.
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Initially, m goes through the preprocessing phase where the model description m is

transformed into an inductive model m′ with respect to λ. After the preprocessing phase,

the recurrent interval δ and borderline Ω are derived using both m′ and λ, where Ω is

a pair data structure that is composed of both upper and lower bounds of the recurrent

region. Subsequently, the three regions γ1, γ2, γ3, which are required for the extraction of

recurrence relations, are constructed using m′, p and Ω. As γ2 represents the recurrent

region, the algorithm confirms whether γ2 encompasses the recurrence behaviour. In case

γ2 encompasses it, the recurrence relation set ∆ is extracted using the γ1, γ2, γ3 regions.

Finally, the extracted set ∆ is solved numerically to produce the function f(λ). In the

following subsections, these six core functionalities will be discussed in detail, respectively.

Algorithm 5.1: InductiveReduction
Input: m, p, λ

1 m′ ← Preprocess(m,λ)
2 Ω← DeriveRecurrentIntervalAndBorderLine(m′, λ)
3 γ1, γ2, γ3 ← ConstructRegions(m′, p,Ω)
4 if IsRecurring(γ2) then
5 ∆← Extract(γ1, γ2, γ3)
6 f(λ)← Solve(∆)
7 end

5.4.1 Preprocessing the models

The techniques in this chapter target three different cases. Firstly, models which are,

by definition, linear inductive models. Secondly, step-bounded reachability properties for

arbitrary DTMCs. Thirdly, cost-bounded properties for arbitrary DTMCs. The model

description of such models has to be preprocessed for the inductive unfolding. Algorithm

5.2 shows the pseudocode of the preprocessing phase. Initially, the algorithm makes a copy

of the model description m, which is passed in as one of the parameters. The purpose of

the copy m′ is to be modified in the latter stages of this phase whilst keeping the original

m untouched. In order to be an inductive model, it is mandatory for a model description
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to contain the recurrence parameter λ. Henceforth, the algorithm confirms whether the

copy m′ contains λ as the next step. In the case when λ is not present in m′, the algorithm

looks for two special cases of the recurrence parameter λ.

Algorithm 5.2: Preprocess
Input: m,λ
Output: m′

1 m′ ← copyOf(m)
2 if m′ contains λ then
3 if λ = t then
4 introduce time variable t
5 incorporate t, ∀c ∈ m′
6 else if λ = r then
7 introduce cost variable r
8 incorporate r, ∀c ∈ m′ that satisfies R
9 remove R from m′

10 else
11 throwError(“model m is not supported”)
12 end
13 end
14 return m′

The first special case is λ being the time variable t. This special case denotes that the

user wants to transform a non-inductive DTMC into a timed inductive DTMC. Therefore,

the time variable t is introduced in the copy model description m′ and every command in

m′ is incorporated with t. Figure 5.3 shows an example of incorporating t in a command c.

A command in the model description represents one time step behaviour of any given state

for which the corresponding command is enabled. Therefore, the time variable t must be

not only included in the guard of the commands but also has to be in the updates of the

corresponding commands. Henceforth, t is incremented by one to represent a single time

step in all the updates.

The other special case is λ being the cost variable r. In this case, the user requires

the algorithm to preprocess a DTMC model with a cost function into a linear inductive

DTMC with costs. Generally, the cost component of a model description will be in the
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· · ·
[] a=0 → 1.0 : (x ′=0);

transforms into · · ·
[] a=0 & t<k → 1.0 : (x ′=0) & (t ′=t + 1);

Figure 5.3: The illustration of incoporating the time variable t in a command

following form.

[ action ] guard : cost ;

This can be interpreted as a certain cost is provided when a transition from a state

satisfies the guard and is also labelled with the action. In this case, the first step is similar

to the previous case which is introducing the cost variable r. However in this case, only

the commands that match the guard and the action label of the respective cost component

will be incorporated with cost variable r. The incorporated r will be updated using the

respective cost value. Afterwards, the respective cost function will be removed from the

model description m′. In addition, the reachability property in the form P=?[F 6ctarget] is

also transformed into the form of P=?[F target ∧ r 6 c]. Finally, the preprocessed m′ will

be returned as the output, unless the recurrence parameter λ is not any of the special

cases.

5.4.2 Derivation of the recurrent interval and borderline

Once the model description m has gone through the preprocessing phase, the preprocessed

model description m′ needs to be analysed with respect to its various components. As

a result of this analysis, the recurrent interval δ and borderline Ω will be derived. In

this context, the term recurrent interval refers to the difference between the values of

recurrence variable Λ of both entry and exit states of a recurrent block whereas the term

recurrent borderline refers to the particular segment of the model (sub model) where

the recurrence behaviour is exhibited. The components of the model description, which
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allow the derivation of δ and Ω, are variable, guard, probability and update expressions.

The presence of the recurrence parameter λ and variable Λ in each of these components

determines the existence of recurrence behaviour.

Algorithm 5.3: DeriveRecurrentIntervalAndBorderline
Input: m′, λ
Output: δ,Ω

1 Λ← IdentifyRecurrenceVariable(m′, λ)
2 isValidProb← CheckProbExprs(m′,Λ)
3 if isValidProb then
4 δ ← ComputeRecurrentInterval(m′,Λ)
5 Ω← ComputeRecurrentBorderLine(m′,Λ, δ)
6 else
7 throwError(“model m′ is not supported”)
8 end
9 return δ,Ω

The pseudocode of deriving the recurrent interval δ and borderline Ω is shown in

Algorithm 5.3. During this phase, the preprocessed model description m′ and the recur-

rence parameter λ are passed as inputs to the algorithm. Initially, the recurrence variable

Λ is identified using the inputs m′ and λ as it is needed to check whether m′ exhibits

recurrence behaviour. Thereafter, the probability expressions in m′ are checked against

the conditions (which will be detailed in the following subsections) that confirm the exis-

tence of valid recurrence behaviour. In the case where all probability expressions satisfy

the conditions, the recurrent interval δ and borderline Ω are computed. Otherwise, the

algorithm terminates as the model description m′ does not include the properties of an

inductive model of interest. In the following subsections, we will discuss in detail the

contribution of the variable, update, probability and guard expressions, respectively.

Variable expressions

Variable expressions, i.e. declarations, are one of the core components of a model descrip-

tion as any unique composition of the values of all variables creates a state of the model.
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The variables are declared as a first step in the model description. However, they are not

always predefined in the model description as they can also be defined as dependent on

a parameter that can be assigned to a value at later stage. The range of a variable has

both upper and lower bounds, where a certain parameter can represent only one of them.

This confirms that the recurrence parameter can be present in the variable component as

either upper or lower bound.

In reality, it is very likely for a state to be made up of more than one variable. As

the number of variables depending on the recurrence parameter λ is one of the factors

that governs the existence of linear recurrence behaviour, it is important to analyse the

underlying relation between them. For linear recurrence behaviour to exist in an inductive

model, the growth of the state space with respect to λ must be linear. In the case when

there are not any dependent variables as shown in Figure 5.4, it is trivial to understand

that the respective model cannot exhibit the linear recurrence behaviour as there is no

correlation between the growth of the state space and λ. Meanwhile, when there is more

than one dependent variable as shown in Figure 5.6, it is not evident whether the state

space growth is linear with respect to λ or not, henceforth, we do not currently handle

such models. In fact, the existence of linear recurrence behaviour is trivial only when

there is one dependent variable, as shown in Figure 5.5. This variable is referred to as

the recurrence variable Λ.

dtmc
module non inductive
const int K ;

x : [0..7];
y : [1..10];

· · ·

dtmc
module inductive
const int K ;

x : [0..7];
y : [0..K ];

· · ·

dtmc
module non inductive
const int K ;

x : [0..K ];
y : [0..K ];

· · ·

Figure 5.4: None of the
variables depend on the
parameter K

Figure 5.5: Only One vari-
able depends on the pa-
rameter K

Figure 5.6: More than one
variable depends on the
paramter K
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Probability expressions

A probability expression represents the transition probability of its corresponding update.

For the recurrence behaviour to exist in an inductive model, any state in a recurrent block

must have a recurrently similar state in all other recurrent blocks. In the case when a

probability expression relies on Λ, the transition probability will vary between any such

similar states as Λ is different. Thus, this type of probability expression violates the

recurrence similarity relation.

Update expressions

An update expression defines the outgoing transition of a state, in other words, the state it

can move from a given state. This update expression can be applied on a state only when

that state satisfies the guard attached along with the respective update. We have already

discussed recurrent block of states in Section 5.3. The existence of recurrence variable Λ

in an update expression determines the nature of the transition between recurrent blocks.

Algorithm 5.4 shows the pseudocode for computing the recurrent interval using update

expressions.

Algorithm 5.4: ComputeRecurrentInterval
Input: m′,Λ
Output: δ

1 δ ← 1
2 for each update u in m′ do
3 if u contains Λ then
4 if Λ is updated by additive increase then
5 δ ← Max(δ, incrementValue)
6 else
7 throwError(“model m′ is not supported”)
8 end
9 end

10 end
11 return δ
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This algorithm requires the model descriptionm′ and Λ as the inputs to start the phase.

Initially, the recurrent interval δ is assigned with the least possible value 1. Thereafter,

the algorithm loops through each update u ∈ m′ to analyse the nature of the update u.

The possible occurrences of update u with respect to Λ are as follows:

• u does not update Λ: The respective update defines the transition of a state that

occurs within the same recurrent interval. Thus, the impact of this form of u does

not affect the existence of the recurrence behaviour.

• u updates Λ and updated by additive increase : This is the only possible case

where the linear recurrent intervals can be obtained. It is a must to verify that the

update is only either increase or decrease. If there is a mixture of both among the

updates, the recurrence flow in one direction can be disrupted.The following form

of u represents an example of this case:

Λ′ = Λ + constant

• u updates Λ and updated by multiplicative increase : In this case, the recurrent

interval cannot be a constant as the transition interval increases multiplicatively

with respect to the value of Λ. In this case, the form of u only denies the linear

recurrence behaviour in m′. In other words, it is possible for the exponential recur-

rence behaviour to exist in this inductive model. The following form of u represents

an example of this case:

Λ′ = Λ ∗ 2

• u contains Λ and use it to update another variable : The following form of u repre-

sents an example of this case.

a′ = a + Λ
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In such cases, it is evident that another variable is also updated along with the

change in Λ. Therefore, it is not possible to obtain recurrent blocks with such

updates in m′.

In Algorithm 5.4, when encountering the valid case, the highest common factor of all

the additive increases is identified and returned as the recurrent interval δ, otherwise, the

algorithm is terminated.

Guard expressions

A command can only be enabled in a state when that state satisfies the guard expression,

which is a predicate, of the corresponding command. From the viewpoint of this algorithm,

the guard expression is the only component ofm′ that allows the derivation of the recurrent

borderline Ω. In Figure 5.2, a number of commands have been listed that determine the

transition behaviour of the example inductive model shown in Figure 5.1. It is clear to see

from Figure 5.1 that the guard of each command is a predicate and they fundamentally

limit the scope of the variables of a state for which the updates of the respective command

can be applied.

This algorithm only focuses on the guards that contain the recurrence variable Λ as

they are the only ones capable of contributing to the derivation of Ω. Although the

computation of the recurrent borderline is a difficult task comparing to the rest, the fact

that all the guards are mostly simple predicates makes the computation relatively easy

as they only contain comparison operators like =,6, <,>,>. Therefore, constructing a

number line that encompasses the possible values of Λ and then plotting on it based on

the guards will allow the algorithm to find the largest common region in the end, where

Ω is the borderline of this largest common region. The pseudocode of computing Ω is

shown in Algorithm 5.5.

The first step of computing the recurrent borderline is assigning both the lower and
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Algorithm 5.5: ComputeRecurrentInterval
Input: m′,Λ
Output: Ω

1 Ω.upper, Ω.lower ← Λ.upper, Λ.lower
2 regions ← Ω
3 for g ∈ m′ do
4 if Λ ∈ g then
5 if g.operator(Λ) is {=} then
6 remove related Ω from regions
7 split Ω wrt. g.limit()
8 append the split Ω to regions
9 else if g.operator(Λ) is {<,6} then

10 update related Ω.upper ∈ regions wrt. the limit
11 else if g.operator(Λ) is {>,>} then
12 update related Ω.lower ∈ regions wrt. the limit
13 end
14 end
15 return max Ω from the regions

upper bounds of the recurrence variable Λ to Ω and then appending Ω to the regions list.

The purpose of the regions list is to store all possible common regions within the scope

of Λ as there can be possibly more than one recurrent region in a model. Thereafter,

the algorithm loops through all the guards in the model description m′ and updates

the regions list only when the guard contains the recurrence variable. If the comparison

operator of the expression involving Λ in the guard g is an equal operator then the related

Ω is split into two separate borderlines such that the value of right hand side operand is

eliminated from the regions. This step is carried out because when the equal operator is

present in the expression involving Λ, the application of the corresponding command is

only limited to the states with the specific value of Λ. As a consequence of this situation,

the recurrence behaviour with respect to Λ is interrupted. Therefore, it is mandatory to

remove this specific value of Λ from the regions list. Otherwise, the scope of the respective

Ω is narrowed down based on the remaining operators. For example, if the operator is >

then the lower bound of Ω is updated with respect to the right hand side operand.
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In this work, we assume an inductive model that encompasses the recurrence behaviour

only contains a single recurrence region. However, this is not always the case in practice.

Currently, we only choose the region with the largest Ω as our recurrence region when

encountering many of them and the rest are considered as residing in the first or third

region.

5.4.3 Construction of the regions

As we have pointed out before, the requirement for the complete exploration or construc-

tion of the original model seems to be a bottleneck in the existing minimisation algorithms

for certain classes of models. The inductive models fall under these class of models. As

the inductive models show a pattern in their state space growth with respect to a pa-

rameter, the algorithm leverages this knowledge to address the corresponding bottleneck.

Henceforth, the state space of a linear inductive model is divided into three individual

regions: first, second and third. The borderlines of each of these regions are as follows,

• First region : represents the state space starting from the the initial states of the

given model until the entry states of the first recurrent block. In the case of example

model, the first region represents Λ = 0.

• Second region : is the special region as it contains only the representative blocks

for the entire region. This region represents the state space between the entry states

of the first recurrent block and the exit states of the last recurrent block. In the

case of example model, the second region represents Λ > 1 and Λ < K − 1.

• Third region : represents the state space after the second region. This starts

from the exit states of the last recurrent block and ends at the target states of the

remaining state space. In the case of example model, the third region represents

Λ > K − 1 and Λ 6 K.
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From this point onwards, this algorithm will be considered from the viewpoint of a

backward approach, which computes the recurrence relations with respect to incoming

transitions. Henceforth, the roles of each of these regions and the construction strategies

will also be explained with respect to the backward approach. However, the difference

between the backward and forward approach (computes the recurrence relations with

respect to outgoing transitions) will be explained where necessary.

The construction of the first region

Initially, the first region is constructed based on the intervals listed previously. The lower

bound is the initial state of the original model which is already defined in the model

description m′. However, the entry states of the first recurrent block, which is the upper

bound of this region, is not defined in m′. Therefore, these entry states must be defined

at this stage using the recurrent borderline Ω. Henceforth, the predicate {Λ = Ω.lower}

is introduced to limit the state space exploration. During the exploration, the first set of

states that satisfy this predicate are the entry states of the first recurrent block. In other

words, the model construction process starts the exploration from the initial state to the

point where the current state satisfies this predicate.

In the backward approach, the probabilities computed from the first region are only

used when forming the function f(λ). These computed probabilities will become the coef-

ficients of the corresponding terms in the function. On the other hand, these probabilities

are considered as the initial conditions of the recurrence relations when employing the

forward approach.

Figure 5.7 shows the first partial model of the example shown in Figure 5.1. Unlike

the theory discussed above, the respective figure not only includes the first region (Λ = 0)

but also the entry states (Λ = 1) of the first recurrent block. The only reason for the

inclusion of entry states is to simplify the computation of transition probabilities from

the initial state to the entry states. On the other hand, if we have chosen the exit states
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Λ = 1

Λ = 0

0,Λ

1,Λ

2,Λ

0.5

0.5

1

1

Figure 5.7: The model represents the first region and
the entry states of the first recurrent block

to represent the recurrent block then this model would have included the complete first

recurrent block along with the first region as the transition probabilities are computed

from the initial states to the exit states.

The construction of the second region

The construction of the second region is followed immediately after the first model. It was

discussed before that the the scope of this region starts from the entry states of the first

recurrent block and ends at the exit states of the last recurrent block. However, unlike

the previous model construction, the whole state space that lies within the second region,

is not required to be constructed. In other words, this algorithm only necessitates the

construction of the representative blocks for the entire region as this region demonstrates

the linear recursive state space growth.

In Figure 5.8, the model that represents the second (recurrence) region of the original

state space, is presented. This model is made up of (n−2)th and (n−1)th recurrent blocks,

and the entry states of the (n)th recurrent block. In this case, the (n − 1)th block and

the entry states of the (n)th block are sufficient to compute the required probabilities to
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Figure 5.8: The model depicts the (n−2)th, (n−1)th and (n)th recurrent
blocks as the representative for the second region.

form the recurrence relations. The purpose of including the (n−2)th block is to introduce

a second layer of validation that ensures a block of states are recurring with respect to

Λ in the recurrent interval δ. In this validation process, this algorithm compares both

the (n− 2)th and (n− 1)th recurrent blocks to ensure the recurrence property. Since the

entry states of the first recurrent block were already defined during the previous phase,

the algorithm uses that knowledge to deduce the (n− 2)th entry states because the only

difference between the recurrent blocks is the valuation of the recurrence variable Λ. The

predicate {Λ = n} is introduced to terminate the state space exploration as soon as the
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(n)th entry states are encountered.

This region is considered to be the core of this algorithm due to the fact that it

avoids the construction of the entire state space. The recurrence relations are formed

using this region by computing the transition probabilities in between the entry states

of two consecutive recurrent blocks. However, in the case when target (defined in the

PCTL property) resides within the second region, this model needs to be manipulated to

maintain the integrity with respect to the property of interest. Therefore, all the target

states in this model are transformed into absorbing states, i.e. all the outgoing transitions

of a target state are replaced by a single transition directed to itself.

The construction of the third region

The construction of the third region is very similar to the first region. However, the

transition probabilities computed from this region are used as initial conditions of the

extracted recurrence relations, in the backward approach. In the case of forward approach,

these probabilities are considered to be the coefficients of the terms in the end function.

Since entry states are used as the representative states for recurrent blocks, the third

model also includes the entire last recurrent block along with the end region to simplify

the model checking. The model that represents the third region of the example model

along with the (n)th recurrent block, is shown in Figure 5.9. Although the (n)th recurrent

block and (K − 1)th recurrent blocks are very similar, the transition behaviour of the

exit states are different from one another. Henceforth, the states with Λ = (K − 1) are

classified as the states residing in the end region.

5.5 Numerical Computation

This section discusses the formation of the end function using three crucial regions dis-

cussed in the previous section. Initially, the extraction of the relevant transition probabil-

ities, to form the recurrence relations, is explained using the example model. The derived
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Figure 5.9: The model depicts the (n)th recurrent block, (K − 1)th and
(K)th blocks as the representative for the third region.

recurrence relations are multivariate recurrence relations. Thereafter, the mathematical

computations carried out to solve these recurrence relations are explained in detail with

respect to the example model. Finally, an end function is formed, which has the ability

to answer the property p passed at the beginning of the algorithm for various values of

recurrence parameter λ.

5.5.1 Extraction of recurrence relations

The selection of forward or backward approach influences not only the construction of the

regions but also the extraction of recurrence relations. However, the focus of this discus-
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sion is about extracting the recurrence relations with respect to the backward approach.

Nevertheless, the difference between both of these approaches in terms of the extraction

is also briefly explained where necessary.

As a first step, the transition probabilities between two consecutive recurrent blocks are

computed to form the multivariate recurrence relations. The selection of two consecutive

blocks from the recurrence region as representatives is sufficient to compute the required

probabilities. During the computation of the probabilities using the representatives, it is

not necessary to compute the probabilities for every states in that representative blocks.

Henceforth, the selection of the representative states for a recurrent block becomes manda-

tory. There are two possible sets of representative states for a recurrent block, which are

entry and exit. In this context, the entry set refers to the states that allow incoming

transitions to the current recurrent block whereas the exit set refers to the states that

have outgoing transitions from the current recurrent block.

The selection of the forward or backward approach does not influence the selection of

the entry or exit set as the representative. However, the number of states in the entry

and exit set influences the selection of the block representative as it affects both the

time for numerical computation and space for the storage of recurrence relations. In this

algorithm, selecting the representative with the least number of states is the beneficial

case because a recurrence relation is formed for every state in the representative set.

In the case of the example model, the number of states in the entry set is less than

the exit set. Thus, the extraction process will select the entry set as the representative

for all recurrent blocks. The model required for this computation is shown in Figure 5.8.

From the corresponding model, both the (n− 1)th and (n)th recurrent blocks are chosen

for the current computation. Let a(n−1) be the state (1,Λ) and b(n−1) be the (2,Λ), where
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Λ = (n− 1).

an−1 = (0.21× an) + (0.79× bn) (1)

bn−1 = (0.29× an + (0.71× bn) (2)

In the equations 1 and 2, both an and bn represents the entry states of the (n)th recurrent

block and all the outgoing probabilities from (n−1)th entry states to (n)th entry states are

represented by the coefficients of (n)th entry states. In the case of the forward approach,

the equations would represent all the incoming transitions, i.e. the coefficients of the

terms on the right hand side would represent the incoming transition probabilities towards

the term on the left hand side. Although the recurrence relations are extracted from the

example model, initial conditions have to be defined so that the exact sequence represented

by the example model can be reduced into a closed form. As we discussed in the earlier

section, initial conditions are derived from the third model when employing the backward

approach. For both a(n−1) and b(n−1) terms, the initial condition represents the transition

probability to reach the target states (typically defined in the PCTL property). According

to Figure 5.9, assuming that the target state is (6,Λ), the initial conditions are as follows.

an = 0.33

bn = 0.32

where an and bn represents the initial conditions for recurrence relations 1 and 2, respec-

tively. That is the probabilities of reaching the target state (6, K) from the entry states

(1, n) and (2, n). Finally, the coefficients of each term in the final function is computed

by performing model checking on the submodel shown in Figure 5.7. These coefficients

represent the probabilities of reaching the entry states of the first recurrent block from the

initial state. Let x1 and x2 be the coefficients of the terms (solutions) corresponding to
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the equations 1 and 2, respectively. The computed values (probabilities) of the coefficients

x1 (the probability of reaching the state (1, 1) from (0, 0)) is 0.5 and x2 (the probability

of reaching the state (2, 1) from (0, 0)) is 0.5.

5.5.2 Extracting recurrence relations using parametric model

checking

The inductive models are split into three sub models in this algorithm with the reason of

avoiding the construction of whole state space. Later, we perform model checking on these

sub models to compute the required probabilities for forming the recurrence equations.

One of the constraints on this implementation is the number of calls to the model checker.

In the default approach, given a model and its property, the model checking is done such

that it computes all probabilities Preach(s, target) to reach the target, which is defined in

the property, from every non-target state.

Preach(s, target) =
∑
s′∈S

P(s, s′) · Preach(s′, target), ∀s ∈ S \ target

The inductive model reduction classifies the targets into two types: local and global. The

local targets, which refer to the representative states of the recurrent blocks (e.g. the

entry states of nth recurrent block in Figure 5.8), are created with the purpose of forming

the recurrence relations whereas the global target refers to the target of the original mode

(e.g. the state (6, K) in Figure 5.9). The local targets are defined during the construction

Submodel Initial states Target states Calls

First 1 or more x x

Second x x x

Third x 1 1

Table 5.2: The number of calls to the conventional model checker for each sub models.
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of the sub models and are attached to first and second sub models. The global target lies

in the third sub model. Based on this information, the number of calls to the conventional

model checker is summarised in Table 5.2. In the case of local target, we are considering

every state lies in it as an individual target for the purpose of computing probabilities.

Dummy

Λ = n − 2 Λ = n − 1

Λ = n

1,Λ

3,Λ

4,Λ

2,Λ

5,Λ

1,Λ

2,Λ

3,Λ

4,Λ

5,Λ

1,Λ

2,Λ

X

Y

0.1

0.3

0.6

0.2

0.5

0.3

0.3

0.7

0.4

0.6

0.1

0.9

0.1

0.3

0.6

0.2

0.5

0.3

0.3

0.7

0.4

0.6

0.1

0.9

p

1 − p

q

1 − q

1

1

Figure 5.10: The inclusion of dummy states in the second sub model.

We can clearly see that the number of calls to the model checker is depending on the

number of individual targets defined in the model. We have to reduce these calls to

improve the performance of the implementation. Thus, we came up with a strategy to

introduce dummy states in the first and second sub models then use the parametric model

checking to tackle this issue. The inclusion of the dummy states into the second sub model

is shown as an example in Figure 5.10. In this model, X and Y are the dummy states.

We assign the dummy state X as the local target and the parameters p and q as the
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transition probabilities to reach X from the states (1, n) and (2, n). Henceforth, when

performing the parametric model checking, the transition probability to reach the target

from the state (1, n− 1) is resulted as follows,

Preach((1, n− 1), X) = 0.21p+ 0.29q

where coefficients of p and q represents the transition probabilities to reach the states

(1, n) and (2, n) from the state (1, n − 1). This way the number of calls to the model

checker has been reduced to one for all three sub models.

5.5.3 Solving the recurrence relations

As soon as all of these required computations are carried out, the process of solving

the recurrence relations will start. This process leverages linear algebra and generating

functions to systematically solve these recurrence relations.

In Chapter 2, we have indicated that the terms in a sequence of numbers correspond

to the coefficients of a formal power series (Maclaurin series) represented by a generating

function. Therefore, the generating functions can be used to solve the recurrence relations

due to their potential of encoding these sequence of numbers.

In the case of inductive models, the type of extracted recurrence relations is linear

homogeneous recurrence relation of degree 1 with constant coefficients. However, linear

non-homogeneous recurrence relations of degree 1 with constant coefficients can also be

encountered when the target lies within the second region. Nevertheless, we can encode

both of these types using ordinary generating functions. The recurrence relations 1 and 2

belong to the first type and are encoded as follows. Initially, we multiply both sides of the

recurrence equations 1 and 2 by xn (For simplicity, assume the sequence moves forward,
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therefore, an becomes a0 and vice versa).

anx
n = (0.21× an−1x

n) + (0.79× bn−1x
n) (3)

bnx
n = (0.29× an−1x

n) + (0.71× bn−1x
n) (4)

Thereafter, we sum both sides of equations 3 and 4 over the same limits where we set

the lower bound as possibly the smallest value and the upper bound to infinity. In this

case, we have to set the lower bound of n to 1 as any lower value of n would result the

subscript of a or b to be negative value on the right side of the equations.

∞∑
n=1

anx
n = (0.21×

∞∑
n=1

an−1x
n) + (0.79×

∞∑
n=1

bn−1x
n) (5)

∞∑
n=1

bnx
n = (0.29×

∞∑
n=1

an−1x
n) + (0.71×

∞∑
n=1

bn−1x
n) (6)

Referring back to Section 2.7, we can see that

A(x) =
∞∑

n=0
anx

n =
∞∑

n=2
anx

n + a1x+ a0

Therefore, we can substitute an algebraic expression that includes generating function

A(x) and B(x) for all infinite sum in the equations 5 and 6. Aftewards, we have to factor

the terms on the right of each infinite sum such that the power of x in them matches the

lower bound of the infinite summation.

∞∑
n=1

an−1x
n−1 − a0 = (0.21x×

∞∑
n=1

an−1x
n−1) + (0.79x×

∞∑
n=1

bn−1x
n−1)

∞∑
n=1

bn−1x
n−1 − b0 = (0.29x×

∞∑
n=1

an−1x
n−1) + (0.71x×

∞∑
n=1

bn−1x
n−1)

After the factorisation, we replace all the infinite sums with their corresponding generating
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functions.

A(x)− a0 = (0.21x× A(x)) + (0.79x×B(x)) (7)

B(x)− b0 = (0.29x× A(x)) + (0.71x×B(x)) (8)

In equations 7 and 8, the terms a0 and b0 denotes the initial conditions of a sequence

belongs to A(x) and B(x), respectively. Since we considered that these sequences move

forward for the simplicity of calculation, a0 and b0 refer to the an and bn which we have

computed previously in Subsection 5.5.1.

We rearrange these equations in the following matrix form, so that Gaussian elimina-

tion can be applied to solve these linear equations.

A(x) B(x)
0.21x− 1 0.79x −a0

0.29x 0.71x− 1 −b0

As a result of applying Gaussian elimination, we end up with a rational function for both

A(x) and B(x), where the polynomial is expressed in terms of x. The corresponding

rational function has to be decomposed into a sum of polynomial fractions with simple

denominators such that all partial fractions are in the following form I
(1−Rx) . After the

partial fraction decomposition, the closed forms for an and bn are derived directly from

these partial fractions. The simplified solutions of the recurrence relations 1 and 2 are

given below.

an = 0.32(1)n − 0.07(−0.08)n

bn = 0.32(1)n + 0.02(−0.08)n
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Finally, these solutions are used to form the end function that can answer the property

p for various values of K, which is the recurrence parameter λ. The end function of the

example model with respect to p is in the following form,

F (n) = 0.5 (0.32− 0.07(−0.08)n) + 0.5 (0.32 + 0.02(−0.08)n)

F (n) = 0.32− 0.045 (0.08)n (9)

where n = (K − 2) and K > 2. The reason for K is not allowed to be less than 2 is

because the recurrence region would not exist otherwise.

5.6 Experimental Results and Analysis

The inductive model reduction technique presented in this chapter is also implemented as

an extension of the PRISM model checker. This implementation has been applied to both

the NAND multiplexing [81] and synchronous leader election protocol [48] DTMC models

from PRISM’s benchmark suite [65]. The PRISM model checker has various engines to

perform model checking. The implementation of the presented algorithm leverages the

hybrid and parametric engines to perform model checking on all three crucial sub-models.

All the experiments are carried out on a MacBook Pro, Late 2013 with Core i5 2.4 GHz

processor and 8GB of RAM.

The investigation with regards to this implementation has been divided into two sec-

tions, see Section 5.5.2. First, we use both hybrid and parametric engines individually

on this implementation to compare the positive and negative contributions on the per-

formance of this implementation. We have introduced another example model with the

purpose of using it for testing the performances of the engines.

Afterwards, we compare the backward approach variant against conventional model

checking with and without the application of bisimulation minimisation to clearly show
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the advantage of the inductive model reduction in the context of probabilistic verification.

The NAND multiplexing model has two parameters N and K that represent the number

of inputs in each bundle and number of restorative stages. We have selected this model

for the corresponding experiment because it is a linear inductive model with respect to

its parameter K and encompasses the recurrence behaviour.

Apart from the NAND multiplexing model, we also use the DTMC model that de-

scribes the synchronous leader election protocol. However, this DTMC model is not a

suitable candidate as it does not encompass the recurrence behaviour with respect to any

of its parameters. Nevertheless, we are using this model for the purpose of verifying the

cost-bounded properties.

5.6.1 Parametric vs. Conventional Model Checking

We have generated a few DTMC models with different number of entry states and per-

formed model checking on them using both hybrid and parametric engines to measure the

performance of the respective engines. These DTMC models have the following properties

: same number of entry and exit states, all the entry states have outgoing transitions to

all the exit states and every exit state has outgoing transitions towards the two dummy

states. The results for the experiment are shown in Table 5.3. In the results, the time for

the hybrid engine represents the total time taken for n number of calls, where n repre-

sents the number of entry states. During this experiment, the time-out (TO) was set as

20 seconds. Although the number of calls to the model checker was reduced to one when

using the parametric engine, its performance was poor compare to the hybrid engine. The

actual cause of the poor performance is the use of big rational data structure for com-

putations. Therefore, we have decided to leverage the hybrid engine over the parametric

engine.
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Exit/Entry States
Transitions Time(s)

Original Dummy Hybrid Parametric

10 100 20 0.08 0.33

11 121 22 0.09 0.6

12 144 24 0.1 1

13 169 26 0.11 1.49

14 196 28 0.11 4

15 225 30 0.13 10

16 256 32 0.13 TO

Table 5.3: The model checking comparison between parametric and hybrid engines of the
PRISM model checker

5.6.2 Inductive Model Reduction

First, we compare the performance and scalability of inductive model reduction technique

against conventional model checking. In this experimental study, we are using the hybrid

engine of the PRISM model checker for the conventional approach as it leads to overall

best performance in practice (thus, used as default engine in the PRISM model checker).

Table 5.4 shows the experimental results of applying these approaches on the NAND

multiplexing DTMC model. The sub columns ’PRISM’ and ’Inductive’ of the column

’States’ represent the state space of the original model and the required state space for

the inductive model reduction, respectively. Meanwhile, the sub columns ’PRISM’ and

’Inductive’ under the column ’Time’ shows the total time taken to yield the model checking

result for the respective approaches. In this experiment, the time is shown in seconds and

the time-out has been set to 10 minutes.

The size of the original state space varies with respect to both parameters K and N .

In contrast, the size of the state space constructed by our technique is a constant for

all values of K attached with a particular N , due to the fact that K is the recurrence
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parameter of NAND multiplexing model. We can clearly observe that inductive model

reduction technique yields a huge reduction in the state space for larger values of K as it

only explores the necessary states space for its computations. Henceforth, we can state

that our novel approach is not susceptible for the state space explosion for larger values

of K. The inductive model reduction technique involves very expensive computations to

derive an end function for a given reachability property in the form of P=?[F target]. Thus,

this approach is slower compare to the conventional model checking for smaller values of

the recurrence parameter. As the performance of our approach is independent of the value

of recurrence parameter, it dominates the conventional model checking for larger values

of K which is evident from the results shown in Table 5.4.

Parameters States Time(s)

N K PRISM Inductive PRISM Inductive

4
1600 340677

1165
113.74

4.561800 383277 145.00

2000 425877 173.26

5
1600 638133

2139
316.17

19.821800 717933 435.66

2000 797733 510.50

6
1200 823895

554
390.04

136.231400 961295 508.01

1600 1098695 TO

Table 5.4: The experimental results of PRISM and inductive model reduction on NAND
multiplexing DTMC model

Secondly, we compare the performance and scalability of the current approach against

model checking that leverages bisimulation minimisation. Table 5.5 shows the experi-

mental results for employing the aforementioned approaches to perform model checking

on the Nand multiplexing model. As the bisimulation minimisation technique is only

89



implemented in the PRISM’s explicit engine, we are using that engine to perform model

reduction. We have claimed earlier that the model reduction gained from the bisimulation

minimisation technique is not always plausible for certain models. This claim becomes

evident in the case of Nand multiplexing model as the reduction is only 30% of the orig-

inal state space. In addition to this, the performance of the inductive model reduction

technique also significantly better over the bisimulation minimisation approach for this

class of models.

Parameters
States

Reduction Time(s)

N K Bisim Inductive Bisim Inductive

3
400 39158 28337

554
53.33

2.65500 48958 35437 78.51

600 58758 42537 107.15

4
400 85077 58638

1165
157.22

4.56500 106377 73338 215.30

600 127677 88038 306.73

5
400 159333 110052

2139
331.11

19.82500 199233 137652 549.20

600 239133 165252 TO

Table 5.5: The experimental results of bisimulation minimisation and inductive model
reduction on NAND multiplexing DTMC model

5.6.3 Inductive Model Reduction on Reward/Cost Models

The novel technique presented in this chapter not only applicable on inductive models but

also on models that have been preprocessed into inductive form to solve a cost-bounded

property. We have discussed in Section 5.4.1 about preprocessing these DTMC models.

The preprocessing phase results an inductively growing DTMC model that can be used
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to verify the cost-bounded property in the following form.

P=?[F 6cost target]

The corresponding property is interpreted as “the probability of reaching the target within

the given cost limit”. The experiments for this special case were carried out on the Leader

Sync DTMC model. The results, compared against the conventional model checking and

the model checking with bisimulation minimisation, were shown in Table 5.6 and Table

5.7, respectively. The columns of the Tables represent the exact meaning as in the previous

section.

From Table 5.6, it is evident that the inductive model reduction outperforms the

conventional model checking for larger values of the recurrence parameter. In the case

when N = 5, K = 5 and Costs = 2000, the size of the original state space has reached

around 25 million, henceforth, the conventional model checker has timed-out. On the

other hand, the inductive model reduction technique constructed a significantly smaller

state space. However, the bisimulation minimisation yielded a better reduction comparing

to our technique due to the fact that the original DTMC is already a greatly reducible

model. However, the implementation of bisimulation minimisation runs out of memory

(MO) when the state space of the preprocessed model reaches 1 million states whereas

our technique was able to handle it.

Our technique can also produce an end function for the time-bounded properties of

a typical DTMC by preprocessing it in the similar way. Unlike the previous case, the

PRISM model checker already has a way to verify the time-bounded properties using

the original model, which outperforms the current approach. However, we hope that

the end function produced by the inductive model reduction technique can be used for

mathematical analysis on the original with respect to the selected time-bounded property.
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Parameters States Time(s)

N K Costs PRISM Inductive PRISM Inductive

4 3
1000 274001

987
8.2

2.621500 411001 12.62

2000 548001 16.8

4 5
1000 1933001

7052
42.019

71500 2899501 64.72

2000 3866001 98.25

5 5
1000 12709001

44380
438.7

30.451500 19063501 599.3

2000 25418001 TO

Table 5.6: The experimental results of PRISM and inductive model reduction on Leader
Sync DTMC model

Parameters
States

Reduction Time(s)

N K Costs Bisim Inductive Bisim Inductive

4 5
400 773201 302

7052
42.019

7500 966501 452 64.72

600 1159801 - MO

5 5
50 635451 2002

44380
438.7

30.4575 953176 2502 599.3

100 1270901 - MO

Table 5.7: The experimental results of bisimulation minimisation and inductive model
reduction on Leader Sync DTMC model

5.7 Summary

In this chapter, we have presented an inductive model reduction technique that focuses

on linear inductive DTMCs. We have introduced methods to automatically detect and
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extract such models from a high-level modelling description, and then forming recurrence

relations from the extracted models. The solutions of these recurrence relations are used

to form an end function of recurrence parameter which can be reused to perform model

checking for various values of the recurrence parameter, without any further construction

of the state space. We also show how the inductive model reduction can be extended

to verify step-bounded and cost-bounded reachability properties on arbitrary DTMCs,

which reduces to the problem of verifying linear inductive DTMCs.
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CHAPTER 6

Conclusions

6.1 Summary and Evaluation

The main aim of this thesis was to develop scalable and efficient model reduction tech-

niques for probabilistic model checking. In particular, we focused on verifying reachability

properties of probabilistic models such as step-bounded, cost-bounded and unbounded

properties. The techniques presented in this thesis avoid explicit construction of the orig-

inal state space and therefore, the scalability of these techniques relies mainly on the size

of the reduced model. We present two different ways to construct the reduced model

directly from the high-level modelling language, in this case PRISM language, such that

the reachability properties can be verified. This way we support the probabilistic model

checking to cope with the state space explosion problem.

Another aim of this thesis was to make these technique available in practice so that

they can be applied on real world problems. Hence, we have implemented them as an

extension of the PRISM model checker. These implementations have been evaluated

against a number of benchmark models.

The main contributions of this thesis have been presented in Chapter 4 and Chapter 5.
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Below, we summarise each of these contributions.

In Chapter 4, we have proposed finite-horizon bisimulation minimisation technique,

which is a variant of probabilistic bisimulation, with the aim of reducing the model more

aggressively. This technique preserves stepwise behaviour over a finite number of steps.We

have formalised this variant and defined the subset of PCTL properties that it preserves.

We have presented a partition-refinement based algorithm for computing the coarsest

finite-horizon bisimulation quotient. We have also proposed two versions of an on-the-

fly approach, symbolic (based on SMT solvers) and explicit-state, which prevents the

construction of full Markov chain prior to minimisation, unlike the former. Finally, we

have applied the on-the-fly approach to a class of problems: models with a large number

of possible initial configurations, and showed that finite-horizon bisimulation can provide

significant gains in both verification time and scalability.

Many bisimulation minimisation algorithms [29, 80, 25] have been presented in the

context of probabilistic verification, however, they all focus on the complete minimisation.

We believe, to the best of our knowledge, we are the first to consider minimisation in the

finite-horizon setting.

In Chapter 5, we have presented an inductive model reduction technique, which fo-

cuses on a class of models whose state space linearly grows with respect to a parameter,

which is referred to as a recurrence parameter. This technique considers reachability

properties such as step-bounded, cost-bounded and unbounded. The main aim of this

work is to form an end function, for a given linear inductive DTMC, corresponding to

the recurrence parameter such that it can be reused on the expanded DTMCs. We de-

vise methods that automatically detect and extract such models from a high-level mode

description, and then perform model checking via construction and solution of a set of

recurrence relations. We show that the inductive model reduction technique outperforms

conventional model checking with and without the application of bisimulation minimi-
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sation. The experimental results also show that this technique is scalable as it requires

the same segments of the original state space for the computation for any values of the

recurrence parameter. Finally, we also show that this technique is further extended to

verify cost-bounded and step-bounded properties by preprocessing the model description

of the original model.

6.2 Future Work

The work presented in this thesis has several limitations and can be extended in a number

of ways. In this section, we discuss possible extensions of the work presented in Chapter 4

and Chapter 5.

The model reduction techniques presented in Chapter 4 are currently considering only

DTMCs. As one of the possible future extensions, these techniques can be extended to

other classes of probabilistic models, e.g. CTMCs and MDPs. Moreover, the symbolic

variant of the on-the-fly approach does not perform very well due to the fact that the

computation of detecting the intersection between partitions is expensive. We believe that

there must be a better way to present the symbolic variant as it can provide potentially

a good reduction in state space using the symbolic representation. Finally, we show that

the finite-horizon bisimulation preserves partially the step-bounded fragment of PCTL.

As a future step, the finite-horizon bisimulation can be adapted to preserve the full step-

bounded fragment of PCTL, including nested formulae.

In Chapter 5, we again focus on DTMC models. The techniques presented in this

chapter can be also extended for other classes of probabilistic models such as CTMCs

and MDPs. We first assume that there is only one recurrence variable in the inductive

model that depends on the recurrence parameter; thus, we do not handle the case where

more than one variable depends on the recurrence parameter. We believe this could lead

to non-linear recurrence behaviour and can be investigated further to reveal the actual
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underlying problem. Moreover, we also assume that the recurrence behaviour can only

be imposed on the inductive models by a single recurrence parameter. Henceforth, the

end function is derived only with respect to that particular parameter. We think that

the current approach can be extended with respect to this perspective such that the end

function depends on more than one recurrence parameters.

6.3 Conclusion

In conclusion, we have successfully introduced two different techniques that alleviate the

impact of state space explosion problem in the context of probabilistic verification. We

have formally defined each of these techniques, implemented them as an extension of the

PRISM model checker and evaluated them over standard benchmarks.

We have also showed that our work outperforms the implementations of the PRISM

model checker (state-of-the-art techniques) for specific class of probabilistic models. Fi-

nally, We have proposed number of possible directions in which our work can be extended.
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APPENDIX A

SMT Queries for Tournament Game

We illustrate the SMT-based approach with an example. We use a PRISM model of

a Tournament game, which comprises K particles labelled with values from a range

0, . . . , N−1. Particles interact at random, and when doing so, the particle with the

larger state value wins, and copies its value to the other. Figure A.1 shows the PRISM

model, for N = 3, K = 5. For modelling convenience, we actually describe the model as a

continuous-time Markov chain (CTMC), and consider its embedded Markov chain as the

DTMC to be analysed.

Figure A.2 shows an example of an SMT query that is constructed for the input target

expression (c2 = 5) & (c0 + c1 = 0) and for the following command:

c1 > 0 & c2 > 0 & c2 < K → 2× c1× c2 : (c1′ = c1− 1) & (c2′ = c2 + 1)

In the model, variable ci counts the number of particles in state i. The command repre-

sents the interaction between particles in states 1 and 2.

The SMT query above will be dispatched as an input to the solver to check for its

satisfiability. If this query is satisfiable, a value for p will be retrieved from the solution
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ctmc

// Number of fitness levels: N
const int N = 3;

// Total number of agents/particles: K
const int K = 5;

module tournament

// Counters: ci = number of agents/particles with fitness i
c0 : [0..K ];
c1 : [0..K ];
c2 : [0..K ];

// Possible reactions between agents/particles
// Each possible pairwise collision
[r01 ] c0>0 & c1>0 & c1<K → 2 ∗ c0 ∗ c1 : (c0 ′=c0 − 1) & (c1 ′=c1 + 1);
[r02 ] c0>0 & c2>0 & c2<K → 2 ∗ c0 ∗ c2 : (c0 ′=c0 − 1) & (c2 ′=c2 + 1);
[r12 ] c1>0 & c2>0 & c2<K → 2 ∗ c1 ∗ c2 : (c1 ′=c1 − 1) & (c2 ′=c2 + 1);
// Collision between 2 identical agents/particles
[r00 ] c0>1 → c0 ∗ (c0 − 1) : true;
[r11 ] c1>1 → c1 ∗ (c1 − 1) : true;
[r22 ] c2>1 → c2 ∗ (c2 − 1) : true;

endmodule

// Initial states
init c0 + c1 + c2=K & c2>0 endinit

// Labels (atomic propositions) for properties:

// Finished: all agents/particles have maximum fitness
label “done” = c2>K ;
label “target” = c2=K & c0 + c1=0;

// Reward structure used to reason about passage of time (discrete steps)
rewards “time”

true : 1;
endrewards

Figure A.1: PRISM modelling language description of the Tournament game (N = 3).

produced by the solver. As presented in Figure A.3, an expression for a set of predecessor

states that satisfies the value p will be generated. Afterwards, the initial SMT query will

be updated as shown in Figure A.4, i.e., not (= p 8) is used as a blocking expression, to

rule out the previous solution.
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Figure A.2: SMT query representing a guarded command

Figure A.3: SMT query to find predecessors for a specific probability value

Figure A.4: SMT query updated with a blocking expression to find further matches
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