
PRISM 4.0:
Verification of Probabilistic Real-time Systems

Marta Kwiatkowska1, Gethin Norman2, and David Parker1

1 Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
2 School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. This paper describes a major new release of the PRISM prob-
abilistic model checker, adding, in particular, quantitative verification of
(priced) probabilistic timed automata. These model systems exhibiting
probabilistic, nondeterministic and real-time characteristics. In many ap-
plication domains, all three aspects are essential; this includes, for ex-
ample, embedded controllers in automotive or avionic systems, wireless
communication protocols such as Bluetooth or Zigbee, and randomised
security protocols. PRISM, which is open-source, also contains several
new components that are of independent use. These include: an exten-
sible toolkit for building, verifying and refining abstractions of proba-
bilistic models; an explicit-state probabilistic model checking library; a
discrete-event simulation engine for statistical model checking; support
for generation of optimal adversaries/strategies; and a benchmark suite.

1 Introduction

This paper describes a major new release, version 4.0, of the PRISM probabilistic
model checker. This adds, in particular, formal modelling and analysis capabili-
ties for systems with probabilistic, nondeterministic and real-time characteristics,
through support for verification of (priced) probabilistic timed automata.

PRISM already provides model checking for several types of probabilistic
models: discrete- and continuous-time Markov chains and Markov decision pro-
cesses, as well as a modelling language in which to express them. The tool has
been widely taken up (downloaded more than 20,000 times) and used for quan-
titative verification in a broad spectrum of application domains, from wireless
communication protocols to quantum cryptography to systems biology. In many
cases, flawed or anomalous behaviour has been identified, from worst-case per-
formance conditions for Bluetooth [2] to behavioural predictions (later validated
experimentally) for biological signalling pathways [4].

Increasingly, though, new application domains are dictating the need for
quantitative verification techniques and tools for richer classes of models. Embed-
ded systems, such as in multimedia devices or avionic systems, exhibit stochas-
tic behaviour and also operate under constraints on timing and other resources.
PRISM 4.0 supports (priced) probabilistic timed automata, a natural model for
such systems. It also incorporates several new components, including engines for
quantitative abstraction-refinement [9] and statistical model checking [14,5]. The

2 Marta Kwiatkowska, Gethin Norman, and David Parker

Time Nondeterminism Probabilistic Models

discrete
no discrete-time Markov chains (DTMCs)

yes
Markov decision processes (MDPs)

probabilistic automata (PAs)

continuous
no continuous-time Markov chains (CTMCs)

yes
probabilistic timed automata (PTAs)

priced probabilistic timed automata (PPTAs)

Fig. 1. The types of probabilistic models currently supported by PRISM, classified by
modelling of time and the presence of nondeterminism; boldface denotes new additions.

components are designed to be extensible and re-usable. As well as improving
scalability for existing model types and adding support for (infinite-state) PTAs,
they are targeted at facilitating verification of more expressive classes of models
such as probabilistic and stochastic hybrid systems.

1.1 Functionality overview

We begin with a brief overview of the current functionality of the PRISM tool.
Items in boldface denote new or improved features in version 4.0, which are
described in more detail in the remainder of the paper.

– modelling and construction of many types of probabilistic models (see Fig. 1
for a summary), now including probabilistic timed automata; all can be
augmented with costs or rewards, in the case of PTAs yielding the model of
priced probabilistic timed automata;

– model checking of a wide range of quantitative properties, expressed in a
language that subsumes the temporal logics PCTL, CSL, LTL and PCTL*,
as well as extensions for quantitative specifications and costs/rewards;

– multiple model checking engines, both symbolic (BDD-based) and explicit-
state; and a variety of probabilistic verification techniques, such as symme-
try reduction and quantitative abstraction refinement;

– a discrete-event simulator, with support for statistical model checking
methods, including confidence-level approximation and acceptance sampling;

– model import options, e.g. from SBML (systems biology markup language);

– optimal adversary/strategy generation for nondeterministic models;

– a GUI, with model editor, simulator and graphing, or command-line tool;

– a benchmark suite of probabilistic models and associated properties.

2 Probabilistic Timed Automata (PTAs)

Probabilistic timed automata (PTAs) [6,12] are finite-state automata enriched
with real-valued clocks, in the style of timed automata, and with discrete prob-
abilistic choice, in the style of Markov decision processes (MDPs).

Clocks are real-valued variables, whose values increase simultaneously over
time. Predicates over clock variables called guards and invariants are assigned
to transitions and states, respectively, imposing restrictions on when transitions

PRISM 4.0: Verification of Probabilistic Real-time Systems 3

0.9

send

tries N≤

s 1=

x 5≤

s 3=s 2=

s 0=

x 2≤

x 1≥tries N>

quit

tries 0:=

x 3≥

++,tries
0.1

x 0:=

x 0:=⋀

retry

true true

pta
const int N ;
module transmitter

// Local variables
s : [0..3] init 0;
tries : [0..N+1] init 0;
x : clock;
invariant

(s=0⇒ x≤2)& (s=1⇒ x≤5)
endinvariant

// Guarded commands
[send] s=0& x≥1& tries≤N → 0.9 : (s′=3)

+ 0.1 : (s′=1)&(tries′=tries+1)&(x′=0);
[retry] s=1& x≥3 → (s′=0)&(x′=0);
[quit] s=0& tries>N → (s′=2);

endmodule
rewards “energy” (s=0) : 2.5; endrewards

Fig. 2. Left: A PTA, with clock x and integer variable tries, modelling attempted
message transmission over an unreliable channel. Right: corresponding PRISM code.

can occur and how long can be spent in a state. For ease of modelling, we can also
add finite-ranging data variables to a PTA. Transitions between states can reset
clocks (to integer values) and update data variables. This is done probabilistically :
the target state, clock resets and variable updates are specified by a discrete
probability distribution. The choice between multiple transitions, as well as the
elapse of time (subject to invariant satisfaction) are both nondeterministic.

Fig. 2 (left) shows a simple example of a PTA, modelling repeated attempts
to transmit a message over an unreliable channel. The system tries to send for
between 1 and 2 time-units. With probability 0.1, this fails, in which case a delay
of between 3 and 5 time-units elapses before retrying (up to N times).

PTAs can be augmented with information about costs incurred or, equiva-
lently, rewards gained (PRISM uses the latter terminology). This model, often
known as priced PTAs, allows reasoning about a wide range of additional prop-
erties, such as energy consumption or resource usage. PRISM supports linearly
priced PTAs, where costs/rewards are accumulated at a rate proportional to the
elapse of time, with the rate depending on the current state (and data variables).

Finally, we mention that PTAs also support parallel composition (as for timed
automata and MDPs), in which multiple PTAs operate concurrently, synchro-
nising on transitions with matching labels. For precise details, see [11].

Modelling PTAs. PRISM uses a uniform modelling language for all the prob-
abilistic models that it supports, including PTAs. This is a textual language,
based on guarded command notation. To support PTAs, PRISM 4.0 adds a new
clock datatype. Clock variables can appear (as convex expressions) in guards, on
the left-hand side of a command, and can be reset, like any other variable, with
an update on the right-hand side. A new invariant keyword is introduced to
allow expression of invariants. Fig. 2 (right) gives a PRISM modelling language
description for the example PTA described above. It also shows an example of
a PRISM reward structure, labelled “energy”, to create a priced PTA which
assigns a reward rate of 2.5 when s=0, i.e. during message transmission.

4 Marta Kwiatkowska, Gethin Norman, and David Parker

PTA verification techniques. PRISM analyses two main classes of properties
for PTAs: (i) the minimum/maximum probability of reaching a target, possibly
within a time bound (e.g. “the maximum probability of an airbag failing to
deploy within 0.02 seconds”); and (ii) the minimum/maximum expected reward
accumulated until a target is reached (e.g. “the maximum expected time for the
protocol to terminate”). Two verification methods are implemented:

– Quantitative abstraction refinement [9] constructs and analyses a series of
probabilistic abstractions, automatically refining at each step to produce
more precise results (see also Section 3). By using stochastic two-player game
abstractions, defined in terms of zones, this yields an effective technique for
exact verification of probabilistic reachability properties of PTAs [10]. Since
experimental results in [10] show that this method generally outperforms all
others currently available, this is the default engine in PRISM.

– Digital clocks [11] performs an automatic model translation to an equivalent
finite-state, discrete-time model (with integer-valued clocks)1 and then uses
PRISM’s existing MDP model checking techniques. For (non-probabilistic)
timed automata, such methods are usually much less efficient than on-the-
fly zone-based reachability (as, e.g., in UPPAAL [13]). For PTAs, which lack
such on-the-fly methods, the digital clocks approach remains competitive,
especially in combination with PRISM’s symbolic (BDD-based) implemen-
tation. This method also has the widest applicability, supporting both proba-
bilistic reachability properties and expected cumulative rewards for (linearly)
priced probabilistic timed automata [11].

Related tools. UPPAAL [13] is the leading verification tool for timed automata.
A recent extension, UPPAAL-PRO [15], adds support for PTAs, but currently
only analyses maximum probabilistic reachability properties. Fortuna [1] sup-
ports the same class but also allows the inclusion of reward-bounds when (lin-
early) priced PTAs are considered. Another tool aimed at verification of proba-
bilistic real-time systems is mcpta [3], which translates a subset of the modelling
language Modest into PRISM using digital clocks [11]. Finally, MRMC [7], a
probabilistic model checker for Markov chains and Markov reward models, has
recently also added support for continuous-time MDPs, another model combin-
ing nondeterministic, probabilistic and real-time features. For a more detailed
list of probabilistic verification tools, including other tools for abstraction refine-
ment (such as RAPTURE, PASS) and statistical model checking, see [18].

3 Other New PRISM Components and Features

Quantitative abstraction refinement toolkit. As described above, PRISM’s
default PTA verification technique uses quantitative abstraction refinement [9].
This can be seen as a quantitative analogue of classical counterexample-guided
abstraction refinement. It provides a fully automatic approach to verification of
large or infinite-state probabilistic systems, by iteratively building, analysing and

1 Under slight restrictions, e.g. strict clock comparisons (such as x<1) are not allowed.

PRISM 4.0: Verification of Probabilistic Real-time Systems 5

refining increasingly precise probabilistic abstractions. In addition to PTAs [10],
the same approach has been applied to verification of probabilistic software (us-
ing predicate abstraction and SAT) [8] and to finite-state MDPs [9]. While these
implementations all build abstractions of MDPs as stochastic two-player games,
the same approach can be used to, for example, build abstractions of Markov
chains as Markov decision processes. Quantitative abstraction refinement is im-
plemented in PRISM in the form of an extensible toolkit, with support for mul-
tiple model types, refinement strategies and configurable optimisations.

Explicit-state probabilistic model checking library. PRISM already fea-
tures several model checking engines (called “MTBDD”, “sparse”, and “hy-
brid”), all either fully or partially symbolic (i.e. BDD-based). The tool now incor-
porates a new, entirely explicit-state probabilistic model checking library, imple-
mented in Java and based on sparse matrix data structures. It supports stochas-
tic two-player games, Markov decision processes and discrete- and continuous-
time Markov chains. The code is designed to serve as a general purpose library,
either for inclusion in other techniques or for prototyping new model checking al-
gorithms. For example, the library is used in the abstraction-refinement toolkit,
in which probabilistic models need to be constructed and modified on-the-fly, a
task not well-suited to symbolic implementations.

Simulation engine and statistical model checking. Version 4.0 of PRISM
incorporates a newly rewritten version of its discrete-event simulation engine.
This provides efficient random generation of paths through PRISM models, both
for the purposes of debugging models and to support so-called statistical (or ap-
proximate) model checking techniques [14,5]. PRISM now offers two types of
such analysis. For quantitative properties (e.g. P=?[·] in PRISM notation), it
either generates a confidence interval (based on a given confidence level) or a
probabilistic guarantee of correctness, using the Chernoff-Hoeffding bound [5].
For bounded properties (e.g. P<0.1[·]), it uses acceptance sampling [14], im-
plementing Wald’s sequential probability ratio test (SPRT). Statistical model
checking offers significantly improved scalability, in comparison to conventional
probabilistic model checking techniques, and applies to a broader class of models.

Optimal adversary (strategy) generation. PRISM’s MDP verification im-
plementation now includes the ability to generate optimal adversaries (also
known as strategies). This means that, when PRISM computes the minimum or
maximum value for a probabilistic reachability (or expected reward) property, it
can also generate an adversary (resolution of nondeterminism in the model) that
produces it. This can be used to debug or analyse the results of model checking,
for example in order to generate probabilistic counterexamples, or to produce
an optimal solution for a scheduling problem. Furthermore, by using the digital
clocks engine, optimal adversaries can also be generated for PTAs.

The PRISM benchmark suite. There are a large number of existing PRISM
case studies, distributed with the tool, included in publications and on the tool
website [16]. These are widely used, for example to evaluate new model checking

6 Marta Kwiatkowska, Gethin Norman, and David Parker

techniques, or to compare model checking implementations and tools. Unfor-
tunately, there are often several different variants of each model and it is not
always easy to locate a particular class of models or properties. The PRISM
benchmark suite [17] aims to provide a comprehensive source of freely-available
benchmarks for probabilistic model checking. It includes a large selection of
probabilistic models, of varying types and sizes, and corresponding properties
for model checking, grouped by type. External contributions are also welcomed.

Technical details and availability. PRISM is free and open source (GPL). It
is coded in a mix of Java and C++, and runs on all major operating systems.
It is available for download from http://www.prismmodelchecker.org/.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, EU-FP7 project CONNECT, DARPA/Air Force Research Labora-
tory contract FA8650-10-C-7077 (PRISMATIC) and EPSRC grant EP/D07956X.
For a full list of PRISM contributors, see [16].

References

1. Berendsen, J., Jansen, D., Vaandrager, F.: Fortuna: Model checking priced proba-
bilistic timed automata. In: Proc. QEST’10. pp. 273–281 (2010)

2. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of Blue-
tooth device discovery. STTT 8(6), 621–632 (2006)

3. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: Proc. QEST’09. pp. 187–196 (2009)

4. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilis-
tic model checking of complex biological pathways. TCS 319(3), 239–257 (2008)

5. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Proc. VMCAI’04. pp. 307–329. LNCS (2004)

6. Jensen, H.: Model checking probabilistic real time systems. In: Proc. 7th Nordic
Workshop on Programming Theory. pp. 247–261 (1996)

7. Katoen, J.P., Hahn, E.M., Hermanns, H., Jansen, D., Zapreev, I.: The ins and outs
of the probabilistic model checker MRMC. In: Proc. QEST’09. pp. 167–176 (2009)

8. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refinement
for probabilistic software. In: Proc. VMCAI’09. pp. 182–197. LNCS (2009)

9. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based abstrac-
tion-refinement framework for Markov decision processes. FMSD 36(3) (2010)

10. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Proc. FORMATS’09. pp. 212–227. LNCS (2009)

11. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. FMSD 29, 33–78 (2006)

12. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. TCS 282, 101–150 (2002)

13. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

14. Younes, H., Simmons, R.: Probabilistic verification of discrete event systems using
acceptance sampling. In: Proc. CAV’02. pp. 223–235. LNCS (2002)

15. http://www.cs.aau.dk/~arild/uppaal-probabilistic/
16. http://www.prismmodelchecker.org/
17. http://www.prismmodelchecker.org/benchmarks/
18. http://www.prismmodelchecker.org/other-tools.php

http://www.prismmodelchecker.org/
http://www.cs.aau.dk/~arild/uppaal-probabilistic/
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/benchmarks/
http://www.prismmodelchecker.org/other-tools.php

	PRISM 4.0: Verification of Probabilistic Real-time Systems

