
Pareto Curves for Probabilistic Model Checking

Vojtěch Forejt1, Marta Kwiatkowska1, and David Parker2

1 Department of Computer Science, University of Oxford, UK
2 School of Computer Science, University of Birmingham, UK

Abstract. Multi-objective probabilistic model checking provides a way
to verify several, possibly conflicting, quantitative properties of a stochas-
tic system. It has useful applications in controller synthesis and composi-
tional probabilistic verification. However, existing methods are based on
linear programming, which limits the scale of systems that can be anal-
ysed and makes verification of time-bounded properties very difficult.
We present a novel approach that addresses both of these shortcomings,
based on the generation of successive approximations of the Pareto curve
for a multi-objective model checking problem. We illustrate dramatic im-
provements in efficiency on a large set of benchmarks and show how the
ability to visualise Pareto curves significantly enhances the quality of
results obtained from current probabilistic verification tools.

1 Introduction

Probabilistic model checking is an automated technique for verifying systems
that exhibit stochastic behaviour. This arises due to, for example, failures in
physical components, unreliable communication media or randomisation. Sys-
tems are typically modelled as Markov chains or Markov decision processes
(MDPs), and probabilistic temporal logics are used to specify quantitative prop-
erties to be verified such as “the probability of a message packet being lost is
less than 0.05” or “the expected energy consumption is at most 100 mJ”.

It is often necessary to incorporate nondeterminism into system models, to
represent, for example, the actions of an external controller or the order in which
a scheduler chooses to interleave system components running in parallel. In these
cases, systems are usually modelled as MDPs. Each possible way of resolving
the nondeterminism in an MDP is represented by an adversary (also known as
a strategy or policy). Properties to be verified against the MDP quantify over
its adversaries, e.g., “the probability of a message packet being lost is less than
0.05 for all possible adversaries”. It is also common to use numerical queries,
e.g., “what is the maximum expected energy consumption?”.

Model checking reduces to an optimisation problem, namely determining the
maximum (or minimum) probability (or expected cost/reward) achievable by any
adversary. For the most common classes of property (the probability of reaching
a set of target states or the expected cumulated reward), model checking can
be reduced to solving a linear programming (LP) problem. In practice, however,
most probabilistic verification tools use (approximate) iterative numerical meth-
ods, such as value iteration [19], since they scale to much larger systems and are

ar
X

iv
:1

20
6.

62
95

v1
 [

cs
.L

O
]

24
 Ju

n
20

12

2 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

amenable to symbolic (BDD-based) implementations. Value iteration can also
be used for time-bounded (finite-horizon) properties, which is impractical with
LP. Another alternative is policy iteration, but this is also impractical for time-
bounded properties, and preliminary investigations in [10] showed no particular
improvement over value iteration in the context of probabilistic verification.

There has recently been increased interest in multi-objective probabilistic
model checking for MDPs [5,9,11,4], which can be used to analyse trade-offs
between several, possibly conflicting, quantitative properties. Consider, for ex-
ample, two events of interest, A and B, and let pσA and pσB be the probability that
each occurs under an adversary σ of an MDP. In this paper, we study several
kinds of multi-objective properties. Achievability queries ask, e.g., “is there an
adversary σ satisfying the predicate ψ = pσA�x∧pσB�y?” and numerical queries
ask, e.g., “what is maximum value of x such that ψ is achievable?”. We also
consider the Pareto curve of undominated solution points: for this example, the
set of pairs (x, y) such that ψ is achievable but any increase in either x or y
would necessitate a decrease in the other.

Multi-objective techniques have natural applications to controller synthesis
for MDPs (e.g., “how can we maximise the probability of successful message
transmission, whilst keeping the expected energy usage below 100 mJ?”). They
also form the basis of recent compositional verification techniques [15], which
decompose model checking into separate tasks for each system component using
assume-guarantee reasoning (e.g., “what is the maximum probability of a global
system error, under the assumption that component 1 fails with probability at
most 0.02?”). This approach has been successfully used to verify probabilistic
systems too large to analyse without compositional techniques.

Existing multi-objective model checking methods [5,9,11,4] rely on a reduc-
tion to LP. The linear program solved, although of a rather different form to the
standard (single objective) case, is still linear in the size of the MDP, yielding
polynomial time complexity. As discussed above, though, LP-based probabilis-
tic verification has several important weaknesses. In this paper, we present a
novel approach to multi-objective model checking of probabilistic reachability
and expected total reward properties. Our method is based on the generation
of successive, increasingly precise approximations to the Pareto curve by opti-
mising weighted sums of objectives using value iteration. On a large selection of
benchmarks, we demonstrate the following benefits:

(i) dramatic improvements in run-time efficiency, by factors of up to 150;
(ii) significant scalability improvements: over an order of magnitude model size;
(iii) the usefulness of visualising Pareto curves for verification problems;
(iv) solution of time-bounded probabilistic reachability and cumulative reward.

The last of these also paves the way for the development of multi-objective
techniques for richer, timed classes of models such as continuous-time MDPs.

This paper is an extended version, with additional details and proofs, of [12].

Related work. Multi-objective optimisation has been extensively studied in ar-
eas such as operations research, economics and stochastic control [6], including

Pareto Curves for Probabilistic Model Checking 3

its application to MDPs [1]. Many general approaches exist, based on, for exam-
ple, normalising multiple objectives into a single weighted objective; constrained
approaches optimising one objective while bounding the others; heuristic search
using, e.g., evolutionary algorithms [7]; application of satisfiability/constraint
solvers [17]; and stochastic search with restarts [16]. Several methods, including
e.g. [16], iterate over weighted sums of objectives, as we do; the main difference is
that our approach is tailored to the convex, linear problems derived from MDPs.

Multi-objective optimisation is routinely used in areas such as embedded
systems design and a variety of general-purpose optimisation tools exist, e.g.,
PISA [2], ModeFRONTIER and libraries for MATLAB. Such tools tend to be
targeted at much more complex (e.g., non-convex and non-linear) design spaces
than the ones that we focus on in this paper. They are also typically used for
static design problems, rather than our dynamic models of system behaviour.

A rigorous complexity analysis of multi-objective optimisation, in particular
for approximating Pareto curves, was undertaken in the influential work of [18].
More recently [8], some of these results were improved for the simpler case of
convex multi-objective problems but no practical investigations are undertaken.

Most relevant to the current work is the application of multi-objective optimi-
sation to probabilistic verification [5,9,11,4]. In [5,9,4], discounted total reward,
probabilistic ω-regular and long-run average properties are studied, respectively.
In each case, algorithms are given using a reduction to LP, also showing the
existence of methods to approximate Pareto curves using the results of [18], but
implementations are not considered. The work of [11] adds expected total reward
properties and provides an implementation, based on LP. As discussed above, the
performance and scalability of our approach is significantly better, as we show in
Section 5. None of the above consider time-bounded properties. In principle, for
discrete-time models like MDPs, these can be reduced to unbounded properties
using a finite counter but this is generally impractical in terms of scalability.

2 Background

Geometry. For a vector x ∈ Rn, we use xi to denote its i-th component and
say x is a weight vector if xi � 0 for all i and

�n
i=1

xi = 1. The Euclidean
inner product of x,y ∈ Rn is defined as x · y =

�n
i=1

xi · yi. For a set of vectors

X = {x1, . . .xk} ⊆ Rn, a convex combination is
�k

j=1
wj · xj for some weight

vector w ∈ Rk. We use down(X) to denote the downward closure of the convex
hull of X, i.e. the set of vectors z ∈ Rn that satisfy z � y for some convex
combination y of X. Given a convex set Y , we say that a point y ∈ Y is on the
boundary of Y if, for any ε > 0, there is a point z �∈ Y such that the Euclidean
distance between y and z is at most ε. From the separating hyperplane and
supporting hyperplane theorems, we have the following.

Proposition 1 ([3]). Let Y⊆Rn be a downward closed set of points. For any
p ∈ Rn not in Y , there is a weight vector w ∈ Rn such that w·p > w·y for all
y ∈ Y . Also, for any q on the boundary of Y , there is a weight vector w ∈ Rn

such that w·q � w·y for all y ∈ Y . We say that w separates q from down(Y).

4 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

Markov decision processes (MDPs). MDPs are commonly used to model
systems with probabilistic and nondeterministic behaviour. Denoting by Dist(X)
the set of probability distributions over a set X, an MDP takes the form M =
(S, s̄,α, δ), where S is a set of states, s̄ ∈ S is an initial state, α is a set of actions
and δ : S×α → Dist(S) is a (partial) probabilistic transition function.

Each state s of an MDP M has an associated set A(s) of enabled actions,

given by A(s)
def
= {a ∈ α | δ(s, a) is defined}. If action a ∈ A(s) is taken in state s,

then the next state is determined randomly according to the distribution δ(s, a),
i.e., a transition to state s� occurs with probability δ(s, a)(s�). A path through
M is a (finite or infinite) sequence π = s0a0s1a1 . . . where s0=s̄, and ai ∈ A(si)
and δ(si, ai)(si+1) > 0 for all i. We denote by IPaths (FPaths) the set of all
infinite (finite) paths and, for finite path π, last(π) is its last state.

An adversary σ : FPaths → Dist(α) (also called a strategy or policy) of M
is a resolution of the choices of action in each state, based on its execution so
far. In standard fashion [13], an adversary σ induces a probability measure PrσM
over IPaths . An adversary σ is deterministic if σ(π) is a Dirac distribution for
all π (and randomised if not); it is memoryless if σ(π) depends only on last(π).
The set of all adversaries for M is AdvM.

A reward structure for M is a function ρ : S × α → R mapping actions to
(positive or negative) reals. For an infinite path π = s0a0s1a1 . . . and a number

k ∈ N∪{∞} the total reward in k steps for π over ρ is ρ[k](π)
def
=

�k−1

i=0
ρ(si, ai).

Model checking MDPs. In this paper, we focus on two key classes of properties
for MDPs: the probability of reaching a target and the expected total reward. In
each case, we consider both time-bounded and unbounded variants. We will later
discuss generalisation to more expressive properties. In this and the following
sections, we assume a fixed MDP M = (S, s̄,α, δ).

Definition 1 (Reachability predicate). A reachability predicate [T]�k
∼p com-

prises a set of target states T ⊆ S, a relational operator ∼∈{�,�}, a rational
probability bound p and a time-bound k ∈ N ∪ {∞}. It states that the probability
of reaching T within k steps satisfies ∼ p. Formally, satisfaction of [T]�k

∼p by

MDP M, under adversary σ, denoted M,σ |= [T]�k
∼p, is defined as follows:

M,σ |= [T]�k
∼p ⇔ PrσM({s0a0s1a1 · · · ∈ IPaths | ∃i � k : si ∈ T}) ∼ p .

Definition 2 (Reward predicate). A reward predicate [ρ]�k
∼r comprises a re-

ward structure ρ : S×α → R, a relational operator ∼∈{�,�}, a rational reward
bound r and a time bound k ∈ N∪ {∞}. It states that the expected total reward
cumulated within k steps satisfies ∼ r. Formally, satisfaction of [ρ]�k

∼r by M,
under adversary σ, denoted M,σ |= [ρ]�k

∼r , is defined as follows:

M,σ |= [ρ]�k
∼r ⇔ ExpTotσ,kM (ρ) ∼ r where ExpTotσ,kM (ρ)

def
=

�
π ρ[k](π) dPr

σ
M.

For the unbounded forms of the notation above (k = ∞), we will often omit k,
writing e.g. [ρ]∼r instead of [ρ]�∞

∼r or ExpTotσM(ρ) instead of ExpTotσ,∞M (ρ).
For this paper, we also need to consider weighted sums of rewards.

Pareto Curves for Probabilistic Model Checking 5

Definition 3 (Weighted reward sum). Given a weight vector w ∈ Rn and
vectors of time bounds k = (k1, . . . , kn) ∈ (N ∪ {∞})n and reward structures
ρ = (ρ1, . . . , ρn) for MDP M, the weighted reward sum w·ρ[k] over a path π

is defined as w·ρ[k](π) def
=

�n
i=1

wiρi[k](π). The expected total weighted sum

is then: ExpTotσ,kM (w·ρ) def
=

�
π w·ρ[k](π) dPrσM. For any adversary σ, we have:

ExpTotσ,kM (w·ρ) =
�n

i=1
wiExpTot

σ,ki

M (ρi) .

Notice that satisfaction of reachability and reward predicates is defined above
with respect to a specific adversary σ of an MDP M. When performing model
checking on the MDP, the most common approach is to verify that such a predi-
cate is satisfied for all adversaries σ ∈ AdvM. An alternative, often described as
controller synthesis, is to ask the dual question: whether there exists an adversary
σ satisfying the predicate. In either case, model checking reduces to computing
the maximum or minimum reachability probability or expected reward. For the
unbounded cases, this can be done by solving an LP problem, using policy iter-
ation, or with value iteration, an approximate iterative numerical method [19].
For time-bounded properties, only value iteration is applicable.

3 Multi-objective Queries

We now describe how to formalise multi-objective queries for MDPs. In the
following section, we will present novel, efficient algorithms for their verification.
We formulate our queries in a similar style to the one taken in [11], but with two
key additions. Firstly, we include the ability to specify time-bounded reachability
and reward properties. Secondly, we consider Pareto curves.

The essence of multi-objective properties for MDPs is that they require mul-
tiple predicates to be satisfied concurrently for the same adversary.

Definition 4 (Multi-objective predicate). A multi-objective predicate is a
vector ψ=(ψ1, . . . ,ψn) of reachability or reward predicates. We say that ψ is
satisfied by MDP M under adversary σ, denoted M,σ |=ψ, if M,σ |=ψi for
all 1 � i � n. We call ψ a basic multi-objective predicate if it is of the form
([ρ1]

�k1

�r1
, . . . , [ρn]

�kn

�rn
), i.e. it comprises only lower-bounded reward predicates.

We define three ways to formulate multi-objective queries for an MDP: achiev-
ability queries, which check for the existence of an adversary satisfying a multi-
objective predicate ψ; numerical queries, which maximise or minimise a reach-
ability/reward objective over the set of adversaries satisfying ψ; and Pareto
queries, which determine the Pareto curve for a set of objectives.

Definition 5 (Achievability query). For MDP M and multi-objective pred-
icate ψ, an achievability query asks if ψ is satisfiable (or achievable), i.e.
whether there exists an adversary σ ∈ AdvM such that M,σ |=ψ.

Definition 6 (Numerical query). For MDP M, a numerical query is of the
form num([o1]

�k1
� , (ψ2 . . . ,ψn)), comprising an n−1-sized multi-objective predi-

cate (ψ2 . . . ,ψn) and an objective [o1]
�k1
� , where o1 is a reward structure ρ1 or

6 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

s0

s3

s1

s2

a, 0 0.2

0.3
0.5

b, 1

0.1

0.9 c, 1 1

a, 0

1

a, 0

1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

(b)

0

0.5

1

1.5

2

0 0.1 0.2 0.3

(c)

Fig. 1. Example MDP (a), graphs for ([{s1}]�x, [{s3}]�y) (b) and ([{s1}]�2
�x, [ρ]�y) (c).

target set T1, k1 ∈ N ∪ {∞} is a time bound and � ∈ {min,max}. We define:

num([o1]
�k1
min

, (ψ2, . . . ,ψn))
def
= inf{x ∈ R | ([o1]�k1

�x ,ψ2, . . . ,ψn) is satisfiable} .
num([o1]�k1

max, (ψ2, . . . ,ψn))
def
= sup{x ∈ R | ([o1]�k1

�x ,ψ2, . . . ,ψn) is satisfiable} .

Definition 7 (Pareto query). For MDP M, a Pareto query takes the form
pareto([o1]

�k1
�1 , . . . , [on]

�kn
�n), where each [oi]

�ki
�i is an objective as in Defn. 6. The

set of achievable values is A = {x ∈ Rn | ([o1]�k1
∼1x1

, . . . , [on]�kn
∼nxn

) is satisfiable}
where ∼i=� if �i = max and ∼i=� if �i = min. We say, for points x,y ∈ A,
that x dominates y if xi ∼i yi for all i and xj �= yj for some j. Then:

pareto([o1]
�k1
�1 , . . . , [on]

�kn
�n)

def
= {x ∈ A | x is not dominated by any y ∈ A} .

Convexity. A fundamental property of the multi-objective optimisation prob-
lems solved in this paper (and on MDPs in general) is their convexity. More
precisely, consider target sets T1, . . . , Tn, reward structures ρ1, . . . , ρm and time-
bounds k1, . . . , kn, l1, . . . , lm ∈ N ∪ {∞}. Let xσ ∈ Rn+m be the vector defined

such that xi = PrσM(♦�kiTi) for 1�i�n and xn+j = ExpTot
σ,kj

M (ρj) for 1�j�m,
where PrσM(♦�kiTi) denotes the probability of reaching Ti in ki steps under σ.
Then, the set {xσ |σ ∈ AdvM} forms a convex polytope [9,11]1. As a direct con-
sequence of this, the set of achievable values for a Pareto query is also convex.

Example 1. Fig. 1(a) shows an MDP with accompanying reward structure ρ
indicated by underlined numbers. Consider first the multi-objective predicate
ψ = ([{s1}]�x, [{s3}]�y), which imposes lower bounds on the probabilities of
reaching states s1 and s3. The grey area in Fig. 1(b) shows the values of x and y
for which ψ is satisfiable. The two points on the graph marked as + correspond
to the two possible memoryless deterministic adversaries in M. The line joining
them (their convex closure) represents the points for all possible adversaries. For
this example, this line also constitutes the Pareto curve. Achievability queries
on ψ for (x, y) = (0.2, 0.7) and (0.4, 0.7) return true and false, respectively.
Numerical query num([{s1}]max, ([{s3}]�0.7)) returns 0.3.

Consider a second predicate ψ� = ([{s1}]�2

�x, [ρ]�y), now with a time-bounded
reachability and reward predicate. Fig. 1(c) depicts (by +) points for some of the

1 Strictly speaking, this requires finiteness of rewards, which we discuss below.

Pareto Curves for Probabilistic Model Checking 7

deterministic adversaries of M, of which there are infinitely many. Their convex
combination, the dashed area, marks the points achievable by all (randomised)
adversaries, and its downward closure, in grey, shows the values of x and y for
which ψ� is satisfiable. The Pareto curve is the black line along the top edge.

Assumptions. For the purposes of model checking the queries described in this
section, we need to impose certain restrictions on the use of rewards. For clarity,
we describe these in terms of achievability queries but they apply to all three
classes. We first need the following definition.

Definition 8 (Reward-finiteness). Let M be an MDP and consider an achiev-
ability query ψ=([T1]�k1

∼1p1
, . . . , [Tn]�kn

∼npn
, [ρ1]

�l1
��1r1 , . . . , [ρm]�lm

��mrm) for M. We say
that ψ is reward-finite if, for each 1�j�m such that lj=∞ and ��j = �,

we have: sup{ExpTotσ,ljM (ρj) | M,σ |=([T1]�k1
∼1p1

, . . . , [Tn]�kn
∼npn

)} < ∞ and is
fully reward-finite if, for each 1�j�m such that lj=∞ and ��j = �, we have:

sup{ExpTotσ,ljM (ρj) | σ ∈ AdvM} < ∞ .

Let M and ψ be as in Defn. 8. To model check ψ on M, we require that: (i)
each reward structure ρi assigns only non-negative values; (ii) ψ is reward-finite;
and (iii) for indices 1�j�m such that lj=∞, either all ��js are � or all are �.

Condition (ii) imposes natural restrictions on finiteness of rewards. Notice
that we only require finiteness for adversaries which satisfy the probabilistic
predicates contained in ψ. We adopt this approach from [11] where, in addition,
algorithms are given to check that ψ is reward-finite and to construct a modified
MDP that is equivalent (in terms of satisfiability of ψ) but for which ψ is fully
reward-finite. This can be checked by a simpler multi-objective query containing
only probabilistic predicates. Thus, in the remainder of this paper, we assume
that all queries are fully reward-finite.

Condition (iii) ensures that the algorithms we define in the next section do not
need to compute unbounded expected total rewards for MDPs with both positive
and negative rewards, which is unsound. For unbounded reachability predicates,
again using methods from [11], we can easily invert their bounds (to match those
of any reward predicates) by making a simple change to the MDP.

Extensions. We also remark that the class of multi-objective properties out-
lined in this section can be extended in several respects. In particular, as shown
in [11], we can add support for probabilistic ω-regular (e.g. LTL) properties via
reduction to probabilistic reachability on a product of the MDP and one or more
deterministic Rabin automata. That work also allows arbitrary Boolean combi-
nations of predicates, which are reduced to disjunctive normal form and treated
separately. Both of these extensions can be adapted to our setting; the former
we have implemented and used for our experiments in Section 5.

4 Multi-objective Probabilistic Model Checking

We now present efficient algorithms for checking the multi-objective queries de-
fined in the previous section. Proofs of correctness can be found in the Appendix.

8 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

Input: MDP M, multi-objective predicate ψ = ([ρ1]
�k1
�r1

, . . . , [ρn]
�kn
�rn

)
Output: true if ψ is achievable, false if not

1 X := ∅; ρ = (ρ1, . . . ρn); k = (k1, . . . kn); r = (r1, . . . rn);
2 do

3 Find w separating r from down(X);

4 Find adversary σ maximising ExpTotσ,kM (w·ρ);
5 q := (ExpTotσ,ki

M (ρi))1�i�n;
6 if w · q < w · r then return false;
7 X := X ∪ {q};
8 while r �∈ down(X);
9 return true;

Alg. 1. Basic algorithm for checking achievability queries

Reduction to basic form. The first step when checking any type of query is
to reduce the problem to one over a basic predicate on a modified MDP. We
do so by converting reachability predicates into reward predicates (by adding a
one-off reward of 1 upon reaching the target) and then negating objectives for
predicates with upper bounds. Formally, we do the following.

Proposition 2. Let M=(S, s̄,α, δ) be an MDP and ψ=([T1]�k1
∼1p1

, . . . , [Tn]�kn
∼npn

,

[ρ1]
�l1
��1r1 , . . . , [ρm]�lm

��mrm) be a multi-objective predicate. Let M�=(S�, (s̄, ∅),α�, δ�)
be the MDP defined as follows: S�=S × 2{1,...,n}, α�=α × 2{1,...,n} and, for all
s, s� ∈ S, a ∈ α and c ⊆ {1, . . . , n}:

– δ�((s, c), (a, c�))((s�, c ∪ c�)) = δ(s, a)(s�) where c� = {i | s ∈ Ti} \ c;
– δ�((s, c), a�)((s�, c�)) = 0 for all other c, c� and a�.

Now, let ψ� be ([ρT1]
�k1+1

�p1
, . . . , [ρTn]

�kn+1

�pn
, [ρ̄1]

�l1
�r1

, . . . , [ρ̄m]�lm
�rm

), where: reward
ρTi((s, c), (a, c

�)) is equal to 1 if i ∈ c� and ∼i = �, to −1 if ∼i = �, and to 0
otherwise; and ρ̄i((s, c), (a, c�)) is equal to ρi(s, a) if ��i = � and to −ρi(s, a) if
∼i = �. Then ψ is satisfiable in M if and only if ψ� is satisfiable in M�.

Notice that the reduction described above results in reward structures with both
positive and negative rewards. For time-bounded properties, this is not a concern.
For unbounded ones, we must take care that they are all either non-negative or
non-positive, as mentioned earlier in our discussion of condition (iii).

Achievability queries. We begin with achievability queries. We first give an
outline of the overall algorithm; subsequently, we will describe in more detail
how it is implemented in practice using value iteration.

By applying the reduction described above, we only need to consider the case
of a basic multi-objective predicate ψ = ([ρ1]

�k1

�r1
, . . . , [ρn]

�kn

�rn
). Alg. 1 shows how

to check if ψ is satisfiable. It works by generating a sequence of weight vectors
w and optimising a w-weighted sum of the n objectives. A resulting optimal ad-
versary σ is then used to generate a point q which is guaranteed to be contained
on the Pareto curve for ψ, and a collection X of such points is assembled. Each
new weight vector w is identified by finding a separating hyperplane between
down(X) and r = (r1, . . . , rn). Once r is found to be contained in down(X), we

Pareto Curves for Probabilistic Model Checking 9

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

r q

(a)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

r

q�

(b)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

(c)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

p

(d)

Fig. 2. Example executions of Algorithms 1, 3 and 4 (see Examples 2, 3 and 4).

know that ψ is achievable. If, on the other hand, w · q < w · r, then we know
that ψ cannot possibly be achievable.

Correctness of Alg. 1 is proved in Appx. A.2. Termination is guaranteed by
the fact that each iteration of the loop identifies a point q on a unique face of
the Pareto curve. In the worst case, the number of faces is exponential in |M|,
k and n [9]; however, our experimental results (in Section 5) show the number
of steps is usually small on practical examples. The individual model checking
problems solved in each step (lines 4-5 of Alg. 1) require time polynomial in |M|.
We describe their practical implementation in the next section.

Example 2. We illustrate the execution of Alg. 1 on the MDP from Exam-
ple 1 and the achievability query ([{s1}]�0.2, [{s3}]�0.7). Let us assume that we
have already applied Proposition 2 so that we have an equivalent reward predi-
cate ([ρ1]�0.2, [ρ2]�0.7) (the full reduction is in Appx. A.1). As a first (arbitrary)
weight vector, we pick w=(0.5, 0.5) and then maximise w ·ρ. The resulting opti-
mal adversary σ (which chooses a in s0) gives q = (ExpTotσM(ρ1),ExpTot

σ
M(ρ2))

= (0.4, 0.6) and we have X = {q}. Fig. 2(a) shows the point q (as) and the
target point r = (0.2, 0.7) (as). The dotted line represents the hyperplane with
orientation w passing through q (i.e. the points x for which w ·x = w ·q = 0.5),
the points above which correspond to unachievable value pairs. The grey region
is down(X), in which all points are achievable. Since r �∈ down(X), we continue.

Next, we pick a weight w� = (0.1, 0.8). Maximising w� ·ρ results in adversary
σ� (which chooses b in s0) giving q� = (0.1, 0.9), which we add to X. Fig. 2(b)
again shows both points in X, down(X) and r. It also plots points x for which
w� · x = w� · q� = 0.73. Since r is now in down(X), the algorithm returns true.

Value iteration. The most expensive part of Alg. 1 in practice is the combi-
nation of lines 4-5, which computes the maximum possible value for a weighted
sum of reward objectives, determines a corresponding optimal adversary σ, and
then finds the value for the n individual objectives under σ.

Alg. 2 shows how to perform all these tasks using a value iteration-style
computation. One key difference between this algorithm and standard value
iteration is that it needs to optimise a combination of unbounded and bounded
properties. This is done in three phases (lines 3-8, 9-13 and 14-20). The first two
correspond to the unbounded part; the third to the bounded part.

Another important difference is that the algorithm performs the optimisation
of the weighted sum w·ρ[k] and the computation of the vector of individual
objective values q = (ExpTotσ,ki

M (ρi))1�i�n simultaneously: the former in phases

10 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

Input: MDP M=(S, s̄,α, δ), weight vect. w, reward structures ρ=(ρ1, . . . , ρn),
vector of time bounds k ∈ (N ∪ {∞})n, convergence threshold ε

Output: Adv. σ maximising ExpTotσ,kM (w·ρ), q = (ExpTotσ,ki
M (ρi))1�i�n

1 x := 0; x1 := 0; . . . ; xn := 0; y = 0; y1 := 0; . . . ; yn := 0;
2 σ∞(s) = ⊥ for all s ∈ S;
3 do

4 foreach s ∈ S do

5 ys := maxa∈A(s)(
�

{i|ki=∞} wi·ρi(s, a) +
�

s�∈S δ(s, a)(s�) · xs�);

6 σ∞(s) := argmaxa∈A(s)(
�

{i|ki=∞} wi·ρi(s, a) +
�

s�∈S δ(s, a)(s�) · xs�);

7 δ := maxs∈S (ys − xs); x := y;

8 while δ > ε;
9 do

10 foreach s ∈ S and i ∈ {1, . . . , n} where ki = ∞ do

11 yi
s := ρi(s,σ

∞(s)) +
�

s�∈S δ(s,σ∞(s))(s�) · xi
s� ;

12 δ := maxn
i=1 maxs∈S (yi

s − xi
s); x

1 := y1; . . . ; xn := yn;

13 while δ > ε;
14 for j = max{k� < ∞ | � ∈ {1, . . . , n}} down to 1 do

15 foreach s ∈ S do

16 ys := maxa∈A(s)(
�

{i|ki�j} wi·ρi(s, a) +
�

s�∈S δ(s, a)(s�) · xs�);

17 σj(s) := argmaxa∈A(s)(
�

{i|ki�j} wi·ρi(s, a) +
�

s�∈S δ(s, a)(s�) · xs�);

18 foreach i ∈ {1, . . . , n} where ki � j do

19 yi
s := ρi(s,σ

j(s)) +
�

s�∈S δ(s,σj(s))(s�) · xi
s� ;

20 x := y; x1 := y1; . . . ; xn := yn;

21 foreach i ∈ {1, . . . , n} do qi := yi
s̄;

22 σ behaves as σj in j-th step when j < maxi∈{1,...,n} ki, and as σ∞ afterwards;
23 return σ, q

Alg. 2. Value iteration-based algorithm for lines 4-5 of Alg. 1.

1 and 3; the latter in phases 2 and 3. Consider first the optimisation of w·ρ[k].
The values, for all states s ∈ S, are computed as a sequence of increasingly precise
approximations, stored in a pair of vectors, x and y. Each new approximation is
stored in y (line 5); then, x and y are compared for convergence and x is set to y
(line 7) before proceeding to the next iteration. Computation of the bounded part
of w·ρ[k] continues in phase 3 in similar fashion (although no convergence check
is needed). During optimisation of w·ρ[k], a corresponding optimal adversary
is also determined, with the unbounded and bounded fragments stored in σ∞

and σj , respectively. The choices made by this adversary are used to compute
the value qi for each of the n individual objectives, the values for which are also
stored in pairs of vectors (xi,yi for each qi).

In practice, storing multiple |S|-sized vectors (x, y, xi, and yi) is relatively
expensive. We discuss later how the algorithm’s memory usage can be improved.
We include an example of the execution of Alg. 2 in Appx. A.1.

Numerical queries. We now turn our attention to numerical queries. Alg. 3
shows how Alg. 1 can be adapted to check these. Like Alg. 1, it generates points
q on the Pareto curve from a sequence of weight functions w. For the objective
ρ1 that is being optimised, we generate a sequence of lower bounds r1 that are

Pareto Curves for Probabilistic Model Checking 11

Input: MDP M, objective [ρ1]
�k1
max, predicate ([ρ2]

�k2
�r2

, . . . , [ρn]
�kn
�rn

)

Output: Value of num([ρ1]
�k1
max, ([ρ2]

�k2
�r2

, . . . , [ρn]
�kn
�rn

))

1 X:=∅; ρ:=(ρ1, . . . ρn); k:=(k1, . . . kn); r:=(min
σ∈AdvM

ExpTotσ,k1
M (ρ1), r2, . . . rn);

2 do

3 Find w separating r from down(X) such that w1 > 0;

4 Find adversary σ maximising ExpTotσ,kM (w·ρ);
5 q := (ExpTotσ,ki

M (ρi))1�i�n;
6 if w · q < w · r then return ⊥;
7 X := X ∪ {q}; r1 := max{r1,max{r� | (r�, r2, . . . , rn) ∈ down(X)}};
8 while r �∈ down(X) or w · q > w · r;
9 return r1;

Alg. 3. Algorithm for checking numerical queries

used in the same fashion as Alg. 1. Initially, we take r1 to be the minimum
possible value for ρ1, which can be computed with a separate instance of value
iteration. New (non-decreasing) values for r1 are generated at each step based
on the set of points X determined so far. The numerical computation for each
step (lines 4-5 of Alg. 3) can again be carried out with Alg. 2. Correctness of
Alg. 3 is proved in Appx. A.4. The bound on the number of steps needed is as
for Alg. 1.

Example 3. We demonstrate Alg. 3 on the MDP from Example 1 and numerical
query ([{s1}]max, ([{s3}]�0.7)). Initially, r1=0.1 and, with w=(0.1, 0.8), we get
q=(0.1, 0.9). The resulting area down(X) is shown as dark grey in Fig. 2(c).
Next, r1 remains as 0.1 and, with w=(1, 0), we get q=(0.4, 0.6). Adding this to
X, down(X) is enlarged by the light grey area. Finally, r1 is set to 0.3, choosing
w=(0.5, 0.5) yields q=(0.4, 0.6) again, and the loop ends. Fig. 2(c) also shows
the points q and r (as and). The final value returned is r1=0.3.

Pareto curves. Next, we discuss Pareto queries. Generating and visualising
Pareto curves (or their approximations) provides a much clearer view of the
trade-offs between objectives. Our algorithm is implemented as a simple modifi-
cation of our previous algorithms, and is presented as Alg. 4. For simplicity, we
focus on the 2-objective case, which is most practical for visualisation. Our im-
plementation, described later, also supports the 3-objective case and, in theory,
this can be extended to an arbitrary number of objectives.

Alg. 4, like the earlier ones, builds a set X of points on a Pareto curve P
using weights w. Since P is convex, the surface of points X represents a lower
approximation of P . Our algorithm also constructs an upper approximation Y
using the generated weightsw. As illustrated in Example 2, for each point q ∈ X,
there is a corresponding hyperplane passing through q and with orientation w,
above which no values are achievable. Hence these represent upper bounds on P
and we store, in Y , any weight w that resulted in each point q ∈ X.

The sequence of weights w is generated as follows. We construct an initial
curve using weights (1, 0) and (0, 1). Then, we repeatedly: (i) sort the points
in X; (ii) for each successive pair xi,xi+1 in X, find the lowest point p on
the intersection of the hyperplanes stored in Y for xi and xi+1; (iii) choose w

12 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

Input: MDP M, reward structures ρ = (ρ1, ρ2), time bounds (k1, k2), εp ∈ R>0

Output: An εp-approximation of a Pareto curve

1 X := ∅; Y : R2 → 2R
2
, initially Y (x) = ∅ for all x; w = (1, 0);

2 Find adversary σ maximising ExpTotσ,kM (w·ρ);
3 q := (ExpTotσ,k1

M (ρ1),ExpTot
σ,k2
M (ρ2));

4 X := X ∪ {q}; Y (q) := Y (q) ∪ {w}; w = (0, 1);
5 do

6 Find adversary σ maximising ExpTotσ,kM (w·ρ);
7 q := (ExpTotσ,k1

M (ρ1),ExpTot
σ,k2
M (ρ2));

8 X := X ∪ {q}; Y (q) := Y (q) ∪ {w}; w = ⊥;

9 Order X to a sequence x1, . . . ,xm such that ∀ i: xi
1�xi+1

1 and xi
2�xi+1

2 ;
10 foreach i ∈ {1, . . .m− 1} do

11 Let u be the element of Y (xi) with maximal u1;

12 Let u� be the element of Y (xi+1) with minimal u�
1.;

13 Find a point p such that u · p = u · xi and u� · p = u� · xi+1;
14 if distance of p from down(X) is � εp then

15 Find w separating down(X) from p, maximising w·p− max
x∈down(X)

w·x;
16 while w �= ⊥;
17 return X

Alg. 4. Algorithm for Pareto curve approximation for 2 objectives

as a separating hyperplane between down(X) and p. The algorithm continues
until the maximum distance between the two approximations falls below some
threshold εp. In principal, the algorithm can enumerate all faces of P . The reason
for constructing an εp-approximation is two-fold: firstly, the number of faces is
potentially large, whereas an approximation may suffice; secondly, computation
of individual points (using value iteration), is already approximate.

Example 4. We illustrate Alg. 4 on the MDP from Example 1 with objectives
([{s1}]max, [{s3}]max). The first two weight vectors w are (1, 0) and (0, 1), yield-
ing points q of (0.4, 0.6) and (0.1, 0.9), repectively (see Fig. 2(d)). The hyper-
planes attached to each point are also shown, by dotted lines, as is their intersec-
tion p = (0.4, 0.9). We choose separating hyperplane w = (0.5, 0.5), indicated by
the sloped dotted line. The algorithm then finds the intersection (0.1, 0.9) of this
with the horizontal line and, since this point is already in down(X), terminates.

Adversary generation. Finally, we describe how to generate optimal adver-
saries for our multi-objective queries. We explain this for achievability queries,
but it can easily be adapted to the other types too. Unlike standard (single-
objective) MDP model checking, where deterministic adversaries always suffice
to optimise reachability/reward objectives, multi-objective optimisation requires
randomised adversaries. Alg. 1, when finding that bounds r are achievable, gen-
erates points q1, . . . , qm on the Pareto curve. Each corresponding call to Alg. 2
returns a (deterministic) adversary, say σqj for the current point qj . The final
adversary σopt is constructed from these and a weight vector u ∈ Rm satisfying
ri � �m

j=1
ui · qji for all 1 � i � n: it simply makes an initial one-off random

choice of adversary σqj to mimic (each with probability uj).

Pareto Curves for Probabilistic Model Checking 13

5 Implementation and Results
We implemented our multi-objective model checking techniques in PRISM [14],
also adding the automaton construction of [11] to support ω-regular proper-
ties. Value iteration is built on top of PRISM’s “sparse” engine. It would also be
straightforward to adapt its symbolic (MTBDD) engine, which can improve scal-
ability on models exhibiting regularity; but, for the current set of experiments,
the sparse engine suffices to illustrate the benefits offered by our approach.

Heuristics and optimisations. Our core algorithms are based on generating
weight vectors w representing separating hyperplanes (e.g. at line 3 of Alg. 1).
The choice of each w is not unique and affects the number of steps needed by the
algorithm. Based on our results, the following is an effective heuristic. For the
first n vectors (assuming n objectives), choose w with wi = 1 for some i. Next,
given point r and set of points X, choose w to maximise minx∈X(w ·q−w ·x),
i.e., pick the hyperplane with maximal Euclidean distance d from q. This is done
by solving the LP: “maximise d subject to

�n
i=1

wi = 1 and wi · (qi − xi) � d
for all x ∈ X”. In practice, these problems are small and fast to solve.

We also apply various optimisations to the basic value iteration algorithms
of Section 4. For unbounded properties, Gauss-Seidel value iteration [19] can
be used to increase performance. Furthermore, we can significantly reduce the
number of vectors stored with slight changes to Alg. 2; details are in Appx. A.6.

Experimental results. We evaluated our techniques on benchmarks from sev-
eral sources.2 First, we used multi-objective problems resulting from the assume-
guarantee framework of [15]. Second, we verified multi-objective properties on
existing PRISMmodels: (i) a task-graph scheduler problem, minimising expected
job completion time and expected energy consumption; (ii) a team-formation
protocol, maximising the probability of completing two (separate) tasks and the
expected size of the team that does so; (iii) a dynamic power management (dpm)
controller, minimising over k steps both expected energy consumption and ex-
pected average queue size. Experiments were run on a 2.66GHz PC with 8GB of
RAM. We used ε = 10−6 for value iteration (this is the default in PRISM; smaller
values led to very similar results) and εp = 10−4 for Pareto curve generation.

The results are shown in Table 1: assume-guarantee problems at the top;
the others below. For each model, we give the size (number of states), and de-
tails of the objectives in the query used. The middle part of the table compares
the performance of our value iteration-based technique with the LP-based im-
plementation of [11] on numerical queries. In our experiments, performance for
achievability queries was very similar, so we omit them. The right part of the ta-
ble shows times to compute Pareto curves for the same objectives on each model
(which cannot be done with the implementation of [11]). For value iteration-
based algorithms, we show the number of points (steps of the algorithm) needed;
for LP-based, we show the size of the linear program solved.

Comparing the value-iteration and LP-based approaches, we see huge gains
in run-time for our methods (up to approx. 150 times faster). There are also

2 All models/properties used are at www.prismmodelchecker.org/files/atva12mo/.

http://www.prismmodelchecker.org/files/atva12mo/

14 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

Case study

[parameters]

Num.

states

Objectives Numerical query Pareto query

Num. Types
LP ([11]) Val. iter. Val. iter.

LP size Time (s) Pt.s Time (s) Pt.s Time (s)

consensus
(2 proc.s)

[R K]

3 2 691

2
[T1]max

[T2]max

1026 0.57 3 0.02 3 0.04

4 2 1517 2288 0.67 3 0.03 3 0.05

5 2 3169 4812 0.94 3 0.05 3 0.06

consensus
(3 proc.s)

[R K]

3 2 17455

2
[T1]max

[T2]max

40386 9.85 3 0.22 3 0.27

4 2 61017 140676 144.06 3 0.87 3 1.06

5 2 181129 mem-out 3 2.83 3 3.44

zeroconf
[K]

4 5449

2
[T1]max

[T2]max

12916 1.25 2 0.13 4 0.60

6 10543 24639 7.07 4 0.46 4 0.79

8 17221 40833 19.6 4 0.76 4 1.13

zeroconf-tb
[K T]

2 14 29572

2
[T1]max

[T2]max

61816 5.25 3 1.69 2 0.85

4 10 19670 46659 5.01 2 0.32 3 0.84

4 14 42968 103964 11.01 2 0.63 3 1.77

team-form.
[N]

3 12475

2
[T1]max

[ρ2]max

14935 1.37 4 0.21 7 0.24

4 96665 115289 11.57 4 1.08 7 1.72

5 907993 mem-out 2 5.66 6 12.66

team-form.
[N]

3 12475

3

[T1]max

[T2]max

[ρ2]max

14935 1.37 3 0.18 57 1.39

4 96665 115289 10.55 5 1.77 61 14.55

5 907993 mem-out 2 9.49 57 141.76

scheduler
[K]

5 31965

2
[ρ1]min

[ρ2]min

57954 59.15 8 6.10 10 8.08

25 633735 mem-out 8 526.56 11 776.44

50 2457510 mem-out 8 3938.94 10 5361.86

dpm
[k]

100 636

2
[ρ1]

�k
min

[ρ2]
�k
min

n/a n/a 3 4.50 6 0.12

200 636 n/a n/a 3 4.30 11 0.32

300 636 n/a n/a 3 4.59 9 0.36

Table 1. Experimental results for our implementation and a comparison with [11].

significant improvements in scalability: the biggest models solved with value
iteration are about 20 times bigger than those for LP. One factor in the low run-
times for our technique is that the algorithms generally require a fairly small
number of steps, even when generating the Pareto curve.

Pareto curves. Finally, we show in Fig. 3 the Pareto curves generated for
some of our examples. Plot (a) shows, for a task-graph scheduling problem, how
different schedulers vary in terms of completion time and energy usage. Plot
(b) is from an instance of assume-guarantee verification; the plot shows how it
is possible to bound the probability of an error in the overall system (y-axis)
for various different reliability levels of one of the components (x-axis). Plot
(c) shows a 3-objective Pareto curve evaluating strategies in a team-formation
protocol (see Fig. 3 caption for objectives). In each case, the plots give a clear,
visual illustration of the trade-off between competing objectives. The curves
could also be used to quickly answer any additional achievability or numerical
queries for those objectives, without running any further model checking.

6 Conclusions

We have presented novel techniques for multi-objective model checking of MDPs,
using a value iteration-based computation to build successive approximations of
the Pareto curve. Compared to existing approaches, this gives significant gains
in efficiency and scalability, and enables verification of time-bounded properties.
Furthermore, we showed the benefits of visualising the Pareto curve for several
probabilistic model checking case studies. Future directions include extending
our techniques to timed probabilistic models such as CTMDPs and PTAs.

Pareto Curves for Probabilistic Model Checking 15

K=2
-1.49960905 -16.5301783 1.499609053 16.53017833
-1.47516461 -16.7091907 1.475164609 16.70919067
-1.45757202 -17.0219479 1.457572016 17.02194787
-1.45183128 -17.2091907 1.451831276 17.20919067
-1.44516461 -17.8388203 1.445164609 17.8388203

K=3
-1.48187929 -16.2930956 1.481879287 16.29309556
-1.45360768 -16.5029721 1.453607682 16.50297211
-1.43237311 -16.9474166 1.432373114 16.94741655
-1.42694102 -17.3424783 1.426941015 17.34247828
-1.42694102 -19.1202561 1.426941015 19.12025606

K=5
-1.46511111 -16.0814815 1.465111111 16.08148148
-1.44311111 -16.2222222 1.443111111 16.22222222
-1.42481481 -16.4378601 1.424814815 16.43786008
-1.41866667 -16.5728395 1.418666667 16.57283951
-1.41244444 -16.9481481 1.412444444 16.94814815
-1.41051852 -20.6716049 1.410518519 20.67160494
-1.41051852 -21.2641975 1.410518519 21.26419753

K=10
-1.45206831 -15.9049383 1.452068308 15.90493827
-1.42132824 -16.1006714 1.421328237 16.10067145
-1.40943768 -16.2570447 1.409437679 16.25704467
-1.40422858 -16.4367766 1.404228578 16.43677664
-1.39577715 -20.3073502 1.395777155 20.30735018
-1.39544444 -21.023786 1.395444444 21.02378601

!"#$%

!"#"%

!"#&%

!'%

!'#(%

!'#$%

!'#"%

!'#&%

!&%

!#$$% !#$)% !#$"% !#$'% !#$&% !#$*% !#)% !#)!%

!"
#$

%&
$'

()
*
$(

!"#$%&$'($+$,-.(/01-$(

0 1 1 0
3.08E-04 0.999692421 0.999999963 1.03E-04
3.08E-04 0 0.999692421 2.05E-04

0 2.05E-04

!"

!#!!!!$"

!#!!!%"

!#!!!%$"

!#!!!&"

!#!!!&$"

!#'''&" !#'''(" !#''')" !#'''*" %"!"
#$

%&'
()
*&+
#&
,#
-.

/0
"1
&$
2&
31

(3
*)-

1&

!"#$($)*)+2&,#45#-1-+&(660457#-&6(76.13&

0.5

1

0.5

1

0.5
1

1.5
2

z

y

x

Fig. 3. Pareto curves from: (a) task-graph scheduler, K=2; (b) Zeroconf protocol,
K=2, T=10; (c) team formation protocol, N=3 (axes x/y/z = Probability of complet-
ing task 1/probability of completing task 2/expected size of successful team)

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt is also supported
by a Royal Society Newton Fellowship.

References

1. Altman, E.: Constrained Markov Decision Processes. Chapman & Hall/CRC (1999)
2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA-A Platform and Program-

ming Language Independent Interface for Search Algorithms. In: EMO’03 (2003)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
4. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on

multiple mean-payoff objectives in Markov decision processes. In: LICS’11 (2011)
5. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-

tiple objectives. In: Proc. STACS’06. pp. 325–336. Springer (2006)
6. Cĺımaco, J. (ed.): Multicriteria Analysis. Springer (1997)
7. Coello, C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer (2007)
8. Diakonikolas, I., Yannakakis, M.: Succinct approximate convex Pareto curves. In:

Proc. SODA’08. pp. 74–83. SIAM (2008)
9. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model

checking of Markov decision processes. LMCS 4(4), 1–21 (2008)
10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-

niques for probabilistic systems. In: SFM’11. LNCS, vol. 6659. Springer (2011)
11. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-

objective verification for probabilistic systems. In: Proc. TACAS’11 (2011)
12. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model

checking. In: Proc. ATVA’12. LNCS, Springer (2012), to appear
13. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Proc. CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)
15. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification

for probabilistic systems. In: Proc. TACAS’10. pp. 23–37. Springer (2010)
16. Legriel, J., Cotton, S., Maler, O.: On universal search strategies for multi-criteria

optimization using weighted sums. In: Proc. CEC’11. pp. 2351–2358 (2011)
17. Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the Pareto front

of multi-criteria optimization problems. In: Proc. TACAS’10. pp. 69–83 (2010)
18. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-offs and op-

timal access of web sources. In: Proc. FOCS’00. pp. 86–92 (2000)

16 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

19. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons (1994)

A Appendix

This appendix contains additional details for the paper’s running example (A.1),
proofs omitted from the main text (A.2–A.5) and optimisation details for our
implementation (A.6).

A.1 Additional Details for the Running Example

Reduction for Example 2. Example 2 describes the execution of Alg. 1 on
the MDP M of Fig. 1(a) and achievability query ψ = ([{s1}]�0.2, [{s3}]�0.7).
We describe here the application of Proposition 2, which converts to a query in
basic form on a modified MDP M�. We give (the reachable fragment of) M�

in Fig. 4. We also show three reward structures, ρ̄, ρ{s1} and ρ{s2}; the second
two are for this example, the third is used below. The equivalent query, in basic
form, is now ψ� = ([ρ{s1}]�0.2, [ρ{s3}]�0.7). Note that, in Example 2, we did not
use M� for clarity of presentation. To make the example formally correct, we
would have to replace each M and s0 with M� and (s0, ∅).

(s0, ∅)
(s3, ∅)

(s1, ∅)

(s2, ∅) (s2, {s2})

(s1, {s1})
(a, ∅), 0, 0, 0 0.2

0.3
0.5

(b, ∅), 1, 0, 0

0.1

0.9 (c, ∅), 1, 0, 0 1

(a, {s1}), 0, 1, 0
1

(a, {s2}), 0, 0, 1 1

(a, ∅), 0, 0, 0

1

(a, ∅), 0, 0, 0
1

Fig. 4. The MDP M� from Example 2.

We also include an additional example illustrating the value iteration algorithm.

Example 5. We explain the flow of Alg. 2 on the MDP M� (from above) and
the multi-objective query ([ρ{s1}]

�3

�x, [ρ̄]�y). Suppose w = (0.3, 0.7). The first
and second do-while loops in the algorithm will be performed twice, yielding the
values x(s0,∅) = 1.33, x1

(s0,∅) = 0 and x2

(s0,∅) = 1.9. Then, we proceed with the
third do-while loop, which will be performed 3 times, giving the values x(s0,∅) =
1.36, x1

(s0,∅) = 0.1 and x2

(s0,∅) = 1.9. The returned vector is q = (0.1, 1.9).

A.2 Correctness of Alg. 1

To prove the correctness of Alg. 1, we need the two lemmas below. Recall that a
set Y is a convex polytope if it is a set of all convex combinations of some finite
set X, and that a face of convex polytope Y is a set Y � ⊆ Y such that there is
a point v with y� · v = y�� · v and y� · v > y · v for all y �∈ Y and y�,y�� ∈ Y �.

Pareto Curves for Probabilistic Model Checking 17

Lemma 1. Let X be a convex polytope. For every w there is a face Y such that
y� ·w = y�� ·w and y� ·w > y ·w for all y �∈ Y and y�,y�� ∈ Y �.

Proof. It suffices to see that there is a point x such that x · w � y · w for all
y ∈ X. This follows from the fact that a polyhedron is a closed set. Then, we
take Y = {y | x ·w = y ·w}, and we are finished by the definition of a face.

Lemma 2. Let ψ = ([ρ1]
�k1

�r1
, . . . , [ρn]

�kn

�rn
) be a multi-objective predicate, X ⊆

Rn be a set of vectors (r1, . . . , rn) such that ψ is satisfiable, p = (p1, . . . pn) be a
point not in down(X) and w be a weight vector separating p from down(X). For
an adversary σ maximising ExpTotσM(w·ρ[k]) and q = (ExpTotσM(ρi))1�i�n:

(i) If w · q < w · p, then ψ is not satisfiable.
(ii) If w · q � w · p, then there is a face F (of the convex polytope of achievable

solutions) such that q is on F , but no point from X is in F .

Proof. Let us start with the first item and prove it by contrapositive. If ψ is
achievable, then there must be p� such that p�i � pi for all i and an adversary σ�

such that ExpTotσ
�,ki

M (ρi) = p�i for all i. Thus ExpTot
σ�

M(w·ρ[k]) = w ·p� � w ·p
and by the maximality of σ we get w · q � w · p�. Then w · q � w · p.

For the second item, let F be the face from Lemma 1 obtained for the vector
w. Suppose there is some x ∈ X ∩ F . By definition of F we have w · q = w · x.
Because by the definition of w and of the separating hyperplane we have w ·x <
w · p, we get that w · q < w · p, which is a contradiction.

Lemma 2(i) implies that when the algorithm returns “false”, the answer is
correct. The answer “true” is correct by the definition of separating hyperplane
and the convexity of the set of achievable vectors.

Lemma 2(ii) implies that the set X in the algorithm only contains points
from faces. Because the number of faces is at most exponential in the size of the
problem, the algorithm terminates after at most exponentially many loops.

A.3 Correctness of Alg. 2

Let gt(i) denote the set of j ∈ {1, . . . , n} satisfying kj − 1 � i, let kmax =
maxi∈{1,...,n} ki, and let pσ

s,a(i) be an abbreviation for PrσM({π = s0a0s1a1 . . . |
si = s and ai = a}).

For all adversaries σ ∈ AdvM we have:

ExpTotσ,kM (w·ρ) =
∞�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

Let us begin by analysing the first do-while cycle. After it is performed m-
times, we get that the value of xs is equal to:

max
σ∈AdvM

m−1�

i=0

�

j∈gt(∞)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

18 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

which can be proved by simple induction on m. The first do-while cycle is in
fact an “ordinary” value iteration w.r.t. reward structure ρ̄ given by ρ̄(s, a) =�

j∈gt(∞)
wjρj(s, a) which is either always non-negative, or always non-positive

(due to the condition (iii) from page 7), and hence we can use techniques from [19]
to prove that the value of xs converges to:

max
σ∈AdvM

∞�

i=0

�

j∈gt(∞)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

Let zs be the value of xs after all the iterations of the first do-while cycle
have finished. For the third do-while while cycle, the key observation for the
correctness is that the value of xs after the cycle is repeated � times is equal to:

max
σ∈AdvM

�

s∈S,a∈α

pσ
s,a(�) · zs

+

�−1�

i=0

�

j∈gt(kmax−�+i)

�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

When � = kmax and as zs goes to ExpTotσ,kM (w·ρ), this number is equal to

(below, qM(s),σ�

s�,a (i) stands for PrσM(s)({π = s0a0s1a1 . . . | si = s and ai = a})
where M(s) is M with the initial state changed to s):

max
σ∈AdvM

�

s∈S,a∈α

pσ
s,a(kmax) · zs

+

kmax−1�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

= max
σ∈AdvM

�

s∈S,a∈α

pσ
s,a(kmax) · max

σ�∈AdvM

∞�

i=0

�

j∈gt(∞)

wj ·
�

s�∈S,a�∈α

ρj(s
�, a�) · qM(s),σ�

s�,a� (i)

+

kmax−1�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

= max
σ∈AdvM

 max
σ�∈AdvM

�

s∈S,a∈α

pσ
s,a(kmax) ·

∞�

i=0

�

j∈gt(∞)

wj ·
�

s�∈S,a�∈α

ρj(s
�, a�) · qM(s),σ�

s�,a� (i)

+

kmax−1�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

= max
σ∈AdvM

∞�

i=kmax

�

j∈gt(∞)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ�

s,a(i)

+

kmax−1�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

=
∞�

i=0

�

j∈gt(i)

wj ·
�

s∈S,a∈α

ρj(s, a) · pσ
s,a(i)

Pareto Curves for Probabilistic Model Checking 19

which gives the correctness of computation of xs.

A.4 Correctness of Alg. 3

Let us now prove the correctness of Alg. 3. The correctness of the returned value
⊥ can be proved in the same way as proving the correctness of the value “false”
returned by Alg. 1. The following lemma is a modification of Lemma 2 and gives
an insight into the correctness of the algorithm for the values different to ⊥.

Lemma 3. Let ψ = ([ρ1]�k1
∼1p1

, . . . , [ρn]�kn
∼npn

) be a multi-objective query, let X

be a set of vectors (r1, . . . , rn) such that ψ = ([ρ1]
�k1

�r1
, . . . , [ρn]

�kn

�rn
) is achievable

and p = (p1, . . . pn) is on the boundary of down(X), and let w be such that
w1 > 0 and it separates p from down(X). Let σ be an adversary maximising
ExpTotσM(w·ρ[k]), and q = (ExpTotσM(ρi))1�i�n. Then the following is true:

– If w · q = w · p, then ψ� = ([ρ1]
�k1

∼1p� , [ρ2]�k2
∼2p2

, . . . , [ρn]�kn
∼npn

) is not satisfiable
for any p� > p1.

– If w · q > w · p, then there is a face F (of the convex polytope of achievable
solutions) such that q is on F , but no point from X is in F .

Proof. We start with the first item and prove it by contrapositive. If some ψ�

is achievable, then there must be p� such that p�i � pi for all i ∈ {2, . . . , n} and

p�1 > p1, and there must be an adversary σ� such that ExpTotσ
�,ki

M (ρi) = p�i for

all i. Thus ExpTotσ
�

M(w·ρ[k]) = w ·p� and by the maximality of σ we get w ·q �
w · p�. We also have w · p� =

�n
i=1

wi · p�i >
�n

i=1
wi · pi = w · p: The inequality

follows because p�i � p�i for i ∈ {2, . . . , n} (and hence
�n

i=2
wi ·p�i �

�n
i=2

wi ·pi)
and because p�1 > p1 and w1 > 0, so w�

1 · p1 > w1 · p1. This yields w · q > w · p.
The second item follows similarly to the corresponding part of Lemma 2.

As in the case of Alg. 1, the second item of Lemma 3 together with the fact
that the number of faces is finite gives us that the algorithm terminates.

A.5 Correctness of Alg. 4

We sketch the correctness of Alg. 4 as follows. The following invariants hold
throughout its execution:

1. The set down(X) contains only achievable points, andX contains only points
on the boundary of the set of achievable solutions.

2. No point r satisfying w · r > w · q for some q ∈ X and w ∈ Y (q) is
achievable.

Let us assume the algorithm has chosen the point p for points xi, xi+1. The
vector w is chosen so that one of the following happens:

– A point q is found such that w · q > w · xi = w · xi+1.
– A point q is found such that w · q = w · xi = w · xi+1

In the first case, a new face is found. In the second case, w is added to Y (q) and
due to the way the points p are chosen, no point p satisfying xi

1 � p1 � xi+1

1

will be chosen in the future. This implies that the algorithm terminates.

20 Vojtěch Forejt, Marta Kwiatkowska, and David Parker

A.6 Further Details for Implementation Optimisations

Our value iteration-based method (Alg. 2) employs the Gauss-Seidel variant
of value iteration [19]: instead of using a pair of vectors x and y to store the
solution vector a single vector x is used. Its elements are then updated as soon as
they are computed. This increases the speed of convergence and also decreases
memory requirements. Furthermore, storage of vectors can then be optimised
to save space as follows: We can choose not to store the 2n vectors xi and yi

in Alg. 2, but instead use a single pair x� and y� and compute the n objectives
separately. Alternatively, we can always omit storage (and computation) of one of
the individual objectives, noting that it can be reconstructed from the weighted
objective and the other n−1 individual ones. This can be significant when n is
small, which is often the case in practice.

	Pareto Curves for Probabilistic Model Checking

