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Overview

- Transient probabilities
— uniformisation

Steady-state probabilities

CSL: Continuous Stochastic Logic
— syntax
— semantics
— examples
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Recall

- Continuous-time Markov chain: C = (5,s,,,,R,L)
— R:S XS = R,,is the transition rate matrix
— rates interpreted as parameters of exponential distributions

- Embedded DTMC: emb(C)=(S,s,,,PemP©) L)

R(s,s")/E(s) if E(s)>0
pemb©(g ¢') = ] if E(s) =0ands =s'
0 otherwise

- Infinitesimal generator matrix

' R(s,s") = S'
Q(s,s') = { _ES¢S'R(S’S') Séthse’:rwise
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Transient and steady-state behaviour

- Transient behaviour
— state of the model at a particular time instant

— 1< (s’) is probability of, having started in state s, being in
state s’ at time t (in CTMC O)

— 1% (s’) = Prd w € Path®(s) | w@t=s’ }

Steady-state behaviour
— state of the model in the long-run

— 1t (s’) is probability of, having started in state s, being in
state s’ in the long run

o Ecs(s’) = Iimt—»oo Ecs,t(s’)
— intuitively: long-run percentage of time spent in each state
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Computing transient probabilities

- Consider a simple example
— and compare to the case for DTMCs

- What is the probability of being in state s, at time t?

1.oo§\ 1 "
- DTMC/CTMC: \
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T
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Computing transient probabilities

- TT, - matrix of transient probabilities
— TT(s,s)=11, ((S")

- TI, solution of the differential equation: TT,” =TI, - Q
— where Q is the infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore
evaluated as a power series

M =e¥ =3 (@Q-1)/i!

— computation potentially unstable
— probabilities instead computed using uniformisation
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Uniformisation

- We build the uniformised DTMC unif(C) of CTMC C
- If C =(5,s,,+wR,L), then unif(C) = (S,s;;,PU"C),L)

— set of states, initial state and labelling the same as C
— Punif©O = | + Q/q

— | is the |S|Xx|S| identity matrix

— g =max{E(s)| s eS}isthe uniformisation rate

- Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— if E(s)<q add self loop with probability 1-E(s)/qg (residence
time longer than 1/q so one epoch may not be ‘long enough’)
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Uniformisation - Example

- CTMC C:

@Q R-12 0] Q-2

- Uniformised DTMC unif(C)
— let uniformisation rate q = max, { E(s) } = 3

punif(C)=I+Q/q=[(]) (])]Jr[_%] —%]]=l% %]

1/3
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Uniformisation

Using the uniformised DTMC the transient probabilities can
be expressed by:

.I_I.t th _ eq Punlf 1)t _ e(q t)- Punlf . e_q't

= @ dt. ( EZO (|_PI , ( Punif(C) )i )
= Eoo (e‘q’t  (at) ) ( punif(©) )i
i=0 i!

punif© js stochastic (all entries in
_ _ : [0,1] & rows sum to 1);

ith Poisson probability with therefore computations with P are
: parameter q-t more numerically stable than Q

DP/Probabilistic Model Checking, Michaelmas 2011



Uniformisation

I, = E:o Yoti ( punt© )i

- (PunifQ)i js probability of jumping between each pair of
states in i steps

" Yq.t; IS the ith Poisson probability with parameter g-t

— the probability of i steps occurring in time t, given each has
delay exponentially distributed with rate q

» Can truncate the (infinite) summation using the techniques
of Fox and Glynn [FG88], which allow efficient computation
of the Poisson probabilities
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Uniformisation

Computing 1,  for a fixed state s and time t
— can be computed efficiently using matrix-vector operations
— pre-multiply the matrix TT, by the initial distribution
— in this case: 11, ((s’) equals 1 if s=s’ and 0 otherwise

3 . _ O [ punif(© )’
Es,t - 13s,0 nt - ES,O Ei=qu-t,i (P )

E:O Ygti "Hso ( punit(© )i

— compute iteratively to avoid the computation of matrix powers

(Tr .Punif(C))i” _ (Tr .Punif(C))i . punif(c)

—=s,t —s,t
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Uniformisation - Example

- CTMC C, uniformised DTMC for q=3
3

canolN FERER RN
2

- Initial distribution: Tt o =1[1, 0]
- Transient probabilities for time t = 1:

o0 _ ([ punif(©) )’
Eso,l = Ei=0 Yq-t,i ESO 0 ( P )
2

~¥oo 001 g v BOL[5 1]+ vs 001 |57 ] e

~ [ 0.404043, 0.595957 ]
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Steady-state probabilities

Limit m<(s™) = lim_ , 1% (s")
— exists for all finite CTMCs
— (see next slide)

+ As for DTMCs, need to consider the underlying graph
structure of the Markov chain:

— reachability (between pairs) of states

— bottom strongly connected components (BSCCs)

— one special case to consider: absorbing states are BSCCs
— note: can do this equivalently on embedded DTMC

- CTMC is irreducible if all its states belong to a single BSCC;
otherwise reducible

DP/Probabilistic Model Checking, Michaelmas 2011 13



Periodicity

- Unlike for DTMCs, do not need to consider periodicity

- e.g. probability of being in state s, at time t?

- DTMC/CTMC: 1.00 “\ " '
: 0.751 \\
b ",‘ n
GU O fow o))
1 Q = DTMC
0.25
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0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0
T
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Irreducible CTMCs

For an irreducible CTMC:

— the steady-state probabilities are independent of the starting
state: denote the steady state probabilities by 11¢(s’)

- These probabilities can be computed as
— the unique solution of the linear equation system:

m Q=0 and Yy 1w (s)=1

where Q is the infinitesimal generator matrix of C

- Solved by standard means:
— direct methods, such as Gaussian elimination
— iterative methods, such as Jacobi and Gauss-Seidel
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Balance equations

. balance the rate of !
. leaving and entering :
: a state

R
T(s) - ;. R(s,s") = 2., T1(s") - R(s',9)
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Steady-state - Example

- Solve: t-Q=0 and X 11(s)=1

__33/2 _39//22 3(/)2 g fempty} 3/2 3/2 3/2 fFull}
HHara e ololcle
0 0 3 -3 | 3 3 3

-3/2-m(s,) + 3-7(s)) =0
3/2-1(sy) - 9/2-m(s) + 3-1(s,) =0
3/2-m(s)) - 9/2-1(s,) + 3-m(s;) = O

3/2-m(s,) - 3-m(s;) = 0

m(s,) + T(s) o+ m(s) o+ TS = ]

m=1[8/15,4/15,2/15,1/15]
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Reducible CTMCs

- For a reducible CTMC:
— the steady-state probabilities T1°(s’) depend on start state s

- Find all BSCCs of CTMC, denoted bscc(C)

- Compute:
— steady-state probabilities 7 of sub-CTMC for each BSCC T
— probability ProbReachemb©(s, T) of reaching each T from s
- Then:
(s = {ProbReachemb(C’(s, T -1r'(s') if s'eT for some Tebscc(C)

0 otherwise
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CSL

- Temporal logic for describing properties of CTMCs
— CSL = Continuous Stochastic Logic [ASSBOO,BHHKO03]
— extension of (non-probabilistic) temporal logic CTL

Key additions:

— probabilistic operator P (like PCTL)
— steady state operator S
Example: down — P_, ;s [ —fail U251 up ]

— when a shutdown occurs, the probability of a system recovery

being completed between 1 and 2.5 hours without further
failure is greater than 0.75

Example: S_g [ insufficient_routers ]

— in the long run, the chance that an inadequate number of
routers are operational is less than 0.1
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CSL syntax

- W is true with

. CSL syntax: . E

—¢bu=truelaldAad|-d|P WS, [P] (state formulae)

- =Xd | U \(path formulae)

..................................................

: . i in the “long
T until” with

— where a is an atomic proposition, | interval of R_,and p €
[0,1], ~ € {<,>,<,>}

- A CSL formula is always a state formula
— path formulae only occur inside the P operator
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CSL semantics for CTMCs

« CSL formulae interpreted over states of a CTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”
- Semantics of state formulae:

— for a state s of the CTMC (S,s,,;,R,L):

_ S |: a @ a E L(S) . .......... PrObabiIityof’.
—SEG AP < sk ¢ ands E ¢, starting in state s,
—-skE= ¢ & sEIs faM satisfying the path
— s P (W] < Prob(s, p) ~ p . ermuRe
- skES, (] S 2o T (s)~p

Probablllty of, startmg in state s, belng
in state s’ in the long run
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CSL semantics for CTMCs

- Prob(s, ) is the probability, starting in state s, of satisfying
the path formula @

— Prob(s, W) = Pri{w € Pathy | w =W} if (5(0) is absorbing
. w(1) not defined

- Semantics of path formulae:
— for a path w of the CTMC:
—WEXo® < w(1)is defined and w(1) = ¢
—wed U, < dtel. (wdtE $, A VEU'<t. w@t’ = ¢,)

. there exists a time instant in the interval | where ¢, :
. is true and ¢, is true at all preceding time instants

T mm AR R AR R AR RN R R R R RN RN RN R N R R R R N R R R N R R R N R R R R N R R N R RN AR RN AR AN RN EAENEEEAEEEEEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEER

DP/Probabilistic Model Checking, Michaelmas 2011 22



More on CSL

- Basic logical derivations:

— false, ¢, v d,, ¢ — b,

- Normal (unbounded) until is a special case
— ¢, U d, = ¢, U0 &,

- Derived path formulae:

—Fd=trueUdod, FFd=truelU ¢

-G =-(F—-9), Cd=~(F—-9¢)

- Negate probabilities: ...

—eg. P, [w]l=P_ [w], =S [d]=S5,[0]
- Quantitative properties

— of the form P_,[w]and S_, [ ¢ ]

— where P/S is the outermost operator

— experiments, patterns, trends, ...
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CSL example - Workstation cluster

- Case study: Cluster of workstations [HHKOO]
— two sub-clusters (N workstations in each cluster)
— star topology with a central switch
— components can break down, single repair unit

left backbone right

sub-cluster sub-cluster

left right
switch switch

— minimum QoS: at least 34 of the workstations operational and
connected via switches

— premium QoS: all workstations operational and connected via
switches
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CSL example - Workstation cluster

- S_,[ minimum ]
— the probability in the long run of having minimum QoS

P_, [ FItY minimum ]
— the (transient) probability at time instant t of minimum QoS

P_oos[ FI%10 —=minimum ]

— the probability that the QoS drops below minimum within 10
hours is less than 0.05

—minimum — P_g [ FI%2] =minimum ]

— when facing insufficient QoS, the chance of facing the same
problem after 2 hours is less than 0.1
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CSL example - Workstation cluster

minimum — P_g ¢ [ minimum U4 premium ]

— the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

P_,[ = minimum U minimum ]

— the chance it takes more than t time units to recover from
insufficient QoS

—r_switch_up — P_y; [-r_switch_up U —I_switch_up ]

— if the right switch has failed, the probability of the left switch
failing before it is repaired is less than 0.1

P_, [ FI2®) S_, o[ minimum ] ]

— the probability of it taking more than 2 hours to get to a state
from which the long-run probability of minimum QoS is >0.9
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Summing up...

- Transient probabilities (time instant t)
— computation with uniformisation: efficient iterative method

Steady-state (long-run) probabilities
— like DTMCs
— requires graph analysis
— irreducible case: solve linear equation system
— reducible case: steady-state for sub-CTMCs + reachability

CSL: Continuous Stochastic Logic
— extension of PCTL for properties of CTMCs
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