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Time in DTMCs 
•  Time in a DTMC proceeds in discrete steps 

•  Two possible interpretations: 
−  accurate model of (discrete) time units 

•  e.g. clock ticks in model of an embedded device 
−  time-abstract 

•  no information assumed about the time transitions take 

•  Continuous-time Markov chains (CTMCs) 
−  dense model of time 
−  transitions can occur at any (real-valued) time instant 
−  modelled using exponential distributions 
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Overview 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, examples 
−  race condition 
−  embedded DTMC 
−  generator matrix 

•  Paths and probabilities 
−  probabilistic reachability 
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Continuous probability distributions 
•  Defined by: 

−  cumulative distribution function  

−  where f is the probability density function 
−  Pr(X=t) = 0 for all t 

•  Example: uniform distribution: U(a,b) 
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Exponential distribution  
•  A continuous random variable X is exponential with 

parameter λ>0 if the density function is given by: 

−  we write: X ~ Exponential(λ) 
•  Cumulative distribution function (for t≥0): 

•  Other properties: 
−  negation:  
−  mean (expectation):  
−  variance: Var(X) = 1/λ2 

  

€ 

F(t) = Pr(X ≤ t) = λ
0

t
∫ ⋅ e−λ⋅xdx = [−e−λ⋅x]0t = 1− e−λ⋅t

  

€ 

f(t)  =   
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

λ⋅ e−λ⋅t

0
if t > 0
otherwise 

  

€ 

Pr(X > t) =  e-λ⋅t

  

€ 

E[X] =  x⋅ λ⋅ e-λ⋅x
0

∞

∫ dx =  1
λ

 λ = “rate” 
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Exponential distribution - Examples 

•  The more λ increases, the faster the c.d.f. approaches 1 

Cumulative distribution function  Probability density function  
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Exponential distribution 
•  Adequate for modelling many real-life phenomena 

−  failures 
•  e.g. time before machine component fails 

−  inter-arrival times 
•  e.g. time before next call arrives to a call centre 

−  biological systems 
•  e.g. times for reactions between proteins to occur 

•  Maximal entropy (“uncertainty”) if just the mean is known 
−  i.e. best approximation when only mean is known 

•  Can approximate general distributions arbitrarily closely 
−  phase-type distributions 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Exponential distribution – Property 1 
•  The exponential distribution has the memoryless property: 

−  Pr( X>t1+t2 I X>t1 ) = Pr( X>t2 ) 

•  Pr ( X>t1+t2 I X>t1 ) = Pr( X>t1+t2 ∧ X>t1 ) / Pr( X>t1 ) 
                                = Pr( X>t1+t2 ) / Pr( X>t1 ) 

                                  = e-λ·(t1+t2) / e-λ·t1 
                                  = (e-λ·t1· e-λ·t2) / e-λ·t1 
                                  = e-λ·t2  
                                  = Pr( X>t2 ) 
•  The exponential distribution is the only continuous 

distribution which is memoryless 
−  discrete-time equivalent is the geometric distribution 
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Exponential distribution – Property 2 
•  The minimum of two independent exponential distributions 

is an exponential distribution (parameter is sum) 
−  X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  Y = min(X1,X2) 

−  Y ~ Exponential(λ1+λ2) 
•  Generalises to minimum of n distributions 
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Exponential distribution – Property 3 
•  Consider two independent exponential distributions 

−  X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  what is the probability that X1<X2 ? 

−  probability that X1<X2 is λ1/(λ1+λ2) 
•  Generalises to n distributions 
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Continuous-time Markov chains 
•  Continuous-time Markov chains (CTMCs) 

−  labelled transition systems augmented with rates 
−  discrete states 
−  continuous time-steps 
−  delays exponentially distributed 

•  Suited to modelling: 
−  reliability models 
−  control systems 
−  queueing networks 
−  biological pathways 
−  chemical reactions 
−  ... 
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Continuous-time Markov chains 
•  Formally, a CTMC C is a tuple (S,sinit,R,L) where:  

−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  R : S × S → ℝ≥0 is the transition rate matrix 
−  L : S → 2AP is a labelling with atomic propositions 

•  Transition rate matrix assigns rates to each pair of states 
−  used as a parameter to the exponential distribution 
−  transition between s and s’ when R(s,s’)>0 
−  probability triggered before t time units: 1 – e-R(s,s’)·t 
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Simple CTMC example 
•  Modelling a queue of jobs 

−  initially the queue is empty 
−  jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3) 
−  jobs are served with rate 3 (i.e. mean service time is 1/3) 
−  maximum size of the queue is 3 
−  state space: S = {si}i=0..3 where si indicates i jobs in queue 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 



Race conditions 
•  What happens when there exists multiple s’ with R(s,s’)>0? 

−  race condition: first transition triggered determines next state 
−  two questions: 
−  1. How long is spent in s before a transition occurs? 
−  2. Which transition is eventually taken? 

•  1. Time spent in a state before a transition 
−  minimum of exponential distributions  
−  exponential with parameter given by summation: 

−  probability of leaving a state s within [0,t] is 1-e-E(s)·t 

−  E(s) is the exit rate of state s 
−  s is called absorbing if E(s)=0 (no outgoing transitions) 
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Race conditions… 
•  2. Which transition is taken from state s? 

−  the choice is independent of the time at which it occurs 
−  e.g. if X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  then the probability that X1<X2 is λ1/(λ1+λ2) 
−  more generally, the probability is given by… 

•  The embedded DTMC: emb(C)=(S,sinit,Pemb(C),L) 
−  state space, initial state and labelling as the CTMC 
−  for any s,s’∈S 

•  Probability that next state from s is s’ given by Pemb(C)(s,s’) 
    15 DP/Probabilistic Model Checking, Michaelmas 2011 



Two interpretations of a CTMC 
•  Consider a (non-absorbing) state s ∈ S with multiple 

outgoing transitions, i.e. multiple s’ ∈ S with R(s,s’)>0 

•  1. Race condition 
−  each transition triggered after exponentially distributed delay 

•  i.e. probability triggered before t time units: 1 – e-R(s,s’)·t 
−  first transition triggered determines the next state 

•  2. Separate delay/transition 
−  remain in s for delay exponentially distributed with rate E(s) 

•  i.e. probability of taking an outgoing transition from s within [0,t] 
is given by 1-e-E(s)·t 

−  probability that next state is s’ is given by Pemb(C)(s,s’) 
•  i.e. R(s,s’)/E(s) = R(s,s’) / Σs’∈S R(s,s’) 
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More on CTMCs… 
•  Infinitesimal generator matrix Q 

    

•  Alternative definition: a CTMC is: 
−  a family of random variables { X(t) | t ∈ ℝ≥0 } 
−  X(t) are observations made at time instant t 
−  i.e. X(t) is the state of the system at time instant t 
−  which satisfies… 

•  Memoryless (Markov property) 
Pr(X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0) = Pr(X(tk)=sk | X(tk-1)=sk-1) 
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Simple CTMC example… 
C = ( S, sinit, R, L ) 
S = {s0, s1, s2, s3}  
sinit = s0 

AP = {empty, full} 
L(s0)={empty}, L(s1)=L(s2)=∅ and L(s3)={full} 

    

€ 

R =

0 3/2 0 0
3 0 3/2 0
0 3 0 3/2
0 0 3 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 

    

€ 

Pemb(C) =

0 1 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥     

€ 

Q =

−3/2 3/2 0 0
3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

infinitesimal 
generator matrix 

transition 
rate matrix 

embedded 
DTMC 
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Example 2 
•  3 machines, each can fail independently 

−  delay modelled as exponential distributions 
−  failure rate λ, i.e. mean-time to failure (MTTF) = 1/ λ 

•  One repair unit 
−  repairs a single machine at rate µ (also exponential) 

•  State space: 
−  S = {si}i=0..3 where si indicates i machines operational 

s2 s3 

3λ 

1 

{inactive} {high} 

s1 s0 

2λ λ 

µ µ µ 

{low} {high} 
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Example 3 
•  Chemical reaction system: two species A and B 
•  Two reactions: 

−  reversible reaction under which 
species A and B bind to form AB  
(forwards rate = |A|·|B|·k1,  
backwards rate = |AB|·k2)  

−  degradation of A (rate |A|·k3) 
−  |X| denotes number of 

molecules of species X 
•  CTMC with state space 

−  (|A|,|B|,|AB|) 
−  initially (2,2,0) 

2,2,0 

4k1 

1,1,1 0,0,2 

1,2,0 0,1,1 

k1 

2k2 k2 

0,2,0 

2k3 

k3 

k3 2k1 

k2 

A 
k3 A + B AB 

k1 

k2 



21 DP/Probabilistic Model Checking, Michaelmas 2011 

Paths of a CTMC 
•  An infinite path ω is a sequence s0t0s1t1s2t2… such that  

−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i ∈ ℕ 
−  ti denotes the amount of time spent in si 

•  or a sequence s0t0s1t1s2t2…tk-1sk such that  
−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i<k 
−  sk is absorbing (i.e. R(s,s’) = 0 for all s’ ∈  S) 
−  i.e. remain in state sk indefinitely 

•  Path(s) denotes all infinite paths starting in state s 
•  Further notation: 

−  time(ω,j) = amount of time spent in the jth state, i.e. tj 
− ω@t = state occupied at time t: 
−  see e.g. [BHHK03, KNP07a] for precise definitions 
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Recall: Probability spaces 
•  A σ-algebra (or σ-field) on Ω is a set Σ of subsets of Ω 

closed under complementation and countable union, i.e.: 
−  if A ∈ Σ, the complement Ω ∖ A is in Σ 
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ 
−  the empty set ∅ is in Σ 

•  Elements of Σ are called measurable sets or events 
•  Theorem: For any set F of subsets of Ω, there exists a 

unique smallest σ-algebra on Ω containing F 
•  Probability space (Ω, Σ, Pr) 

−  Ω is the sample space 
−  Σ is the set of events: σ-algebra on Ω 
−  Pr : Σ → [0,1] is the probability measure: 

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai 
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Probability space 
•  Sample space: Path(s) (set of all paths from a state s) 
•  Events: sets of infinite paths 
•  Basic events: cylinders 

−  cylinders = sets of paths with common finite prefix 
−  include time intervals in cylinders 

•  Finite prefix is a sequence s0,I0,s1,I1,…,In-1,sn 
−  s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n 
−  I0,I1,I2,…,In-1 sequence of of non-empty intervals of ℝ≥0 

•  Cylinder Cyl(s0,I0,s1,I1,…,In-1,sn) is the set of infinite paths: 
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n 
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Probability space 
•  Define probability measure over cylinders inductively 

•  Prs(Cyl(s))=1 

•  Prs(Cyl(s,I,s1,I1,…,In-1,sn,I’,s’)) equals: 

  

€ 

Prs(Cyl(s,I,s1,I1,...,In−1,sn)) ⋅ Pemb(C) (sn,s' ) ⋅ e−E(sn )⋅inf I' − e−E(sn )⋅sup I'( )

probability of transition 
from sn to s’ (defined 

using embedded DTMC) 
probability time spent in state sn 

is within the interval I’ 
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Probability space - Example 
•  Probability of leaving the initial state s0 and moving to state 

s1 within the first 2 time units of operation 

•  Cylinder Cyl(s0,(0,2],s1) 

•  Prs0(Cyl(s0,(0,2],s1))  

= Prs0(Cyl(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2) 
 = 1 · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2) 
 = 1 · 1 · (e-3/2·0 – e-3/2·2) 
 = 1– e-3 

 ≈ 0.95021 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Probability space 
•  Probability space (Path(s), ΣPath(s), Prs)      (see [BHHK03]) 

•  Sample space Ω = Path(s) 
−  i.e. all infinite paths 

•  Event set ΣPath(s) 
−  least σ-algebra on Path(s) containing all cylinders sets 

Cyl(s0,I0,…,In-1,sn) where: 
•  s0,…,sn ranges over all state sequences with R(si,si+1)>0 for all i 
•  I0,…,In-1 ranges over all sequences of non-empty intervals in ℝ≥0  

(where intervals are bounded by rationals) 
•  Probability measure Prs 

−  Prs extends uniquely from probability defined over cylinders 
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Probabilistic reachability 
•  Probabilistic reachability 

−  the probability of reaching a target set T⊆S 
−  measurability: 

•  union of all basic cylinders Cyl(s0,(0,∞),s1,(0,∞),…,(0,∞),sn)  
where sn ∈ T 

•  set of such state sequences s0s1…sn is countable 

•  Time-bounded probabilistic reachability 
−  the probability of reaching a target set T⊆S within t time units 
−  measurability: 

•  union of all basic cylinders Cyl(s0,I0,s1,I1,…,In-1,sn)  
where sn ∈ T and sup(I0)+…+sup(In-1) ≤ t 

•  set of such state sequences s0s1…sn is countable 
•  set of rational-bounded intervals is countable 
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Summing up… 
•  Exponential distribution 

−  suitable for modelling failures, waiting times, reactions, … 
−  nice mathematical properties 

•  Continuous-time Markov chains 
−  transition delays modelled as exponential distributions 
−  race condition 
−  embedded DTMC 
−  generator matrix 

•  Probability space over paths 
−  (untimed and timed) probabilistic reachability 


