Lecture 8 Continuous-time Markov chains

Dr. Dave Parker

Department of Computer Science University of Oxford

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations:
 - accurate model of (discrete) time units
 - \cdot e.g. clock ticks in model of an embedded device
 - time-abstract
 - no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using exponential distributions

Overview

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, examples
 - race condition
 - embedded DTMC
 - generator matrix
- Paths and probabilities
 - probabilistic reachability

Continuous probability distributions

- Defined by:
 - cumulative distribution function

$$F(t) = Pr(X \le t) = \int_{-\infty}^{t} f(x) \, dx$$

- where f is the probability density function
- Pr(X=t) = 0 for all t

• Example: uniform distribution: U(a,b)

 $f(t) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq t \leq b \\ 0 & \text{otherwise} \end{cases}$ $F(t) = \begin{cases} 0 & \text{if } t < a \\ \frac{t-a}{b-a} & \text{if } a \leq t < b \\ 1 & \text{if } t \geq b \end{cases}$

Exponential distribution

• A continuous random variable X is exponential with parameter $\lambda > 0$ if the density function is given by:

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\lambda =$$
 "rate"

- we write: $X \sim Exponential(\lambda)$

• Cumulative distribution function (for $t \ge 0$):

$$F(t) = Pr(X \le t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} dx = \left[-e^{-\lambda \cdot x}\right]_0^t = 1 - e^{-\lambda \cdot t}$$

- Other properties:
 - negation: $Pr(X > t) = e^{-\lambda \cdot t}$
 - mean (expectation): $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{2}$
 - variance: Var(X) = $1/\lambda^2$

Exponential distribution – Examples

• The more λ increases, the faster the c.d.f. approaches 1

Exponential distribution

- Adequate for modelling many real-life phenomena
 - failures
 - e.g. time before machine component fails
 - inter-arrival times
 - $\cdot\,$ e.g. time before next call arrives to a call centre
 - biological systems
 - $\cdot\,$ e.g. times for reactions between proteins to occur
- Maximal entropy ("uncertainty") if just the mean is known
 i.e. best approximation when only mean is known
- Can approximate general distributions arbitrarily closely
 - phase-type distributions

Exponential distribution - Property 1

The exponential distribution has the memoryless property:
Pr(X>t₁+t₂ | X>t₁) = Pr(X>t₂)

- The exponential distribution is the only continuous distribution which is memoryless
 - discrete-time equivalent is the geometric distribution

Exponential distribution – Property 2

- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
 - $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - $\mathbf{Y} = \min(\mathbf{X}_1, \mathbf{X}_2)$

 $- Y \sim Exponential(\lambda_1 + \lambda_2)$

• Generalises to minimum of **n** distributions

Exponential distribution – Property 3

- Consider two independent exponential distributions
 - $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - what is the probability that $X_1 < X_2$?

– probability that $X_1 < X_2$ is $\lambda_1/(\lambda_1 + \lambda_2)$

Generalises to n distributions

Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)
 - labelled transition systems augmented with rates
 - discrete states
 - continuous time-steps
 - delays exponentially distributed
- Suited to modelling:
 - reliability models
 - control systems
 - queueing networks
 - biological pathways
 - chemical reactions

- ...

Continuous-time Markov chains

- Formally, a CTMC C is a tuple (S,s_{init},R,L) where:
 - S is a finite set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - R : S \times S \rightarrow $\mathbb{R}_{\geq 0}$ is the transition rate matrix
 - L : S \rightarrow 2^{AP} is a labelling with atomic propositions
- Transition rate matrix assigns rates to each pair of states
 - used as a parameter to the exponential distribution
 - transition between s and s' when R(s,s')>0
 - probability triggered before t time units: $1 e^{-R(s,s') \cdot t}$

Simple CTMC example

- Modelling a queue of jobs
 - initially the queue is empty
 - jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
 - jobs are served with rate 3 (i.e. mean service time is 1/3)
 - maximum size of the queue is 3
 - state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue

Race conditions

- What happens when there exists multiple s' with **R**(s,s')>0?
 - race condition: first transition triggered determines next state
 - two questions:
 - 1. How long is spent in s before a transition occurs?
 - 2. Which transition is eventually taken?
- 1. Time spent in a state before a transition
 - minimum of exponential distributions
 - exponential with parameter given by summation:

$$E(s) = \sum_{s' \in S} R(s, s')$$

- probability of leaving a state s within [0,t] is $1-e^{-E(s)\cdot t}$
- E(s) is the exit rate of state s
- s is called absorbing if E(s)=0 (no outgoing transitions)

Race conditions...

- 2. Which transition is taken from state s?
 - the choice is independent of the time at which it occurs
 - e.g. if $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - then the probability that $X_1{<}X_2$ is $\lambda_1/(\lambda_1{+}\lambda_2)$
 - more generally, the probability is given by...
- The embedded DTMC: emb(C)=(S,s_{init}, P^{emb(C)}, L)
 - state space, initial state and labelling as the CTMC
 - for any s,s' \in S

$$P^{emb(C)}(s,s') = \begin{cases} R(s,s')/E(s) & \text{if } E(s) > 0 \\ 1 & \text{if } E(s) = 0 \text{ and } s = s' \\ 0 & \text{otherwise} \end{cases}$$

Probability that next state from s is s' given by P^{emb(C)}(s,s')
DP/Probabilistic Model Checking, Michaelmas 2011

Two interpretations of a CTMC

- Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with R(s,s')>0
- 1. Race condition
 - each transition triggered after exponentially distributed delay
 - · i.e. probability triggered before t time units: 1 $e^{-R(s,s') \cdot t}$
 - first transition triggered determines the next state
- 2. Separate delay/transition
 - remain in s for delay exponentially distributed with rate E(s)
 - i.e. probability of taking an outgoing transition from s within [0,t] is given by $1-e^{-E(s)\cdot t}$
 - probability that next state is s' is given by $\mathbf{P}^{emb(C)}(s,s')$

• i.e. $\mathbf{R}(s,s')/\mathbf{E}(s) = \mathbf{R}(s,s') / \Sigma_{s' \in S} \mathbf{R}(s,s')$

Infinitesimal generator matrix Q

$$Q(s,s') = \begin{cases} R(s,s') & s \neq s' \\ -\sum_{s\neq s'} R(s,s') & otherwise \end{cases}$$

Alternative definition: a CTMC is:

- a family of random variables { X(t) $\mid t \in \mathbb{R}_{\geq 0}$ }
- X(t) are observations made at time instant t
- i.e. X(t) is the state of the system at time instant t
- which satisfies...

• Memoryless (Markov property) $Pr(X(t_k)=s_k | X(t_{k-1})=s_{k-1}, ..., X(t_0)=s_0) = Pr(X(t_k)=s_k | X(t_{k-1})=s_{k-1})$

Simple CTMC example...

 $C = (S, s_{init}, R, L)$ $S = \{s_0, s_1, s_2, s_3\}$ $s_{init} = s_0$

AP = {empty, full} L(s₀)={empty}, L(s₁)=L(s₂)= \emptyset and L(s₃)={full}

Example 2

- 3 machines, each can fail independently
 - delay modelled as exponential distributions
 - failure rate $\lambda,$ i.e. mean-time to failure (MTTF) = 1/ λ
- One repair unit
 - repairs a single machine at rate μ (also exponential)
- State space:
 - $-S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational

Example 3

Chemical reaction system: two species A and B

Ι.

Two reactions:

$$A + B \xleftarrow{k_1}{k_2} AB A \xrightarrow{k_3}$$

- reversible reaction under which species A and B bind to form AB (forwards rate = $|A| \cdot |B| \cdot k_1$, backwards rate = $|AB| \cdot k_2$)
- degradation of A (rate $|A| \cdot k_3$)
- |X| denotes number of molecules of species X
- CTMC with state space
 - (|A|, |B|, |AB|)
 - initially (2,2,0)

20

Paths of a CTMC

- An infinite path ω is a sequence $s_0t_0s_1t_1s_2t_2...$ such that
 - $\ \textbf{R}(s_i,s_{i+1}) > 0 \ \text{and} \ t_i \in \mathbb{R}_{>0} \ \text{ for all } i \in \mathbb{N}$
 - t_i denotes the amount of time spent in s_i
- or a sequence $s_0t_0s_1t_1s_2t_2...t_{k-1}s_k$ such that
 - $\textbf{R}(s_i,\!s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}~~\text{for all}~i{<}k$
 - s_k is absorbing (i.e. R(s,s') = 0 for all $s' \in S$)
 - i.e. remain in state s_k indefinitely
- Path(s) denotes all infinite paths starting in state s
- Further notation:
 - time(ω ,j) = amount of time spent in the jth state, i.e. t_i
 - $\omega @t = state occupied at time t:$
 - see e.g. [BHHK03, KNP07a] for precise definitions

Recall: Probability spaces

- A σ -algebra (or σ -field) on Ω is a set Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A\in \Sigma,$ the complement $\Omega\setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N},$ the union $\cup_i A_i$ is in Σ
 - the empty set \varnothing is in Σ
- Elements of $\boldsymbol{\Sigma}$ are called measurable sets or events
- Theorem: For any set F of subsets of $\Omega,$ there exists a unique smallest $\sigma\text{-algebra}$ on Ω containing F
- Probability space (Ω , Σ , Pr)
 - Ω is the sample space
 - $\pmb{\Sigma}$ is the set of events: $\sigma\text{-algebra}$ on Ω
 - $Pr : \Sigma \rightarrow [0,1]$ is the probability measure:

 $Pr(\Omega) = 1$ and $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space

- Sample space: Path(s) (set of all paths from a state s)
- Events: sets of infinite paths
- Basic events: cylinders
 - cylinders = sets of paths with common finite prefix
 - include time intervals in cylinders
- Finite prefix is a sequence $s_0, I_0, s_1, I_1, ..., I_{n-1}, s_n$
 - $s_0, s_1, s_2, \dots, s_n$ sequence of states where $R(s_i, s_{i+1}) > 0$ for i < n
 - $-I_0,I_1,I_2,...,I_{n-1}$ sequence of of non–empty intervals of $\mathbb{R}_{\geq 0}$
- Cylinder Cyl($s_0, I_0, s_1, I_1, \dots, I_{n-1}, s_n$) is the set of infinite paths: - $\omega(i) = s_i$ for all $i \le n$ and time(ω, i) $\in I_i$ for all i < n

Probability space

- Define probability measure over cylinders inductively
- $Pr_s(Cyl(s)) = 1$

Probability space – Example

- Probability of leaving the initial state s_0 and moving to state s_1 within the first 2 time units of operation
- Cylinder Cyl(s₀,(0,2],s₁)

- $\Pr_{s0}(Cyl(s_0, (0, 2], s_1))$
 - $= \Pr_{s0}(CyI(s_0)) \cdot \Pr^{emb(C)}(s_0, s_1) \cdot (e^{-E(s0) \cdot 0} e^{-E(s0) \cdot 2})$ = 1 \cdot \Perp_{emb(C)}(s_0, s_1) \cdot (e^{-E(s0) \cdot 0} - e^{-E(s0) \cdot 2}) = 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} - e^{-3/2 \cdot 2}) = 1 - e^{-3} \approx 0.95021

Probability space

- Probability space (Path(s), $\Sigma_{Path(s)}$, Pr_s) (see [BHHK03])
- Sample space Ω = Path(s)
 - i.e. all infinite paths
- Event set $\Sigma_{Path(s)}$
 - least σ -algebra on Path(s) containing all cylinders sets Cyl(s₀,I₀,...,I_{n-1},s_n) where:
 - $s_0,...,s_n$ ranges over all state sequences with $\mathbf{R}(s_i,s_{i+1}) > 0$ for all i
 - $I_0, ..., I_{n-1}$ ranges over all sequences of non-empty intervals in $\mathbb{R}_{\geq 0}$ (where intervals are bounded by rationals)
- Probability measure Pr_s
 - Pr_s extends uniquely from probability defined over cylinders

Probabilistic reachability

- Probabilistic reachability
 - the probability of reaching a target set $\mathsf{T}{\subseteq}\mathsf{S}$
 - measurability:
 - union of all basic cylinders $Cyl(s_0,(0,\infty),s_1,(0,\infty),\ldots,(0,\infty),s_n)$ where $s_n\in T$
 - · set of such state sequences $s_0s_1...s_n$ is countable
- Time-bounded probabilistic reachability
 - the probability of reaching a target set $T \subseteq S$ within t time units
 - measurability:
 - union of all basic cylinders $Cyl(s_0, I_0, s_1, I_1, ..., I_{n-1}, s_n)$ where $s_n \in T$ and $sup(I_0) + ... + sup(I_{n-1}) \le t$
 - set of such state sequences $s_0s_1...s_n$ is countable
 - set of rational-bounded intervals is countable

Summing up...

- Exponential distribution
 - suitable for modelling failures, waiting times, reactions, ...
 - nice mathematical properties
- Continuous-time Markov chains
 - transition delays modelled as exponential distributions
 - race condition
 - embedded DTMC
 - generator matrix
- Probability space over paths
 - (untimed and timed) probabilistic reachability