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Recap

e Sample based UMDPs consider a finite set of possible models

» Enables modelling dependencies between transitions

»  Enables less conservative behaviour

» Enables adaptive behaviour
»  Problem becomes hard to solve optimally

We looked at approximation technigues

 Regret is a suitable measure which trades-off robustness and conservatism

« We optimise for regret where we assume n-step rectangularity rather than (1-step)
rectangularity

» Consider n step dependencies



Course contents

Bayes-adaptive MDPs
» malintaining a distribution over the possible models

» usage in mission planning for robots



Bayes-adaptive MDPs



M = (S, sy, A, P, C, goal)

o Add prior p(P) over &

e Turns the problem into a model-based Bayes-adaptive reinforcement learning (RL)
problem

» We do not make assumptions on uncertainty set & or the form of its prior
»  We will see how to work explicitly with a finite &

» An open question is what are suitable ways of maintaining and updating p(P) when & is
continuous and has dependencies

Problem specific

We will discuss a few approaches later



Bayes-adaptive MDP

M = (S, sy, A, P, C, goal)

o Add prior p(P) over &

. The BAMDP for . is defined as /™ = (ST, A, sy, PT, C™, goal™), where:
v ST = (S X A)* X Sis the set of states

A state in the BAMDP is a state-action history (aka path) s™ = (sya(Sd;...5, _a, S, )

We will also use i € (S X A)* and denote BAMDP states as s = (/hs)

»  The transition function is defined as P*(hs, a, hsas') = J P(s,a, s"p(P | hs)dP
PeP

For finite P, P*(hs,a, hsas’) = Z P(s,a, s")p(P | hs)

Pe&r
» CT(hs,a) = C(s,a)

» hs € goal™ ifand only if s € goal



Calculating a posterior the uncertainty set

 Using Bayes rule, we can recursively compute the posterior over the uncertainty set
given the observed history

» This is our belief over which iIs the real model

(P | 50) = p(P)
p(h | Pyp(P) PR

p(h)

p(P | h) = P(s,a,s)p(P | hs)

p(P | hsas’) =

Z P'(s,a,s")p(P’"| hs)

P'er
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P*(hs,a, hsas) = Z P(s,a, s"p(P | hs)

Per
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P*(hs,a, hsas) = Z P(s,a, s"p(P | hs)
Pe&
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P*(hs,a, hsas) = Z P(s,a, s"p(P | hs)
Pe&
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 Optimally solves the exploration (improving belief over model) and exploitation (use
current belief to achieve the goal) problem

* Possible models + prior can be viewed as a partially observable MDP (POMDP)
»  Agent state fully observable
» [atent feature Is the model we are executing in
»  Observation set is the set of agent states
»  The BAMDP is the belief MDP of this POMDP

» |f the environment is dynamic then we need to model the problem as a POMDP (specitically a
mixed-observability MDP)

« BAMDP state-space is infinite

» One can use adaptations of POMDP technigques

»  We will look into one such technigue, based on Monte-Carlo Tree Search, named Bayes-
adaptive Monte Carlo Planning (BAMCP)




Monte-Carlo Tree Search



* |n many cases it is expensive or difficult to enumerate states, or there is no access to
an explicit transition function, but can simulate the transitions between states

» Use a Monte-Carlo (I.e sampling-based) approach to approximate the value function

* Monte-Carlo Tree Search (MCTS) is a trial-based tree search algorithm that has been
extremely successtul approximating solutions (e.g. AlphaGo)

» Allows for online (interleaving planning and execution) or offline planning

» Under certain configurations, provides PAC guarantees - “with probability 0.95 the solution
from x trials is within 5% ot optimal”

» In the limit (i.e. given infinite samples), produces the optimal value function, but can also
function as an anytime algorithm




e We Introduce MCTS for MDPs

e Two types of search nodes

» Decision nodes - correspond to states and are use to keep estimate of V()

»  Chance nodes - correspond to state-action pairs and are used to keep estimate of O(s, a)

S, a

n

Q(s, a)
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Bayes-adaptive Monte-Carlo Planning

Repeat (until goal reached)

1. Repeat (until timeout)

1. Sample P according to p(P) (root sampling)
2. Run MCTS trial under P

2. Execute action in the environment according to search tree

3. Observe outcome and update p(P) accordingly

[ Initialise model

l Typically, fixed
> Plan using model | number of MCTS
l trials
Choose a single
action

O

Observe outcome

|

Update belief

S0 41
2
7.5

1

S0> 4o

1

S001550784
1
5

So01550,5 4, A3
1
5

33




Putting a prior over the uncertainty set yields a model based Bayes-adaptive RL
oroblem

The problem can be encoded into a specific type of belief MDP, names Bayes-
adaptive MDP

o plan tor BAMDPs, we use an MCTS algorithm which incrementally builds and
approximates the BAMDP solution

Jntil now, we have not discussed an aspect that has been central in the previous 4
ectures

» Robustness to model uncertainty

» BAMCP optimises in expectation

»  We will address robustness in a BAMDP context in the end of this lecture



Bayes-adaptive MDPs

» M. O. Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes, PhD Thesis, University of Massachusetts Amherst, 2002.

» A. Guez, D. Silver, P. Dayan. Efficient Bayes-Adaptive Reinforcement Learning using
Sample-Based Search, NeurlPS, 2012.



Epistemically Uncertain Robots



OXFORD ROBOTICS INSTITUTE

Sequential decision-making techniques to allow
long-lived autonomous robots to achieve their

goals, under uncertainty

MOBILE DYNAMIC ROBOT APPLIED ARTIFICIAL GOAL-ORIENTED
ROBOTICS GROUP SYSTEMS GROUP INTELLIGENCE LAB LONGLIVED SYSTEMS
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Mission planning for autonomous systems with
probabilistic guarantees and rich specifications

eel:: Zoom. Shift: More options

THEMISSION STARTSIWITH THEIROBOTUBEINGIDRIVEN INTO THE TORUS IHALLY 5o

INSTITUTE

OXFORD ROBOTICS INSTITUTE



s Multi-robot coordination with team guarantees,
resource constraints and continuous time

Unloading
Station ™

Mission: F (WayPoint27 & F WayPoint28)
F (WayPoint59 & F WayPoint58), F WayPoint8
F WayPoint22, F WayPoint36, F WayPoint47,

G !WayPoint4 & G !WayPoint51 & G !WayPoint26

OXFORD ROBOTICS INSTITUTE




GOAL- ORIENTED
LONG- LIVED SYSTEMS

. Planning with models acquired online or through learnin

Upper Certainty Bound
= (Above Safety Limit)

Upper Certainty Bound
(Below Safety Limit)

S
o

Mean GP Estimate
Current Position
Current Goal

Sampled Value
at a State

Known (x,y) State
State Transition

an|eA ainiea) [eIuUDWIUOIIAUT

This sped up footage demonstrates our approach partway through trammg in
real-world experiments.

Gazebo - O X Activities v rvizv Mon Nov 9,10:33 PM
ow  Help

safe_exp.rviz* - RViz
File Panels Help

"y Interact | % Move Camera [ Select Focus Camera == Measure

« 2D Pose Estimate " 2D Nav Goal § Publish Point F = @
1 pisplays
v & Global Options

Fixed Frame map

Background Color [l 48; 48; 48

Frame Rate 30
Default Light
v/ Global Status: Ok
v/ Fixed Frame
Grid
th, RobotModel
F: map o l’.’l”""
»~,. LaserScan /
Path
W¥ TopologicalMap

» v Status: Ok
Topic
Unreliable
Selectable v
Style Flat Squares
Size (m) 0.1
Alpha 0.5
Decay Time 0

/safe_explorati...

Position Transformer XYZ

Color Transformer RGB8

Queue Size 10 =i
ExplorationRadMean

ExplorationRadUB

Displays a point cloud from a
sensor_msgs::PointCloud2 message as points in
the world, drawn as points, billboards, or cubes.
More Information.

Add Duplicate Remove Rename

(9 Time

ROS Time: |681.55 ROS Elapsed: 681.55 Wall Time: |1604961227.19 Wall Elapsed: 739.76

Experimental
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Successful long-term robotic autonomy requires:

1. Data-driven model learning

2. Modelling and planning approaches that explicitly reason about the epistemic uncertainty
inherent to models learnt from data

3. Incorporating rich specifications that go beyond typical reward maximisation in expectation

47



Successful long-term robotic autonomy requires:

1. Data-driven model learning

2. Modelling and planning approaches that explicitly reason about the epistemic uncertainty
inherent to models learnt from data

3. Incorporating rich specifications that go beyond typical reward maximisation in expectation

Using data to populate MDPs

47



| ong-lerm Autonomy

* Robots are deployed for months of unsupervised autonomous behaviour in real
end-user environments

* Long- and short-term variation in tasks, resources and environments requires
planning

‘‘‘‘‘
""""

/

i e SUTARD -

N TS, iIton Keynes, UK Haus der Barmherzigkeit, Vienna, Austria G4S Scrity, kesbu, UK
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N. Hawes et al. “The STRANDS project: Long-term autonomy in everyday environments”. IEEE Robotics & Automation Magazine, 24(3), 2017.
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planning must take into
account the uncertainty LY
associated with (at least) LGP B S —

success and duration . .
ncertaln durations




Vlarkov decision Processes

M :75, AT, C) action costs
states// \ o —

}tlons transition probs /
defined by the map \ learnt from long-term
and task experience data

@ 0.05

B. Lacerda, F. Faruqg, D. Parker, and N. Hawes. “Probabilistic planning with formal performance guarantees for mobile service robots”. The
International Journal of Robotics Research, 38(9), 2019.
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Problem Specification - Partial Satisfiability

0.05

-t co-safe spec @

1. Be robust: Maximise probability of visiting a sequence of states that satisfies the spec

2. Do as much as possible: Even when the overall spec becomes unachievable (e.q., because of a task

that is to be executed behind a closed door), continue executing and achieve as much of the spec as
possible

3. Be efficient: Minimise expected time to execute the part of the task that is possible

B. Lacerda, F. Faruqg, D. Parker, and N. Hawes. “Probabilistic planning with formal performance guarantees for mobile service robots”. The
International Journal of Robotics Research, 38(9), 2019.

57



MDP M

|

co-safe L'TL specification ¢

|

(X)+

Product MDP M,

DFA A,

Progression function p,,

Pruned product MDP M@mne

Priis(#)
Exts(prog)

Ej\n/}flg(cumul ¢ )

Policy 7*

B. Lacerda, F. Faruqg, D. Parker, and N. Hawes. “Probabilistic planning with formal performance guarantees for mobile service robots”. The

International Journal of Robotics Research, 38(9), 2019.
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LTA Component

Mission Generator

Co-Safe LTL
Specification
Mission Component
MDP

e Data: Action outcomes and durations

 Model: MDP
» Specification:

B. Lacerda, F. Faruqg, D. Parker, and N. Hawes. “Probabilistic planning with formal performance guarantees for mobile service robots”. The

Partially satisfiable co-safe

International Journal of Robotics Research, 38(9), 2019.

Learn/Update Action Outcomes

Spatiotemporal

Models of Actions

and Durations

Experience Dataset

Gather Action Outcomes

Transition Probabilities
and Expected Durations

and Durations

Act

Policy Synthesis Real World

T

(lexicographic optimisation)



| ong-lived Mission Planning and Learning

* This approach has generated months of long-term behaviour
e Execution framework run for ~1 year, handling >23,000 tasks

e Evaluating the policy guarantees and effects of long-term adaptation is harder (and dependent
on learning mechanisms, environment, people etc.)

60



Successful long-term robotic autonomy requires:

1. Data-driven model learning

2. Modelling and planning approaches that explicitly reason about the epistemic uncertainty
inherent to models learnt from data

3. Incorporating rich specifications that go beyond typical reward maximisation in expectation

Explicitly modelling model uncertainty

61



 Robot exploration with safety constraints over an environmental feature whose distribution

IS unknown a priori

» Explore the environment whilst maintaining the level of radiation exposure under a bound

* \We present a novel decisi
used for efficient explorati

Onn

on

making under uncertainty model and show how it can be

- Markov decision processes + Gaussian processes
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Problem Setup

* Underlying (known) MDP for navigation

e A priori unknown radiation - can be sensed at each location

 Bound on max radiation exposure at each location

« Goal: Estimate radiation across the whole env
avoiding going over bound

G 8 B 8 w
Envnronmental featu

[
o

o w

T
8

re value

ironment whilst

Upper Safety Bound

Environmental
feature value

Known (x,y) State
State Transition

- I}
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(Gaussian Processes

* Collection of random variables, any finite number of which have a joint Gaussian
distribution

 Model Is updated taking noisy observations at different locations
* Allows for prediction at unobserved locations

prediction

==== target function

training daza 2¢ credible region

" 1 l 1 1 1 1 { 1 ]'
4 () 2 () 5 L

-

T =



MDPs with Unknown Feature Values

Radiation

level function fis unknown

a priort and will be
approximated by a GP

TD((Uv [)7 (U, vg)v (vlv I/) —
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jZ\/' p ’ —/px PP (f(v') € In | D'
a1

px PV (f(v >612|D>

p x PYY(f(v") 613|D>

pngP(f(v)GLLID)

=10

hd Estimated MDP

==== target function prediction

training data 2¢ credible region

1 — e
103 0 6 3 10
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EstMDP Reached 168
Constructor Vg? ¢

Upper Certainty Bound
B Above Safety Limit)

Upper Certainty Bound

Below Safety Limit No —
i | I(Vlean GP Estiymate ) Updatg ° (v,.w('v))
o  posit according to action
WITENL FQSILION outcome and sensor
* Current Goal Observatlon
2 Candidate Goal
= being Evaluated
| : Sampled Value
,’ ;' at a State
| ,’ Known (x,y) State
| : State Transition No
& Choose Goal Execute action
* ()
Yes

Maximise score based on: @

1. Probabillity of safely reaching state (reach-avoid as partial satisfiability)
2. Expected time to reach state (reach-avoid as partial satisfiability)
3. How uncertain state is (GP variance)

M. Budd, B. Lacerda, P. Duckworth, A. West, B. Lennox, and N. Hawes, “Markov Decision Processes with Unknown State Feature Values for

Safe Exploration using Gaussian Processes,” in IROS, 2020. 09
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Corsham Research Mine, Wiltshire, UK.

A. Stephens, M. Budd, M. Staniaszek, B. Casseau, P. Duckworth, M. Fallon, N. Hawes and B. Lacerda, “Decision-Making Under Uncertainty
for Safe Exploration and Mapping,” under review at Autonomous Robots.
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Mission Component

(UMDP + GP)

EstMDP

Exploration

Algorithm

e Data: Online observations of unknown function

e Model: MD

o Specification: Safe exploration, sequence of reach-avoid problems

P+ 5

D)

Act

Observe

Real World
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« UMDP + GP = BAMDP
» The GP is encoding our belief over which is the true transition function

» We can use BAMCP for planning in unknown environments with GP predictions

TY : (Vx0) x A°® x V. — [0,1]

TO: (1 —p)

+ =  BAMDP M" =(S*,s5,A, T+, C*T,GT)

, For s = (v,0) and s" = (v, 0'):
\ T ((s,h),a, (s, has")) = / T(s,a,sp(T | h)dT
T g dun 30 crdibl regon T

(YL Z — 3 :TO((U,O),CL,U/)PQP(f<U/) :0/‘Dh)

Matthew Budd, Paul Duckworth, Nick Hawes, and Bruno Lacerda. “Bayesian Reinforcement Learning for Single-Episode Missions in Partially

Unknown Environments”. In CoRL 2022. 72



Mission Planning under Unknown Conditions

Current vectors (hour:2)
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Matthew Budd, Paul Duckworth, Nick Hawes, and Bruno Lacerda. “Bayesian Reinforcement Learning for Single-Episode Missions in Partially

Unknown Environments”. In CoRL 2022.
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Mission Component

BAMDP

with GP beliet

Act

BAMCP - Real World

Observe

e Data: Online observations of unknown function: historical current data

* Model: BAM

» Specification: Stochastic Shortest

D

P with G

P peliet

Path
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e Goal: Decide who takes control of the robot at each

timestep

» Human state Is uncertain and time-varying

» Modelled as a set of n possible performance profiles

(Markov chains)

* Planning MDP plus human models yield a mixed-

observability MDP

» Maintain belief over current state of the human

 Novel hidden-parameter po
continuous spaces of huma

ynomial M

DPs generalise to

N performance

» Loses the time-varying aspect though :(

r3

W4

r2

r7

r1

1 —a;0; + B;02

&ép—ri‘qh

¢ = B0

O

Action : Up

C. Costen, M. Rigter, B. Lacerda, N. Hawes. “Shared autonomy systems with stochastic operator models”. In [JCAI 2022.

C. Costen, M. Rigter, B. Lacerda, N. Hawes. “Planning with hidden parameter polynomial MDPs”. In AAAI 2023.
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Mission Component

Act

Mixed:
observability Real World
MDP
Observe

Mission Component

BAMDP with
polynomial Real World
beliet o
SCI've

e Data: Historical data of human performance
 Model: BAMDP/MOMDP
* Specification: Expected reward maximisation




Successful long-term robotic autonomy requires:

1. Data-driven model learning

2. Modelling and planning approaches that explicitly reason about the epistemic uncertainty
inherent to models learnt from data

3. Incorporating rich specifications that go beyond typical reward maximisation in expectation

Robustness to model uncertainty

77



 \When we can quantity uncertainty over models, we can consider a notion of risk

 We will consider conditional value at risk (CVaR)
» Expected value of the alpha% worst cases

CVaR, |G E[C

CVaR,(G) = E|G| G < VaR,(G)

e \We will look into risk aversion for BAMDPs



max CVaR,(G") = maxmin F (G £ is an adversarial perturbation to
n fe= the transition probabilities in the

T

 Pose problem as a stochastic game:

SAMDP

1. Agent takes in action in the BAMDP to maximise the expected reward

2. Adversary perturbs the transition probabilities (subject to budget) in the BAMDP to

minimise the expected reward

* Perturbing BAMDP transition probabilities can mean two things:

» Perturbation to the prior over the true M

D

P - epistemic uncertainty

» Perturbation to the transition probabilities in all possible MDPs - aleatoric uncertainty

M. Rigter, B. Lacerda, and N. Hawes, “Risk-Averse Bayes-Adaptive Reinforcement Learning,” in NeurlPS 2021. 79



* Difficult to solve exactly: BAMDP state space is large and adversary actions are
continuous

e Solution: Two-player BAMCP
» Progressive widening with Bayesian optimisation for continuous adversary action space

max min E¢[G"]
m &ex

Adversary

&1 Y ST e ‘.
| 5

M. Rigter, B. Lacerda, and N. Hawes, “Risk-Averse Bayes-Adaptive Reinforcement Learning,” in NeurlPS 2021.



Results

Risk-neutral baseline

Our approach

frequency
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M. Rigter, B. Lacerda, and N. Hawes, “Risk-Averse Bayes-Adaptive Reinforcement Learning,” in NeurlPS 2021.
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Mission Component

e Data: N/A
e Model: BAM

» Specification: Optimise for CVa

D

D)

BAMDP

Two-Player

BAMCP

Act

- Real World

Observe
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* Long-term autonomy

» £pistemic uncertainty not
considered

» Assumes (single) model is
correct when planning

* Epistemic uncertainty
> Single mission

» No offline learning from
mission data

LTA Component

Mission (Generator

Co-Safe L'TL

Specification
Mission Component

MDP

Mission Component

Epistemically-
Uncertain Decision
Making Model

Learn/Update
Spatiotemporal
Models of Actions

Transition Probabilities
and Expected Durations

Policy Synthesis

Policy Synthesis
under Epistemic

Uncertainty

Action Outcomes
and Durations

Act

Observe

Experience Dataset

Real World

Real World
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LTA Component

Mission Generator Model Learner Experience Dataset

Gather Data
Mission Component

Act
Epistemically- Policy Synthesis
Uncertain Decision under Epistemic Real World
Making Model Uncertainty
Observe

 How to use mission data to learn models that consider epistemic uncertainty”

* How to develop planning approaches that appropriately consider epistemic uncertainty when
synthesising robot behaviour?

» How to best represent and maintain the belief over the real model?
» How to consider dynamic world models?

34



Successful long-term robotic autonomy requires:

1. Data-driven model learning

- [ransition probabillities, action duration, task request dynamics, battery dynamics, human behaviour,
predictions from historical data

2. Modelling and planning approaches that explicitly reason about the epistemic uncertainty
inherent to models learnt from data

- MDPs with GP predictions, BAMDPs, polynomial MDPs, sample-based uncertain MDPs

3. Incorporating rich specifications that go beyond typical expected reward maximisation

- Temporal logics, multi-objective, regret minimisation, risk-averse behaviour, chance constraints

85



Markov decision processes (MDPs) and stochastic games

» MDPs: key concepts and algorithms

» stochastic games: adding adversarial

Uncertain MDPs

aspects

» MDPs + epistemic uncertainty, robust control,

'obust dynamic programming, interva

uncertainty set representation, challer

Sampling-based uncertain MDPs

» removing the transition independence

Bayes-adaptive MDPs

MDPs,
ges, tools

assumption

» maintaining a distribution over the possible models

» uUsage in mission planning for robots
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