

BRUNO LACERDA
University of Oxford

Recap

- Uncertain MDPs with rectangularity assumptions
- MDPs plus epistemic uncertainty: set of transition functions
- control policies + robust control
- environment policies - static vs dynamic uncertainty
- robust value iteration (robust dynamic programming)
- implementation with interval MDPs (IMDPs)
- non-memoryless policies (static uncertainty)
- generating / learning intervals
- uncertainty set representations
- tool support: PRISM

Course contents

- Markov decision processes (MDPs) and stochastic games
, MDPs: key concepts and algorithms
- stochastic games: adding adversarial aspects
- Uncertain MDPs
, MDPs + epistemic uncertainty, robust control, robust dynamic programming, interval MDPs,
uncertainty set representation, challenges, tools
- Sample-based uncertain MDPs
- removing the transition independence assumption
- Bayes-adaptive MDPs
- maintaining a distribution over the possible models

Sample-based UMDPs

SSP revisited

$$
\mathscr{M}=\left(S, s_{0}, A, P, C, \text { goal }\right)
$$

- SSP: Minimise the expected cost of reaching a target state set goal $\subseteq S$
- for a cost function $C: S \times A \rightarrow \mathbb{R}_{\geq 0}$
- minimise $V^{\pi}(s)=\mathbb{E}_{s}^{\pi}\left(X^{C}\right)$ where $X^{C}\left(s_{0} a_{0} s_{1} a_{1} \ldots\right)=\sum_{i=0}^{\infty} C\left(s_{i}, a_{i}\right)$
- Assumptions for SSP
- goal states are absorbing and zero-cost
- there is a proper policy (i.e., which reaches goal with probability 1 from all states)
- every improper policy incurs an infinite cost from every state from which it does not reach goal with probability 1

Example

Shallow area with islets requires human intervention to navigate from, cost=40

Open area, autonomous navigation allowed, cost=1

- Reach goal location subject to currents
- Mission to be executed between 6am and 6pm
- Navigation policy must perform well under all environment conditions

Example

Example

No disturbances - P_{Z}

Example

No disturbances - P_{Z}

$$
V^{\pi_{g}, P_{Z}}\left(s_{0}\right)=5
$$

$$
V^{\pi_{y}, P_{Z}}\left(s_{0}\right)=11
$$

Example

East currents - P_{E}

Example

North currents - P_{N}

Example

West currents - P_{W}

Example

South currents - P_{S}

Example

North currents - P_{N}

- Action: move up (N)

Example

North currents - P_{N}

- Action: move east (E)

Example

North currents - P_{N}

- Action: move west (W)

Example

North currents - P_{S}

- Action: move south (S)

Example

North currents - P_{N}

- Action: move up (N)

Example

$$
\begin{gathered}
\text { Example } \\
\mathscr{P}=\left\{P_{Z}, P_{N}, P_{S}, P_{E}, P_{W}\right\}
\end{gathered}
$$

Example

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair
- Action: move up (N)

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair
- Action: move up (N)

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair
- Action: move up (N)
- Action: move east (E)

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair
- Action: move up (N)
- Action: move east (E)

Example

- Rectangularity assumption means environment can choose the most damaging current for every state-action pair
- Action: move up (N)
- Action: move east (E)

Sample-based UMDPs
We will consider SSP MDPs
$\mathscr{M}=\left(S, s_{0}, A, \mathscr{P}, C\right.$, goal $)$

No rectangularity assumption
$\mathscr{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ where $P_{i}: S \times A \rightarrow \operatorname{Dist}(S)$
P_{1}
P_{2}
P_{3}
P_{n}
$\stackrel{\odot}{\odot}$
$\stackrel{(1)}{\circ}$
$\stackrel{(1)}{-\infty}$
$\stackrel{(0)}{\odot}$

Considering dependencies

- Considering dependencies reduces conservativeness of solutions
- It also enables adaptivity to environment conditions
- If currents are pushing me north, then I can navigate west of the high cost area
- Optimal policies are typically finite-memory and randomised
- Solution approaches are typically NP-hard
- We will look into approximate solutions from now on

Worst-case optimisation

$$
V^{w c}(s)=\min _{\pi \in \Pi} \max _{P \in\left\{P_{1}, \ldots, P_{n}\right\}} V^{\pi, P}(s)
$$

- Solutions can be too conservative
- Requires finite-memory randomised policies
- NP-hard
$\mathscr{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ where $P_{i}: S \times A \rightarrow \operatorname{Dist}(S)$
- Not well studied

Regret optimisation

$$
\begin{aligned}
V^{*, P}(s) & =\operatorname{argmin}_{\pi \in \Pi} V^{\pi, P}(s) \\
\operatorname{reg}^{\pi, P}(s) & =V^{\pi, P}(s)-V^{*, P}(s) \\
V^{r e g}(s) & =\min _{\pi \in \Pi} \max _{P \in \mathscr{P}} r e g^{\pi, P}(s)
\end{aligned}
$$

$\mathscr{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ where $P_{i}: S \times A \rightarrow \operatorname{Dist}(S)$

- Requires finite-memory randomised policies
- NP-hard

Example

No disturbances - P_{Z}

$$
V^{\pi_{g}, P_{Z}}\left(s_{0}\right)=5
$$

$$
V^{\pi_{y}, P_{Z}}\left(s_{0}\right)=11
$$

Example

South currents - P_{S}

$$
\begin{aligned}
& V^{\pi_{g}, P_{S}}\left(s_{0}\right)=6.25 \\
& V^{\pi_{y}} P_{S}\left(s_{0}\right)=13
\end{aligned}
$$

Example

$V^{\pi, P}\left(s_{0}\right)$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}
	5	4.31	5	14.05	6.25
	11	9.4	10.89	11.05	13
	9	7.67	16.61	9.69	10.75

Example

$V^{\pi, P}\left(s_{0}\right)$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}	Max
	5	4.31	5	14.05	6.25	14.05
	11	9.4	10.89	11.05	13	13
	9	7.67	16.61	9.69	10.75	16.61

$$
V^{w c}(s)=\min _{\pi \in \Pi} \max _{P \in\left\{P_{1}, \ldots, P_{n}\right\}} V^{\pi, P}(s)
$$

Example

$V^{\pi, P}\left(s_{0}\right)$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}	Max
	5	4.31	5	14.05	6.25	14.05
	11	9.4	10.89	11.05	13	13
	9	7.67	16.61	9.69	10.75	16.61

$$
V^{w c}(s)=\min _{\pi \in \Pi} \max _{P \in\left\{P_{1}, \ldots, P_{n}\right\}} V^{\pi, P}(s)
$$

$\operatorname{reg}^{\pi_{P}^{P}\left(S_{0}\right)}$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}
	0	0	0	4.36	0
	6	5.09	5.89	1.36	6.75
	4	3.36	11.61	0	4.5

$$
\operatorname{reg}^{\pi, P}(s)=V^{\pi, P}(s)-V^{*, P}(s)
$$

Example

$V^{\pi, P}\left(s_{0}\right)$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}	Max
	5	4.31	5	14.05	6.25	14.05
	11	9.4	10.89	11.05	13	13
	9	7.67	16.61	9.69	10.75	16.61

$$
V^{w c}(s)=\min _{\pi \in \Pi} \max _{P \in\left\{P_{1}, \ldots, P_{n}\right\}} V^{\pi, P}(s)
$$

regr. ${ }^{\pi P_{(}\left(s_{0}\right)}$	P_{Z}	P_{N}	P_{W}	P_{E}	P_{S}	Max
	0	0	0	4.36	0	4.36
	6	5.09	5.89	1.36	6.75	6.75
	4	3.36	11.61	0	4.5	11.61

$$
\begin{aligned}
& \operatorname{reg}^{\pi, P}(s)=V^{\pi, P}(s)-V^{*, P}(s) \\
& V^{r e g}(s)=\min _{\pi \in \Pi} \max _{P \in \mathscr{P}} \operatorname{reg} g^{\pi, P}(s)
\end{aligned}
$$

Optimising regret in sample-based UMDPs

- For finite-horizon MDPs, one can find approximate solutions by solving an optimisation problem
- We will see a variant of this formulated later
- Suboptimalty bounds for the solution can be provided [Ahmed et al.'17]
- For sample-based uncertain SSPs, we do not know of a solution method
- Not even approximate
- We will go over an approximate solution for sample-based uncertain SSPs
- Brings ideas from robust value iteration whilst maintaining some notion of dependency between transitions

DP for policy evaluation

- We can evaluate the regret of a policy via dynamic programming

$$
\operatorname{reg}^{\pi, P}(s)=\sum_{a \in A} \pi(s, a) \cdot\left[C_{g a p}^{P}(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot r e g^{\pi, P}\left(s^{\prime}\right)\right]
$$

where $\operatorname{reg}^{\pi, P}(g)=0$ for all $g \in$ goal

- $C_{\text {gap }}^{P}(s, a)$ is the gap between
- Taking action a at s and then following the optimal policy
- Following the optimal policy from s

Example

$$
\begin{aligned}
& V^{*, P}\left(s_{4}\right)=0 \\
& V^{*}, P\left(s_{3}\right)=10 \\
& V^{*, P}\left(s_{2}\right)=1 \\
& V^{*}, P\left(s_{1}\right)=1+0.8 V^{*, P}\left(s_{2}\right)+0.2 V^{*}, P\left(s_{3}\right)=3.8 \\
& V^{*}, P\left(s_{0}\right)=3+0.5 V^{*, P}\left(s_{1}\right)+0.5 V^{*}, P\left(s_{3}\right)=9.9
\end{aligned}
$$

- Regret of π, which takes action a_{2} in s_{1} :
$\operatorname{reg}^{\pi, P}(s)=\sum_{a \in A} \pi(s, a) \cdot\left[C_{g a p}^{P}(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot \operatorname{reg}^{\pi, P}\left(s^{\prime}\right)\right]$
where $\operatorname{reg}{ }^{\pi, P}(g)=0$ for all $g \in$ goal
and $C_{g a p}^{P}(s, a)=\left[C(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot V^{*, P}\left(s^{\prime}\right)\right]-V^{*, P}(s)$

$$
\begin{aligned}
& \operatorname{reg}^{\pi, P}\left(s_{2}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{3}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{4}\right)=0 \\
& C_{g a p}^{P}\left(s_{1}, a_{2}\right)=[1+0.8 \cdot 10+0.2 \cdot 1]-3.8=5.4 \\
& \operatorname{reg}^{\pi, P}\left(s_{1}\right)=5.4+0.8 \cdot 0+0.2 \cdot 0=5.4 \\
& C_{g a p}^{P}\left(s_{0}, a_{0}\right)=[3+0.5 \cdot 3.8+0.5 \cdot 10]-9.9=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{0}\right)=0+0.5 \cdot 0+0.5 \cdot 5.4=2.7
\end{aligned}
$$

Example

$$
\begin{aligned}
& V^{*, P}\left(s_{4}\right)=0 \\
& V^{*}, P\left(s_{3}\right)=10 \\
& V^{*, P}\left(s_{2}\right)=1 \\
& V^{*, P}\left(s_{1}\right)=1+0.8 V^{*, P}\left(s_{2}\right)+0.2 V^{*, P}\left(s_{3}\right)=3.8 \\
& V^{*, P}\left(s_{0}\right)=3+0.5 V^{*, P}\left(s_{1}\right)+0.5 V^{*, P}\left(s_{3}\right)=9.9
\end{aligned}
$$

- Regret of π, which takes action a_{2} in s_{1} :
$\operatorname{reg}^{\pi, P}(s)=\sum_{a \in A} \pi(s, a) \cdot\left[C_{g a p}^{P}(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot r e g^{\pi, P}\left(s^{\prime}\right)\right]$
where $\operatorname{reg}^{\pi, P}(g)=0$ for all $g \in$ goal
and $C_{g a p}^{P}(s, a)=\left[C(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) . V^{*}, P\left(s^{\prime}\right)\right]-V^{*}, P(s)$

$$
\begin{aligned}
& V^{\pi, P}\left(s_{0}\right)=3+0.5 \cdot 10+0.5 \cdot(1+0.2 \cdot 1+0.8 \cdot 10)=12.6 \\
& \quad \operatorname{reg}^{\pi, P}\left(s_{0}\right)=V^{\pi, P}\left(s_{0}\right)-V^{*, P}\left(s_{0}\right)=12.6-9.9=2.7
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{reg}^{\pi, P}\left(s_{2}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{3}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{4}\right)=0 \\
& C_{g a p}^{P}\left(s_{1}, a_{2}\right)=[1+0.8 \cdot 10+0.2 \cdot 1]-3.8=5.4 \\
& \operatorname{reg}^{\pi, P}\left(s_{1}\right)=5.4+0.8 \cdot 0+0.2 \cdot 0=5.4 \\
& C_{g a p}^{P}\left(s_{0}, a_{0}\right)=[3+0.5 \cdot 3.8+0.5 \cdot 10]-9.9=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{0}\right)=0+0.5 \cdot 0+0.5 \cdot 5.4=2.7
\end{aligned}
$$

Example

$$
\begin{aligned}
& V^{*, P}\left(s_{4}\right)=0 \\
& V^{*}, P\left(s_{3}\right)=10 \\
& V^{*, P}\left(s_{2}\right)=1 \\
& V^{*, P}\left(s_{1}\right)=1+0.8 V^{*, P}\left(s_{2}\right)+0.2 V^{*}, P\left(s_{3}\right)=3.8 \\
& V^{*, P}\left(s_{0}\right)=3+0.5 V^{*, P}\left(s_{1}\right)+0.5 V^{*, P}\left(s_{3}\right)=9.9
\end{aligned}
$$

- Regret of π, which takes action a_{2} in s_{1} :
$\operatorname{reg}^{\pi, P}(s)=\sum_{a \in A} \pi(s, a) \cdot\left[C_{g a p}^{P}(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot \operatorname{reg}^{\pi, P}\left(s^{\prime}\right)\right]$ where $\operatorname{reg}^{\pi, P}(g)=0$ for all $g \in$ goal
and $C_{g a p}^{P}(s, a)=\left[C(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) . V^{*}, P\left(s^{\prime}\right)\right]-V^{*}, P(s)$

$$
V^{\pi, P}\left(s_{0}\right)=3+0.5 \cdot 10+0.5 \cdot(1+0.2 \cdot 1+0.8 \cdot 10)=12.6
$$

$$
\begin{aligned}
& \operatorname{reg}^{\pi, P}\left(s_{2}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{3}\right)=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{4}\right)=0 \\
& C_{g a p}^{P}\left(s_{1}, a_{2}\right)=[1+0.8 \cdot 10+0.2 \cdot 1]-3.8=5.4 \\
& \operatorname{reg}^{\pi, P}\left(s_{1}\right)=5.4+0.8 \cdot 0+0.2 \cdot 0=5.4 \\
& C_{g a p}^{P}\left(s_{0}, a_{0}\right)=[3+0.5 \cdot 3.8+0.5 \cdot 10]-9.9=0 \\
& \operatorname{reg}^{\pi, P}\left(s_{0}\right)=0+0.5 \cdot 0+0.5 \cdot 5.4=2.7
\end{aligned}
$$

Robust value iteration for regret

- Choose different P per step
- Assumes rectangularity - too much power to the environment
- Next, we will fix P for n steps
- Even in \mathscr{P} is rectangular, solution is approximate
- Expected, as optimising regret is hard, even for rectangular uncertainty sets

N-step options

- An n-step option is defined as $o=\left(s_{0}, \pi^{o}\right.$, goal $\left.l^{0}, n\right)$, where:
- $s_{0} \in S$ is the initiation state
- $\pi^{o}: S \rightarrow A$ is the option policy
- goal $^{\circ} \subseteq S$ is a set of termination states
- $n \in \mathbb{N}$ is the maximum number of steps
- An n-step option is executed until
- A state in goal $^{\circ}$ is reached, or
- n steps have occurred
- Analysing the Markov chain induced by applying o for n steps, we can compute:
- The state distribution after applying o in $s \in \bar{s}$ for n steps, $\operatorname{Pr}\left(s^{\prime} \mid s, o\right)$
- The expected cumulative cost for applying o in $s \in \bar{s}$ for n steps, $V_{n}^{o, P}(s)$

N-step option MDP

- For $\mathscr{M}=\left(S, s_{0}, A, P, C\right.$, goal $)$ with $P \in \mathscr{P}$, we define the n-step option MDP as $\mathscr{M}_{n}^{o}=\left(S, O_{n}, P^{o}, C_{\text {gap }}^{o, P}\right.$, goal $)$, where:
- O_{n} is the set of all n-step options starting in some $s \in S$ and goal termination condition goal ${ }^{0}=$ goal
- $P^{o}: S \times O_{n} \rightarrow \operatorname{Distr}(S)$ is the transition function such that for $o=\left(\bar{s}, \pi^{o}, G^{o}, n\right)$:

$$
P^{o}\left(s, o, s^{\prime}\right)= \begin{cases}\operatorname{Pr}\left(s^{\prime} \mid s, o\right) & \text { if } s=\bar{s} \\ 0 & \text { otherwise }\end{cases}
$$

, $\quad C_{g a p}^{o, P}(s, o)=\left[V_{n}^{o, P}(s)+\sum_{s^{\prime} \in S} P^{o}\left(s, o, s^{\prime}\right) \cdot V^{*}, P\left(s^{\prime}\right)\right]-V^{*, P}(s)$

- Policy for n-step option MDP $\sigma: S \rightarrow O_{n}$ maps state to option to be applied

Example

$$
\begin{aligned}
o_{1}: s_{0} & \mapsto N \\
s_{2} & \mapsto E
\end{aligned}
$$

$$
\begin{aligned}
o_{2}: s_{0} & \mapsto N \\
s_{2} & \mapsto S
\end{aligned}
$$

$$
\begin{aligned}
o_{3}: s_{0} & \mapsto E \\
s_{1} & \mapsto N
\end{aligned}
$$

$$
\begin{aligned}
o_{4}: s_{0} & \mapsto E \\
s_{1} & \mapsto W
\end{aligned}
$$

N-step option MDP

$$
\begin{gathered}
\left.\operatorname{reg}^{\pi, P}(s)=C_{g a p}^{P}(s, \pi(s))+\sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) \cdot r e g^{\pi, P}\left(s^{\prime}\right)\right] \\
\left.r e g^{\sigma, P^{o}}(s)=C_{g a p}^{o, P}(s, \sigma(s))+\sum_{s^{\prime} \in S} P^{o}\left(s, \sigma(s), s^{\prime}\right) \cdot \operatorname{reg}^{\sigma, P^{o}}\left(s^{\prime}\right)\right]
\end{gathered}
$$

N-step dependency robust value iteration for regret

- Inner problem is a finite-horizon regret optimisation
- We will pose as optimisation problem

N-step regret as optimisation

- Optimisation variables:
- $r e g^{\sigma}\left(s_{c u r}\right)$ is the total regret we wish to minimise
- $\pi^{o}(s, a, t)$ is the randomised option policy to be applied for n steps

$$
\begin{array}{ll}
Q_{n}^{P}(s, a, t)=C(s, a) & \forall s \in S, a \in A, P \in \mathscr{P}, t=n-1 \\
Q_{n}^{P}(s, a, t)=C(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) Q_{n}^{P}(s, a, t+1) & \forall s \in S, a \in A, P \in \mathscr{P}, t<n-1
\end{array}
$$

$\min \quad \operatorname{reg}^{\sigma}\left(s_{c u r}\right)$
s.t. $\quad \operatorname{reg}^{\sigma}\left(s_{c u r}\right) \geq V_{n}^{P}\left(s_{c u r}, 0\right)+c^{P}\left(s_{c u r}, 0\right)-V^{*}, P\left(s_{c u r}\right) \quad \forall P \in \mathscr{P}$

$$
\begin{array}{ll}
V_{n}^{P}(s, t)=\sum_{a \in A} \pi^{o}(s, a, t) \cdot Q_{n}^{P}(s, a, t) & \forall s \in S, a \in A, P \in \mathscr{P}, t \leq n-1 \\
c^{P}(s, a, t)=\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot c^{P}\left(s^{\prime}, t+1\right) & \forall s \in S, a \in A, P \in \mathscr{P}, t<n-1 \\
c^{P}(s, a, t)=\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot\left[r e g^{\sigma}\left(s^{\prime}\right)+V^{*}, P\left(s^{\prime}\right)\right] & \forall s \in S, a \in A, P \in \mathscr{P}, t=n-1 \\
c^{P}(s, t)=\sum_{a \in A} \pi^{o}(s, a, t) \cdot c^{P}(s, a, t) & \forall s \in S, a \in A, P \in \mathscr{P}, t \leq n-1
\end{array}
$$

- $c^{P}(s, a, t)$ backpropagates the cost from timstep n to timestep 0

N -step regret as optimisation

- Optimisation variables:

Quadratic constraints. Can
be approximately linearised using

separable programming

$$
\operatorname{reg}^{\sigma}\left(s_{\text {cur }}\right)
$$

s.t. $\quad \operatorname{reg}^{\sigma}\left(s_{c u r}\right) \geq V_{n}^{P}\left(s_{c u r}, 0\right)+c^{P}\left(s_{c u r}, 0\right)-V^{*}, P\left(s_{c u r}\right)$

$$
Q_{n}^{P}(s, a, t)=C(s, a)
$$

$$
Q_{n}^{P}(s, a, t)=C(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \rho_{n}(s, a, t+1) / s \in S, a \in A, P \in \mathscr{P}, t<n-1
$$

$$
V_{n}^{P}(s, t)=\sum_{a \in A} \pi^{o}(s, a, t) \cdot Q_{n}^{P}(s, a, t)
$$

$$
c^{P}(s, a, t)=\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot c^{P}\left(s^{\prime}, t+1\right)
$$

$$
c^{P}(s, a, t)=\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot\left[\operatorname{reg}^{\sigma}(g)+V^{*, P}\left(s^{\prime}\right)\right]
$$

$$
c^{P}(s, t)=\sum_{a \in A} \pi^{o}(s, a, t) \cdot c^{P}(s, a, t)
$$

$\forall s \in S, a \in A, P \in \mathscr{P}, t \leq n-1$

$$
\forall s \in S, a \in A, P \in \mathscr{P}, t<n-1
$$

$$
\forall s \in S, a \in A, P \in \mathscr{P}, t=n-1
$$

$$
\forall s \in S, a \in A, P \in \mathscr{P}, t \leq n-1
$$

- $\operatorname{reg}^{\sigma}\left(s_{\text {cur }}\right)$ is the total regret we wish to minimise
- $\pi^{o}(s, a, t)$ is the randomised option policy to be applied for n steps
- $V_{n}^{P}(s, t)$ is the value of applying π^{o} for n steps
- $Q_{n}^{P}(s, a, t)$ is the value of applying a from timestep t to timestep n
- $c^{P}(s, t)$ is the regret accumulated by σ after π^{o} has been executed, weighed by the state distribution after executing π^{o}
- $c^{P}(s, a, t)$ backpropagates the cost from timstep n to timestep 0

Summary

- For many practical problems, one wants to consider dependencies between transitions
- Breaks rectangularity assumption
- Enables less conservative behaviour
- Enables adaptive behaviour
- Problem becomes hard to solve optimally
- We looked at approximation techniques
- Regret is a suitable measure which trades-off robustness and conservatism
- We optimise for regret where we assume n-step rectangularity rather than (1-step) rectangularity

References

- Regret optimisation in sample-based UMDPs
- A. Ahmed, P. Varakantham, M. Lowalekar, Y. Adulyasak and P. Jaillet, Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes, JAIR, 2017.
- M. Rigter, B. Lacerda, and N. Hawes. Minimax Regret Optimisation for Robust Planning in Uncertain Markov Decision Processes, AAAI, 2021.
- Related models
- S. Mannor, O. Mebel and H. Xu, Lightning Does Not Strike Twice: Robust MDPs with Coupled Uncertainty, ICML, 2012.
- L. N. Steimle, D. L. Kaufman and B. T. Denton, Multi-model Markov decision processes, IISE Transactions 2021.
- M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen and U. Topcu, Scenario-Based Verification of Uncertain MDPs, TACAS, 2020.

