


Recap
• Introduction 
‣ aleatoric vs. epistemic uncertainty 

• Markov decision processes (MDPs) 
‣ sequential decision making under uncertainty 
‣ policies and objectives 

- MaxProb, SSP, finite-horizon, temporal logic 

‣ solving MDPs (optimal policy generation) 
- linear programming (PTIME) 

- or dynamic programming (value iteration)
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Course contents
• Markov decision processes (MDPs) and stochastic games 
‣ MDPs: key concepts and algorithms 
‣ stochastic games: adding adversarial aspects 

• Uncertain MDPs 
‣ MDPs + epistemic uncertainty, robust control, 

robust dynamic programming, interval MDPs, 
uncertainty set representation, challenges, tools 

• Sampling-based uncertain MDPs 
‣ removing the transition independence assumption 

• Bayes-adaptive MDPs 
‣ maintaining a distribution over the possible models
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Stochastic games



Running example
• Interaction with a second robot
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Stochastic games
• MDPs model sequential decision making 
‣ for a single agent, under stochastic uncertainty 
‣ we may need adversarial (uncontrollable) decisions 
‣ or collaborative decision making for multiple agents 

• A (turn-based, two-player) stochastic game 
‣ takes the form  where: 

‣ states , initial state  and actions  are as for MDPs 

‣  are the (disjoint) states controlled by players 1 and 2 

‣ transition function  is also as for MDPs 

• Another possibility: concurrent stochastic games 
‣ with 

𝒢 = ({1,2}, S, ⟨S1, S2⟩, s0, A, P)
S s0 A

S1, S2 ⊆ S
P : S × A × S → [0,1]

P : S × (A1 × A2) × S → [0,1]
6
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Turn-based stochastic games
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Applications

• Example application domains (PRISM-games)

− collective decision making and team formation protocols 
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures
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Applications

• Example application domains (PRISM-games)

− collective decision making and team formation protocols 
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures
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Strategies for stochastic games
• Strategies (policies) for turn-based stochastic games 
‣ a strategy for player i is a mapping  

‣ a strategy profile  defines strategies for both players 

• For state  of game  and strategy profile : 

‣ we can define probability space , 
random variables  
and value functions  

• Strategies 
‣ can again be deterministic / randomised or memoryless / history-dependent 

‣  is the set of all strategies for player 

πi : (S × A)* × Si → Dist(A)
(π1, π2)

s 𝒢 (π1, π2)
Prπ1,π2

s
𝔼π1,π2

s (X)
Vπ1,π2(s)

Πi i ∈ {1,2}
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Objectives for stochastic games
• Objectives V1, V2 for players 1 and 2 can be distinct 
‣ simple, useful scenario: zero-sum (directly opposing), i.e., V1 = -V2 
‣ so we assume a single objective V which one player maximises and the other minimises 

• Consider MaxProb for player 1 (other cases are similar): 

• Games are determined, i.e., for all states : 

• So we define: 

‣ optimal value:  

‣ optimal strategy (for player 1): 

s

V*(s) = maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s)

π* = argmaxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s0)

9

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) where  is exactly as for MDP MaxProbVπ1,π2

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) = minπ2∈Π2
maxπ1∈Π1

Vπ1,π2(s)



Solving stochastic games
• Memoryless deterministic strategies suffice (for both players) 

• Complexity worse than for MDPs: NP  co-NP, rather than P 
‣ LP approach does not adapt (but strategy improvement is possible) 

• In practice: dynamic programming (value iteration) works well 
‣ e.g., for MaxProb:

∩

10

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
maxa∈A(s) ∑s′ ∈S Pa

s (s′ ) ⋅ xk−1
s′ 

if s ∉ goal, s ∈ S1 and k > 0

mina∈A(s) ∑s′ ∈S Pa
s (s′ ) ⋅ xk−1

s′ 
if s ∉ goal, s ∈ S2 and k > 0

Running example

• More
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Running example
• Optimal player 1 strategy changes:

11
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Zero-sum concurrent stochastic games
• Concurrent stochastic games: strategies, value functions defined similarly 
‣ games are still determined:  
‣ but optimal strategies still memoryless but now randomised 

• Value iteration can be extended: 

‣ where  is the value of the matrix game with payoffs: 

‣ solved via the linear program 

‣  gives the probability of player 1 
picking action  in its optimal strategy

val(Z)

pa
a

12

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) = minπ2∈Π2
maxπ1∈Π1

Vπ1,π2(s)

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
val(Z) otherwise

za,b = ∑s′ ∈S
Pa,b

s (s′ ) ⋅ xk−1
s′ 

Σa∈A1
pa = 1

pa ≥ 0 for a ∈ A1

Σa∈A1
pa ⋅ za,b ≥ v for b ∈ A2

Maximise game value  subject to:v
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Sequential decision making with stochastic games

13

• UAV road surveillance 
‣ with partial human control 

(varying operator accuracy)
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Figure 4

Left: A simple TSG modelling alternating decisions between a human operator and an
autonomous robot. Right: Results from a more complex, but similar style TSG analysed in (63)
for an unmanned aerial vehicle partially controlled by a human operator.

As for MDPs, in each state s of a TSG T, there is a set of available actions denoted A(s),

which are the actions a for which �(s, a) is defined. However, in this case the choice of which

available action is taken in s is under the control of a single player: the unique player i 6 n

such that s 2 Si. If player i selects action a 2 A(s) in s, then, as for MDPs, the probability

of transitioning to state s0 equals �(s, a)(s0).

The notion of paths and reward measures are the same as for MDPs. In the case of

TSGs we do not have a single strategy, but instead a strategy for each player i of the TSG

that resolves the choice of action in each state under the control of player i, based on the

game’s execution so far. Furthermore, to reason about the behaviour of a TSG we need a

strategy for every player, called a strategy profile.

Definition 10 (TSG strategy). A strategy of a TSG T is a function �i : {⇡ 2 FPathsT |

last(⇡) 2 Si} ! Dist(A) such that, if �i(⇡)(a)>0, then a 2 A(last(⇡)). The set of all

strategies of player i 6 n is represented by ⌃i
T and a strategy profile is a tuple � = (�i)

n
i=1

where �i 2 ⌃i
T for all i 6 n.

Similarly to MDPs, for a TSG T and profile �, we denote by FPaths�T and IPaths�T the

set of finite and infinite paths of T that correspond to the choices made by the profile �.

Furthermore, for a given profile �, we can define a probability measure Prob�T over the set

of infinite paths IPaths�T and, for a random variable X : IPathsT ! R, we can define the

expected value E�
T(X) of X under �.

Example 5. Figure 4 (left) shows a fragment of a simple TSG modelling a human-robot

system. Navigation decisions (east or west) are taken by a human operator (circular states,

coloured green); then the robot decides autonomously how to follow these instructions

(square states, coloured blue), here by choosing the speed (slow or fast) with which to pro-

ceed. Figure 4 (right) shows results from probabilistic model checking of a more complex

TSG model in which an unmanned aerial vehicle performs surveillance under partial control

of a human operator (63). It shows the trade-o↵ between mission time and the likelihood

of straying into “restricted operating zones” (ROZs) as operator accuracy varies.

4.1. Property Specifications for TSGs

To specify properties of TSGs, we consider an extension of the logic presented earlier for

MDPs and POMDPs. This uses the coalition operator hhCii from alternating temporal logic

(ATL) (64) to define zero-sum formulae. An extended version of this logic was presented

as rPATL (and RPATL*) in (65).

12 Kwiatkowska et al.

• Futures market investment 
‣ market is part stochastic, 

part adversarial
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Fig. 3: Robot coordination on a 3×3 grid: probabilistic choices for one pair of
action choices in the initial state. Solid lines indicate movement in the intended
direction, dotted lines where there is deviation due to obstacles.

studies (except Aloha and medium access in which the players are not symmetric),
the values can be swapped to give alternative SWNE/SCNE values.

Finally, we note that, for infinite-horizon nonzero-sum properties, we compute
the value of ε for the synthesised ε-NE and find that ε = 0 in all cases.

Robot Coordination. Our first case study concerns a scenario in which two robots
move concurrently over a grid of size l×l, briefly discussed in Example 5. The
robots start in diagonally opposite corners and try to reach the corner from which
the other starts. A robot can move either diagonally, horizontally or vertically
towards its goal. Obstacles which hinder the robots as they move from location
to location are modelled stochastically according to a parameter q (which we set
to 0.25): when a robot moves, there is a probability that it instead moves in an
adjacent direction, e.g., if it tries to move north west, then with probability q/2 it
will instead move north and with the same probability west.

We can model this scenario as a two-player CSG, where the players correspond
to the robots (rbt1 and rbt2), the states of the game represent their positions on the
grid. In states where a robot has not reached its goal, it can choose between actions
that move either diagonally, horizontally or vertically towards its goal (under the

Automatic Verification of Concurrent Stochastic Systems 47

1 2 3 4 5 6 7 8 9
7

8

9

10

11

12

13

14

15

16

Number of months

M
a
x

c
o
m

b
in

e
d

p
r
o
fi
t

CSG 〈〈i1, i2〉〉

TSG 〈〈i1, i2〉〉

1 2 3 4 5 6 7 8 9
9

10

12.5

15

17.5

20

22.5

25

27.5

Number of months

M
a
x

c
o
m

b
in

e
d

p
r
o
fi
t

CSG 〈〈i1, i2〉〉

TSG 〈〈i1, i2〉〉

Fig. 8: Futures market: later cash-ins without (left) and with (right) fluctuations.
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Fig. 9: Futures market: normal profiles (left) and mixed profiles (right) (pbar=0.1).

– in the second month with probability ∼0.9649, if the second investor did not
cash in at the end of the first month and the shares went up;

– in the second month with probability ∼0.9540, if the second investor did not
cash in at the end of the first month and the shares went down;

– in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼4.33.

We now make the market probabilistic, where, in any month when it did not
bar the investor in the previous month (including the first), the probability that the
market bars an individual investor equals pbar . We consider nonzero-sum proper-
ties of the form 〈〈i1:i2〉〉max=?(R

profit1 [ F cashed in1 ]+R
profit2 [ F cashed in2 ]), in which

each investor tries to maximise their individual profit, for different reward struc-
tures. In Figures 9 and 10 we have plotted the results for the investors where the
profit models of the investors follow a normal profile and where the profit models
of the investors differ (‘later cash-ins’ for the first investor and ‘early cash-ins’
for second), when pbar equals 0.1 and 0.5 respectively. The results demonstrate
that, given more time and a more predictable market, i.e., when pbar is lower, the
players can collaborate to increase their profits.

Performing strategy synthesis, we find that the strategies in the mixed profiles
model are for the investor with an ‘early cash-ins’ profit model to invest as soon
as possible, i.e., it tries to invest in the first month and if this fails because it is
barred, it will be able to invest in the second. On the other hand, for the investor
with the ‘later cash-ins’ profile, the investor will delay investing until the chances
of the shares failing start to increase or they reach the month before last and then
invest (if the investor is barred in this month, they will be able to invest in the
final month).

Turn-based game too pessimistic 
(unrealistic adversary)

automatically generate a protocol (or strategy) for control-
ling the system that satisfies or optimizes the property. Over
past decades, various reactive synthesis techniques have been
developed for the design of di↵erent types of autonomous
systems. A review of such techniques can be found in [23],
while some recent advances in synthesis for probabilistic sys-
tems are presented in [4] and [13]. These techniques have
been applied to real-world case studies such as UAV mission
planning [10] and autonomous urban driving [4].

A key challenge for reactive synthesis is obtaining appropri-
ate models of a human operator’s behavior and performance
with respect to operator-autonomy interactions. Work in
this area is still limited, and available models are not nec-
essarily well suited to reactive synthesis. For instance, [15]
finds an upper bound on the number of autonomous ve-
hicles a human operator can e↵ectively supervise, and [18]
derives task queueing policies the automation can employ to
optimize operator workload. However, these models are rel-
atively abstract and do not capture the types of detailed op-
erator decision-making behaviors we would like to consider
for reactive synthesis. A class of operator decision-making
models can be found in [20], but this class is limited to
tasks in which only two choices are available. Cognitive ar-
chitectures have been used to model more complex operator
decision-making behaviors and performance characteristics
[21], but the resulting models are not expressed in a concise
mathematical framework amenable to reactive synthesis.

We therefore develop a hypothetical model of operator be-
havior and performance amenable to reactive synthesis based
on high-level trends induced from human factors literature.
For instance, data from [1] demonstrate that on a wide va-
riety of tasks, “human reliability” or rate of human error of-
ten increases with higher levels of stress and decreases with
higher levels of operator proficiency; moreover, for vigilance
tasks that require detecting simple infrequent signals over
prolonged periods of time without rest, missed detections
tend to increase over time. Similar trends can be found in
other studies. One study of vigilance tasks found declining
response rates after as little as 3 minutes of task perfor-
mance, with response rates eventually plateauing at 70-80%
of initial rates [14]. Di↵erences in task performance can
also vary between operators. For instance, a meta-analysis
of 53 studies concluded that introverts have better overall
performance than extraverts on visual detection tasks [11].
Operator performance on visual identification and classifica-
tion tasks can also vary significantly in response times and
accuracy, e.g. due to di↵erences in age or experience [8].

Though a particular operator’s behavior may be unknown at
system design time, relevant statistics can be obtained, e.g.,
via extracting possible operator behavior patterns from prior
information such as training logs. Moreover, methods such
as cognitive task analysis [6] can be applied to reveal how
an operator would respond to various events. We expect ad-
vances in data-driven modeling to help create individualized
libraries of operator models and support on-demand con-
troller synthesis as operators, missions, and vehicles change.

As an illustrative example for this paper, we consider a sim-
ple scenario involving road network surveillance by a UAV.
We first build abstractions for operator-autonomy interac-
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Figure 1: A road network for UAV ISR missions

(adapted from [10]).

tions based on Markov decision processes (MDPs), a widely
used model for discrete time stochastic control processes.
A (fully probabilistic) operator model is developed, taking
into account a rich set of human performance characteristics
(e.g., proficiency, workload, and fatigue), as previously men-
tioned. The operator-autonomy interaction is then modeled
as a product MDP from the composition of the operator
model and a UAV model. Given a mission objective, we can
synthesize an optimal UAV piloting plan that satisfies it via
finding a strategy in the MDP. If models for individual op-
erators are available, we may even synthesize individualized
optimal UAV piloting plans. Moreover, if there are multiple
mission objectives, we can draw Pareto curves to help opera-
tors understand trade-o↵s. We also demonstrate the impact
of operator characteristics on UAV mission performance.

It may be beneficial to add nondeterminism in the opera-
tor model, e.g., for modeling human dynamic re-tasking of
UAVs to address previously unforeseen circumstances. To
distinguish the two di↵erent sources of nondeterminism from
the operator and the UAV, we augment the MDP models to
stochastic two-player games. The goal is to synthesize a win-
ning strategy for the UAV (Player 1) against all strategies
(including the worst-case) of the operator (Player 2). This
separate role consideration is also useful in modeling design
decisions about function allocation (i.e., the assignment of
operator and autonomy to tasks). As with MDPs, we can
similarly synthesize individualized UAV strategies and ana-
lyze mission objective trade-o↵s with games. In addition, we
may guide the refinement of the admissible operating region
and provide informative feedback to operators for achieving
better mission performance.

The rest of the paper is organized as follows. We describe the
motivating example in Section 2 and introduce formal spec-
ifications and models in Section 3. We present our modeling
approach and experimental results for MDPs and stochastic
two-player games in Section 4 and Section 5, respectively.
Finally, we remark on potential future work in Section 6.

2. MOTIVATING EXAMPLE
As an illustration of synthesis for autonomous systems in-
teracting with human operators, we describe two variants of
an example in which a remotely controlled UAV is used to
perform intelligence, surveillance, and reconnaissance (ISR)

• Multi-robot control 
‣ adversarial (worst-case) 

vs. collaborative

PRISM-games



Uncertain MDPs



MDPs + epistemic uncertainty
• We can use MDPs for sequential decision making under (aleatoric) uncertainty 
‣ modelled here using transition probabilities (often learnt from data) 
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MDPs + epistemic uncertainty
• We can use MDPs for sequential decision making under (aleatoric) uncertainty 
‣ modelled here using transition probabilities (often learnt from data) 

• Policies can be sensitive to small perturbations in transition probabilities 
‣ so “optimal” policies can in fact be sub-optimal
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MDPs + epistemic uncertainty
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• We can use MDPs for sequential decision making under (aleatoric) uncertainty 
‣ modelled here using transition probabilities (often learnt from data) 

• Policies can be sensitive to small perturbations in transition probabilities 
‣ so “optimal” policies can in fact be sub-optimal 

• Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty) 
‣ we focus here on uncertainty in transition probabilities

• Key questions: 
‣ how to model (and solve for) epistemic uncertainty? 
‣ what guarantees do we get? 
‣ is it statistically accurate? 
‣ how computationally efficient is it?



Uncertain MDPs
• An uncertain MDP (uMDP) takes the form  where: 

‣ states , initial state  and actions  are as for MDPs 

‣  is the transition function uncertainty set 

- i.e., each  is a transition function  

• The uncertainty set  

‣ for each ,  

‣ is  

‣ similarly:  
 

‣ (  sometimes “ambiguity sets”)

ℳ = (S, s0, A, 𝒫)
S s0 A

𝒫
P ∈ 𝒫 P : S × A × S → [0,1]

𝒫a
s ⊆ Dist(S)

s ∈ S a ∈ A(s)
𝒫a

s = {Pa
s : P ∈ 𝒫}

𝒫a = {Pa : P ∈ 𝒫}

𝒫a
s
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Uncertain MDPs
• Semantics of a uMDP  

‣  can be seen as a (usually infinite) set of MDPs:  

‣ where  is  instantiated with  

• But other views are possible 
‣ dynamic, Bayesian, …  

• Some examples of uMDPs

ℳ = (S, s0, A, 𝒫)
ℳ [[ℳ]] = {ℳ[P] : P ∈ 𝒫}

ℳ[P] = (S, s0, A, P) ℳ P ∈ 𝒫

19

Sampled MDPs

…

Interval MDPs (IMDPs)
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Uncertainty set dependencies
• Can we allow dependencies between uncertainty sets? 
‣ implications for computational tractability and modelling accuracy 

• Rectangularity 
‣ transition function uncertainty set  is (s,a)-rectangular 

- if we have   

- i.e., if there are no dependencies between uncertainty sets for each s, a 

‣ interval MDPs are (s,a)-rectangular (“sampled MDPs” might not be) 
‣ we will assume (s,a)-rectangularity for now (and later relax it) 

• We can also define s-rectangularity [Wiesemann et al.] 
•  where 

𝒫
𝒫 = ×(s,a)∈S×A 𝒫a

s

𝒫 = ×s∈S 𝒫s 𝒫s = {(Pa
s )a∈A : P ∈ 𝒫}
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Non-rectangular uMDPs
• When might dependences between uncertainties arise?

21

Task scheduling in the 
presence of faulty processors

Underwater vehicle control 
in unknown ocean currents



Non-rectangular uMDPs
• Example MDP (in fact, just a single policy) with parameter p 

• Worst-case probability to reach ✓? 
‣    

• Worst-case probability to reach ✓ under rectangularity assumptions? 
‣     (too conservative)

min{p(1 − p) : p ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.4) = 0.24

min{p1(1 − p2) : p1, p2 ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.6) = 0.16
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Policies in uMDPs
• For uMDPs, as for MDPs, we can define 
‣ policies , or 

‣ memoryless policies  

‣ (depending on the set , some care is 
needed to make sure policies can be applied) 

• For policy  and transition probabilities : 

‣ we can define probability space , 
random variables  and 
value functions  

‣ which correspond to the MDP  

π : (S × A)* × S → A
πm : S → A

𝒫

π ∈ Π P ∈ 𝒫
Prπ,P

s
𝔼π,P

s (X)
Vπ,P(s)

ℳ[P]
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Robust control
• For now, we consider a robust view of uncertainty 
‣ i.e., we focus on worst-case (adversarial, pessimistic) scenarios 

• Robust policy evaluation: 
‣ worst-case scenario for (maximising) policy , i.e.:  

• Robust control (policy optimisation): 
‣ optimal worst-case value  

‣ optimal worst-case policy  

• Other cases: 
‣ for a minimising objective (e.g. SPP), we use:  

‣ we may also consider optimistic scenarios, e.g. 

π minP∈𝒫 Vπ,P(s)

V*(s) = maxπ∈Π minP∈𝒫 Vπ,P(s)
π* = argmaxπ∈Π minP∈𝒫 Vπ,P(s)

V*(s) = minπ∈Π maxP∈𝒫 Vπ,P(s)
V*(s) = maxπ∈Π maxP∈𝒫 Vπ,P(s)
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Running example: Robust control
• An IMDP for the robot example 
‣ uncertainty added to two state-action pairs 

‣ Note: the degree of uncertainty (e) 
in states s1 and s2 is correlated here 
(but the actual transition probabilities are not) 

25

•  Robust control 
‣ for any e, we can pick a “robust” 

(optimal worst-case) policy 

‣ and give a safe lower bound 
on its performance

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h 
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h 
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4



9

IMDP

s0

[0.4,0.6]

a

s2

s1

s5

s3

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

s0

0.45
a

1
ac0.55
0.45

0.55

s0s1

s0s2 s0s2s1

s0s2s1s3

s0s2s1s4

a
0.7

0.3

s0s2s1s3

s0s2s1s4

Resolving uncertainty
• Now we consider a more dynamic approach to resolving uncertainty 
‣ (which we will need to extend dynamic programming to this setting) 

• An environment policy (or nature policy, or adversary)  
‣ is a mapping  

‣ such that  

‣ note: this assumes (s,a)-rectangularity! 

• Policies  yield 
‣ a probability space  

‣ random variables  

‣ and value functions 

τ ∈ 𝒯
τ : (S × A)* × (S × A) → Dist(S)

τ(s0, a0, …, sn, an) ∈ 𝒫a
s

π, τ
Prπ,τ

s

𝔼π,τ
s (X)
Vπ,τ
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Summary (part 2)
• Stochastic games 
‣ unknown parts of the system can be modelled adversarially 
‣ zero-sum turn-based (or concurrent) stochastic games 

- dynamic programming (value iteration) generalises 

• Uncertain MDPs 
‣ MDPs plus epistemic uncertainty: set of transition functions 
‣ rectangularity (dependencies) 
‣ control policies + robust control 
‣ environment policies
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