


Introduction



Sequential decision making under uncertainty
• Sequential decision making

‣ iterative interaction with an environment to achieve a goal

‣ sequential process of making observations and executing actions

‣ applications in: health, energy, transportation, robotics, …


• Sequential decision making under uncertainty

‣ noisy sensors, unpredictable conditions, lossy communication, 

human behaviour, hardware failures, …


• Trustworthy, safe and robust decision making

‣ e.g. for safety-critical applications

‣ needs rigorous/systematic quantification of uncertainty
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Reasoning about uncertainty
• Markov decision processes (MDPs) and variants

‣ standard models for sequential decision making under uncertainty

‣ stochastic processes quantify uncertainty

‣ but parameters of these often need to be estimated from data


• We will distinguish between:


• Aleatoric uncertainty (randomness intrinsic to environment) 

• Epistemic uncertainty (quantifies lack of knowledge)

‣ reducible: can reduce by collecting more data/observations
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‣ e.g., sensor noise, actuator failure, human decisions 

‣ e.g., poor model quality due to low number of measurements



Applications & challenges
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• Shared autonomy

‣ learning belief over 

uncertainty on 
unobservable 
human state

• Autonomous underwater vehicle

‣ effective navigation against 

unknown ocean currents

• Unmanned aerial vehicle

‣ robust control in the  

presence of turbulence

• Mine exploration

‣ Safe exploration 

and mapping 
(avoiding 
radiation)

• Radiation measuring

‣ safe navigation and task completion 

in unknown environments

[Budd 
et al.’22]

[Costen 
et al.’22]

[Budd 
et al.’22]

[Badings 
et al.’23]



This course
• Model uncertainty in sequential decision making

‣ model-based techniques (probabilistic planning, not reinforcement learning)

‣ discrete time, discrete space

‣ fully observable environments (mostly)

‣ rigorous/precise/systematic quantification of uncertainty
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models + data
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Course contents
• Markov decision processes (MDPs) and stochastic games

‣ MDPs: key concepts and algorithms

‣ stochastic games: adding adversarial aspects


• Uncertain MDPs

‣ MDPs + epistemic uncertainty, robust control, 

robust dynamic programming, interval MDPs, 
uncertainty set representation, challenges, tools


• Sampling-based uncertain MDPs

‣ removing the transition independence assumption


• Bayes-adaptive MDPs

‣ maintaining a distribution over the possible models
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Markov decision 
processes
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Markov decision processes
• Markov decision processes (MDPs)

‣ standard model for sequential decision making under uncertainty 

• An MDP is of the form  where:


‣  is a (finite) set of states


‣  is an initial state


‣  is a (finite) set of actions


‣  is a transition probability function


- where  

ℳ = (S, s0, A, P)
S
s0 ∈ S
A
P : S × A × S → [0,1]

Σs′￼∈S P(s, a, s′￼) ∈ {0,1}
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Markov decision processes
• For an MDP : 

‣ the enabled actions  in each state 


- are 


‣ a path is a sequence 


- such that ,  and  for all 


• We also use: 

‣  is the transition probability matrix for each 


‣  is the successor distribution for each state  and action 


‣ (where  is the set of discrete probability distributions over set S)

ℳ = (S, s0, A, P)

A(s) ⊆ A s
A(s) = {a ∈ A : P(s, a, s′￼) > 0 for some s′￼}

ω = s0a0s1a1, …
si ∈ S ai ∈ A(si) P(si, ai, si+1) > 0 i

Pa : S × S → [0,1] a ∈ A
Pa

s ∈ Dist(S) s a ∈ A(s)
Dist(S)
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Policies for MDPs
• Policies (or strategies)  resolves the choice of action in each state

‣ based on the execution of the MDP so far


‣ formally: a policy is a mapping 


- such that  implies 


‣  is the probability of picking  
after observing MDP history 


•  (or just ) is the set of all (deterministic) policies for MDP 


• Policies can be classified by (i) use of randomisation; (ii) use of memory

‣ which matter for optimality, computation, practicality, …

π

π : (S × A)* × S → Dist(A)
π(s0a0…sn)(an) > 0 an ∈ A(sn)

π(s0a0…sn)(an) an
s0a0…sn

Πℳ Π ℳ
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Classes of policies for MDPs
• Randomisation

‣  is deterministic (or pure) if it always picks a single action with probability 1


‣ and randomised (or probabilistic) otherwise


‣ for now, we’ll mostly assume deterministic policies and assume 


• Memory

‣  is memoryless (or stationary, or Markovian) if  when 


- in which case we write it in the form 


-  is the set of all memoryless policies


‣ otherwise  is history dependent


‣  is finite-memory if it suffices to distinguish a finite number of “modes” based on the history


‣ sometimes write a (time-dependent) policy as tuple  where 

π

π : (S × A)* × S → A

π π(s0, …, sn) = π(s′￼0, …, s′￼n) sn = s′￼n

π : S → A

Πm ⊆ Π
π

π
π = (π0, π1, …) πi : S → A
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MDPs and policies
• A policy for an MDP yields an induced Markov chain

‣ and set of (infinite) paths

13
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Running example (and objectives)
• Example MDP: robot moving through terrain divided in to 3 x 2 grid 

 
 
 
 
 
 
 
 

• Objectives (or properties) define an optimisation problem for an MDP

‣ MaxProb: maximise the probability of reaching 


‣ SSP (stochastic shortest path): minimise the cost of reaching 

goal ⊆ S
goal ⊆ S
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Defining objectives for MDPs
• Execution of an MDP under a policy

‣ for a policy  on MDP …


‣  is a probability measure over all (infinite) paths from state  of 


‣  is the expected value of  (with respect to )


- where  is a random variable over (infinite) paths


• Value function: 

‣ gives the value of an objective under  starting from each state of the MDP


‣ define optimal value, e.g.: 


‣ and optimal policy, e.g.: 

π ∈ Π ℳ
Prπ

s s ℳ
𝔼π

s(X) X Prπ
s

X : (S × A)ω → ℝ≥0

Vπ : S → ℝ
π

V*(s) = maxπ∈Π Vπ(s)
π* = argmaxπ∈Π Vπ(s0)

15



MaxProb & SSP (stochastic shortest path)
• MaxProb: Maximise the probability of reaching a target state set 

‣ maximise 


• SSP: Minimise the expected cost of reaching a target state set 


‣ for a cost function 


‣ minimise  where 


• Assumptions for SSP

‣  states are absorbing and zero-cost


‣ there is a proper policy (i.e., which reaches  with probability 1 from all states) 


‣ every improper policy incurs an infinite cost from every state 
from which it does not reach  with probability 1

goal ⊆ S
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i})

goal ⊆ S
C : S × A → ℝ≥0

Vπ(s) = 𝔼π
s(XC) XC(s0a0s1a1…) = Σ∞

i=0 C(si, ai)

goal
goal

goal
16



Running example: MaxProb
• What is the optimal policy for objective MaxProb(goal1)?
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Other objectives
• Some other common objectives for MDPs:


• Finite-horizon variants, e.g., of MaxProb:

‣ MaxProb≤k: Maximise the probability of reaching  within time horizon 


‣ maximise 


• Discounting infinite-horizon objectives

‣ DiscSum: Maximise the expected discounted total reward sum


‣ for a reward function  and discount factor 


‣ maximise  where 

goal ⊆ S k
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i ≤ k})

R : S × A → ℝ γ ∈ (0,1)
Vπ(s) = 𝔼π

s(XR) XR(s0a0s1a1…) = Σ∞
i=0 γiR(si, ai)
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Temporal logic objectives
• Specification languages from formal verification

‣ probabilistic extensions of temporal logics, e.g., PCTL, PLTL


• Examples

‣ Pmax=? [ F goal1 ] - “probabilistic reachability”

‣ Pmax=? [ F≤10 goal1 ] - “probabilistic bounded reachability”

‣ Pmax=? [ G ¬hazard ] - “probabilistic safety/invariance”

‣ Pmax=? [ ¬hazard U goal1 ] - “probabilistic reach-avoid”

‣ Pmax=? [ (G¬hazard) ∧ (GF goal1) ] - “maximise probability of avoiding hazard and also visiting 

goal 1 infinitely often”

‣ Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “maximise probability of patrolling zone 1 (whilst avoiding 

zone 3) then zone 4”

‣ Rtime,min=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “minimise the expected time to patrol zone 1 (whilst 

avoiding zone 3) then zone 4”
19
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Solving MDPs
• We will mainly focus on MaxProb (techniques are very similar for SSP)


• Key result: memoryless (deterministic) policies suffice 
 

• The optimal value function satisfies the Bellman equation:


• Solution methods

‣ value iteration (dynamic programming)

‣ linear programming

‣ and many more (e.g., policy iteration, Monte Carlo tree search, BRTDP, …)

20

V*(s) = {
1 if s ∈ goal
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ V*(s′￼) otherwise

maxπ∈Π Vπ(s) = maxπ∈Πm
Vπ(s)



MaxProb via value iteration
• Optimal values can be obtained using dynamic programming

‣ from the limit of the vector sequence defined below


‣  where:


• Known as value iteration (VI)

‣ the Bellman operator is (i) monotonic (ii) a contraction in the L∞ norm

‣ optimal values are the least fixed point of the Bellman operator

V*(s) = limk→∞ xk
s

21

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

Bellman backup operator
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MaxProb via value iteration
• Optimise via graph-based pre-computation

‣ potentially improves accuracy / convergence, resolves uniqueness

‣ compute state sets:


-  = (all) states for which all policies reach  with probability 0 (i.e., max = 0)


-  = (some) states for which a policy reaches  with probability 1 (i.e., max = 1)


- 


• Then value iteration becomes:

S0 goal

S1 ⊇ goal goal

S? = S\(S0 ∪ S1)

22

xk
s =

1 if s ∈ S1

0 if s ∈ S0

0 if s ∈ S? and k = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

Implementation details:

• Extract optimal policy after/during:

    


• Terminate when 

• Choose order to update states s

π*(s) = argmaxa∈A(s) ∑s′￼∈S
Pa

s (s′￼) ⋅ xk−1
s′￼

||xk+1 − xk || < ε



Running example: Value iteration
• Example: MaxProb(goal1)

23

• Fix x4=x5=1 and x2=x3=0, just solve for x0, x1


• Iteration k=0: x0=x1=0


• Iteration k=1: 
 
 
 
 

• Iteration k=2: 
 
 

• Finally: x0=0.5, x1=0.5

= max(0.4·0+ 0.6·0, 0.1·0+0.5·0+0.4·1) 
= max(0, 0.4) 
= 0.4 

= max(1·0, 0.5·0+0.5·1)

= max(0, 0.5)

= 0.5 

x0 :

x1 :

= max(0.4·0.4+ 0.6·0.5, 0.1·0.5+0.5·0+0.4·1)

= max(0.46, 0.45)

= 0.46 

= 0.5 (as before) 

x0 :

x1 :

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
4 0.4936 0.5
5 0.49744 0.5
6 0.498976 0.5
7 0.4995904 0.5
8 0.49983616 0.5
9 0.499934464 0.5
10 0.4999737856 0.5
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• Optimal values can be computed using linear programming (LP):

‣  equals the solution  to:V*(s) xs
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xs ≥ Σs′￼∈S Pa
s (s′￼) ⋅ xs′￼

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ S0

xs = 1 for s ∈ S1

minimise  subject to the constraints:Σs∈S xs

Minimise x0+x1 s.t.:

x0 ≥ 0.4x0 +0.6x1

x0 ≥ 0.1x1+0.5x3+0.4x4

x1 ≥ x2

x1 ≥ 0.5x2 +0.5x4


Minimise x0+x1 s.t.:

x0 ≥ x1

x0 ≥ 0.1x1+0.4

x1 ≥ 0.5

Running example

• More
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Solving SSP for MDPs
• Value iteration: 

• Linear programming 
 

• Pre-computation:

‣ we can also use graph-based pre-computation 

to identify/collapse states and relax SSP assumptions
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xk
s =

0 if s ∈ goal

mina∈A(s) [C(s, a) + ∑s′￼∈S Pa
s (s′￼) ⋅ xk−1

s′￼ ] otherwise

xs ≤ C(s, a) + Σs′￼∈S Pa
s (s′￼) ⋅ xs′￼

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ goal

maximise  subject to the constraints:Σs∈S xs
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MDP solution methods
• Solving MaxProb (or SSP) on MDPs (focusing on “exact” algorithms):


• Value iteration (VI)

‣ simple, and effective in practice, but care needed with convergence detection

‣ complexity unclear (depends on accuracy)


• Linear programming

‣ polynomial complexity

‣ in principle, can yield exact (arbitrary precision) optimal values; likely scales worse than VI


• Various other algorithms / optimisations

‣ Policy iteration, VI + prioritisation, topological partitioning, parallelisation, …

‣ Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), …
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MaxProb over a finite horizon
• Finite-horizon variant solvable with value iteration (without pre-computation)


‣  where: 
 
 
 

• Running example

‣ MaxProb≤k({s4,s5})

‣ optimal policy is not memoryless

V*(s) = xk
s
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xk
s =

1 if s ∈ goal
0 if s ∉ goal and n = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
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Beyond MDPs
• How do we go beyond the assumptions made so far? 


• Full observability (of state, costs, …)

‣ partially observable MDPs, beliefs over hidden state


• Finite state spaces, action spaces

‣ continuous state/action, dynamic systems


• Full knowledge of the model

‣ epistemic uncertainty, also sampling-based models


• Fully controllable model

‣ adversarial (or collaborative) scenarios: stochastic game models
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Summary (part 1)
• Markov decision processes

‣ sequential decision making under (aleatoric) uncertainty

‣ policies and objectives (MaxProb, SSP, finite-horizon, temporal logic)

‣ solving MDPs (optimal policy generation)


- linear programming (PTIME)


- dynamic programming (value iteration) 

• Next: Stochastic games (adding adversarial aspects)


• Next: Uncertain MDPs (adding epistemic uncertainty)
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