


Introduction



Sequential decision making under uncertainty
• Sequential decision making 
‣ iterative interaction with an environment to achieve a goal 
‣ sequential process of making observations and executing actions 
‣ applications in: health, energy, transportation, robotics, … 

• Sequential decision making under uncertainty 
‣ noisy sensors, unpredictable conditions, lossy communication, 

human behaviour, hardware failures, … 

• Trustworthy, safe and robust decision making 
‣ e.g. for safety-critical applications 
‣ needs rigorous/systematic quantification of uncertainty
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Reasoning about uncertainty
• Markov decision processes (MDPs) and variants 
‣ standard models for sequential decision making under uncertainty 
‣ stochastic processes quantify uncertainty 
‣ but parameters of these often need to be estimated from data 

• We will distinguish between: 

• Aleatoric uncertainty (randomness intrinsic to environment) 

• Epistemic uncertainty (quantifies lack of knowledge) 
‣ reducible: can reduce by collecting more data/observations
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‣ e.g., sensor noise, actuator failure, human decisions 

‣ e.g., poor model quality due to low number of measurements



Applications & challenges
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• Shared autonomy 
‣ learning belief over 

uncertainty on 
unobservable 
human state

• Autonomous underwater vehicle 
‣ effective navigation against 

unknown ocean currents

• Unmanned aerial vehicle 
‣ robust control in the  

presence of turbulence

• Mine exploration 
‣ Safe exploration 

and mapping 
(avoiding 
radiation)

• Radiation measuring 
‣ safe navigation and task completion 

in unknown environments

[Budd 
et al.’22]

[Costen 
et al.’22]

[Budd 
et al.’22]

[Badings 
et al.’23]



This course
• Model uncertainty in sequential decision making 
‣ model-based techniques (probabilistic planning, not reinforcement learning) 
‣ discrete time, discrete space 
‣ fully observable environments (mostly) 
‣ rigorous/precise/systematic quantification of uncertainty
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Course contents
• Markov decision processes (MDPs) and stochastic games 
‣ MDPs: key concepts and algorithms 
‣ stochastic games: adding adversarial aspects 

• Uncertain MDPs 
‣ MDPs + epistemic uncertainty, robust control, 

robust dynamic programming, interval MDPs, 
uncertainty set representation, challenges, tools 

• Sampling-based uncertain MDPs 
‣ removing the transition independence assumption 

• Bayes-adaptive MDPs 
‣ maintaining a distribution over the possible models
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Markov decision 
processes
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Markov decision processes
• Markov decision processes (MDPs) 
‣ standard model for sequential decision making under uncertainty 

• An MDP is of the form  where: 

‣  is a (finite) set of states 

‣  is an initial state 

‣  is a (finite) set of actions 

‣  is a transition probability function 

- where  

ℳ = (S, s0, A, P)
S
s0 ∈ S
A
P : S × A × S → [0,1]

Σs′ ∈S P(s, a, s′ ) ∈ {0,1}
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Markov decision processes
• For an MDP : 

‣ the enabled actions  in each state  

- are  

‣ a path is a sequence  

- such that ,  and  for all  

• We also use: 

‣  is the transition probability matrix for each  

‣  is the successor distribution for each state  and action  

‣ (where  is the set of discrete probability distributions over set S)

ℳ = (S, s0, A, P)

A(s) ⊆ A s
A(s) = {a ∈ A : P(s, a, s′ ) > 0 for some s′ }

ω = s0a0s1a1, …
si ∈ S ai ∈ A(si) P(si, ai, si+1) > 0 i

Pa : S × S → [0,1] a ∈ A
Pa

s ∈ Dist(S) s a ∈ A(s)
Dist(S)
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Policies for MDPs
• Policies (or strategies)  resolves the choice of action in each state 
‣ based on the execution of the MDP so far 

‣ formally: a policy is a mapping  

- such that  implies  

‣  is the probability of picking  
after observing MDP history  

•  (or just ) is the set of all (deterministic) policies for MDP  

• Policies can be classified by (i) use of randomisation; (ii) use of memory 
‣ which matter for optimality, computation, practicality, …

π

π : (S × A)* × S → Dist(A)
π(s0a0…sn)(an) > 0 an ∈ A(sn)

π(s0a0…sn)(an) an
s0a0…sn

Πℳ Π ℳ
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Classes of policies for MDPs
• Randomisation 
‣  is deterministic (or pure) if it always picks a single action with probability 1 

‣ and randomised (or probabilistic) otherwise 

‣ for now, we’ll mostly assume deterministic policies and assume  

• Memory 
‣  is memoryless (or stationary, or Markovian) if  when  

- in which case we write it in the form  

-  is the set of all memoryless policies 

‣ otherwise  is history dependent 

‣  is finite-memory if it suffices to distinguish a finite number of “modes” based on the history 

‣ sometimes write a (time-dependent) policy as tuple  where 

π

π : (S × A)* × S → A

π π(s0, …, sn) = π(s′ 0, …, s′ n) sn = s′ n

π : S → A

Πm ⊆ Π
π

π
π = (π0, π1, …) πi : S → A

12



MDPs and policies
• A policy for an MDP yields an induced Markov chain 
‣ and set of (infinite) paths

13
3

s0

0.5
a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f

0.5

0.7

0.3

MDP

s0

[0.4,0.6]

a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

IMDP

6

MDP

s0

0.5
a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f

0.5

0.7

0.3

s0

0.5
a

1
ac

0.5
0.7

0.3

s0s1

s0s2 s0s2s1

1

b
s0s1s5

s0s2s1s3

s0s2s1s4

7

s0s2s1 s0s2s1s5
1

bs0

0.5
a

0.5
0.9 c

0.1 b

s0s1

s0s2

1

b
s0s1s5

s0s2s5

s0

0.5
a

1

c
0.5

s0s1

s0s2

1

b
s0s1s5

s0s2s5

(finite-memory, deterministic)

(memoryless, deterministic)

(memoryless, randomised) 7

s0s2s1 s0s2s1s5
1

bs0

0.5
a

0.5
0.9 c

0.1 b

s0s1

s0s2

1

b
s0s1s5

s0s2s5

s0

0.5
a

1

c
0.5

s0s1

s0s2

1

b
s0s1s5

s0s2s1 s0s2s1s5
1

b



Running example (and objectives)
• Example MDP: robot moving through terrain divided in to 3 x 2 grid 

 
 
 
 
 
 
 
 

• Objectives (or properties) define an optimisation problem for an MDP 
‣ MaxProb: maximise the probability of reaching  

‣ SSP (stochastic shortest path): minimise the cost of reaching 

goal ⊆ S
goal ⊆ S
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Defining objectives for MDPs
• Execution of an MDP under a policy 
‣ for a policy  on MDP … 

‣  is a probability measure over all (infinite) paths from state  of  

‣  is the expected value of  (with respect to ) 

- where  is a random variable over (infinite) paths 

• Value function:  
‣ gives the value of an objective under  starting from each state of the MDP 

‣ define optimal value, e.g.:  

‣ and optimal policy, e.g.: 

π ∈ Π ℳ
Prπ

s s ℳ
𝔼π

s(X) X Prπ
s

X : (S × A)ω → ℝ≥0

Vπ : S → ℝ
π

V*(s) = maxπ∈Π Vπ(s)
π* = argmaxπ∈Π Vπ(s0)

15



MaxProb & SSP (stochastic shortest path)
• MaxProb: Maximise the probability of reaching a target state set  
‣ maximise  

• SSP: Minimise the expected cost of reaching a target state set  

‣ for a cost function  

‣ minimise  where  

• Assumptions for SSP 
‣  states are absorbing and zero-cost 

‣ there is a proper policy (i.e., which reaches  with probability 1 from all states)  

‣ every improper policy incurs an infinite cost from every state 
from which it does not reach  with probability 1

goal ⊆ S
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i})

goal ⊆ S
C : S × A → ℝ≥0

Vπ(s) = 𝔼π
s(XC) XC(s0a0s1a1…) = Σ∞

i=0 C(si, ai)

goal
goal

goal
16



Running example: MaxProb
• What is the optimal policy for objective MaxProb(goal1)?
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Other objectives
• Some other common objectives for MDPs: 

• Finite-horizon variants, e.g., of MaxProb: 
‣ MaxProb≤k: Maximise the probability of reaching  within time horizon  

‣ maximise  

• Discounting infinite-horizon objectives 
‣ DiscSum: Maximise the expected discounted total reward sum 

‣ for a reward function  and discount factor  

‣ maximise  where 

goal ⊆ S k
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i ≤ k})

R : S × A → ℝ γ ∈ (0,1)
Vπ(s) = 𝔼π

s(XR) XR(s0a0s1a1…) = Σ∞
i=0 γiR(si, ai)

18



Temporal logic objectives
• Specification languages from formal verification 
‣ probabilistic extensions of temporal logics, e.g., PCTL, PLTL 

• Examples 
‣ Pmax=? [ F goal1 ] - “probabilistic reachability” 
‣ Pmax=? [ F≤10 goal1 ] - “probabilistic bounded reachability” 
‣ Pmax=? [ G ¬hazard ] - “probabilistic safety/invariance” 
‣ Pmax=? [ ¬hazard U goal1 ] - “probabilistic reach-avoid” 
‣ Pmax=? [ (G¬hazard) ∧ (GF goal1) ] - “maximise probability of avoiding hazard and also visiting 

goal 1 infinitely often” 
‣ Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “maximise probability of patrolling zone 1 (whilst avoiding 

zone 3) then zone 4” 
‣ Rtime,min=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “minimise the expected time to patrol zone 1 (whilst 

avoiding zone 3) then zone 4”
19
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Solving MDPs
• We will mainly focus on MaxProb (techniques are very similar for SSP) 

• Key result: memoryless (deterministic) policies suffice 
 

• The optimal value function satisfies the Bellman equation: 

• Solution methods 
‣ value iteration (dynamic programming) 
‣ linear programming 
‣ and many more (e.g., policy iteration, Monte Carlo tree search, BRTDP, …)

20

V*(s) = {
1 if s ∈ goal
maxa∈A(s) ∑s′ ∈S Pa

s (s′ ) ⋅ V*(s′ ) otherwise

maxπ∈Π Vπ(s) = maxπ∈Πm
Vπ(s)



MaxProb via value iteration
• Optimal values can be obtained using dynamic programming 
‣ from the limit of the vector sequence defined below 

‣  where: 

• Known as value iteration (VI) 
‣ the Bellman operator is (i) monotonic (ii) a contraction in the L∞ norm 
‣ optimal values are the least fixed point of the Bellman operator

V*(s) = limk→∞ xk
s

21

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
maxa∈A(s) ∑s′ ∈S Pa

s (s′ ) ⋅ xk−1
s′ 

otherwise

Bellman backup operator
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MaxProb via value iteration
• Optimise via graph-based pre-computation 
‣ potentially improves accuracy / convergence, resolves uniqueness 
‣ compute state sets: 

-  = (all) states for which all policies reach  with probability 0 (i.e., max = 0) 

-  = (some) states for which a policy reaches  with probability 1 (i.e., max = 1) 

-  

• Then value iteration becomes:

S0 goal

S1 ⊇ goal goal

S? = S\(S0 ∪ S1)

22

xk
s =

1 if s ∈ S1

0 if s ∈ S0

0 if s ∈ S? and k = 0
maxa∈A(s) ∑s′ ∈S Pa

s (s′ ) ⋅ xk−1
s′ 

otherwise

Implementation details: 
• Extract optimal policy after/during: 
     

• Terminate when  
• Choose order to update states s

π*(s) = argmaxa∈A(s) ∑s′ ∈S
Pa

s (s′ ) ⋅ xk−1
s′ 

||xk+1 − xk || < ε



Running example: Value iteration
• Example: MaxProb(goal1)

23

• Fix x4=x5=1 and x2=x3=0, just solve for x0, x1 

• Iteration k=0: x0=x1=0 

• Iteration k=1: 
 
 
 
 

• Iteration k=2: 
 
 

• Finally: x0=0.5, x1=0.5

= max(0.4·0+ 0.6·0, 0.1·0+0.5·0+0.4·1) 
= max(0, 0.4) 
= 0.4 

= max(1·0, 0.5·0+0.5·1) 
= max(0, 0.5) 
= 0.5 

x0 :

x1 :

= max(0.4·0.4+ 0.6·0.5, 0.1·0.5+0.5·0+0.4·1) 
= max(0.46, 0.45) 
= 0.46 

= 0.5 (as before) 

x0 :

x1 :

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
4 0.4936 0.5
5 0.49744 0.5
6 0.498976 0.5
7 0.4995904 0.5
8 0.49983616 0.5
9 0.499934464 0.5
10 0.4999737856 0.5
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• Optimal values can be computed using linear programming (LP): 
‣  equals the solution  to:V*(s) xs
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xs ≥ Σs′ ∈S Pa
s (s′ ) ⋅ xs′ 

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ S0

xs = 1 for s ∈ S1

minimise  subject to the constraints:Σs∈S xs

Minimise x0+x1 s.t.: 
x0 ≥ 0.4x0 +0.6x1 
x0 ≥ 0.1x1+0.5x3+0.4x4 
x1 ≥ x2 
x1 ≥ 0.5x2 +0.5x4 

Minimise x0+x1 s.t.: 
x0 ≥ x1 
x0 ≥ 0.1x1+0.4 
x1 ≥ 0.5

Running example

• More
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Solving SSP for MDPs
• Value iteration: 

• Linear programming 
 

• Pre-computation: 
‣ we can also use graph-based pre-computation 

to identify/collapse states and relax SSP assumptions

25

xk
s =

0 if s ∈ goal

mina∈A(s) [C(s, a) + ∑s′ ∈S Pa
s (s′ ) ⋅ xk−1

s′ ] otherwise

xs ≤ C(s, a) + Σs′ ∈S Pa
s (s′ ) ⋅ xs′ 

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ goal

maximise  subject to the constraints:Σs∈S xs
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MDP solution methods
• Solving MaxProb (or SSP) on MDPs (focusing on “exact” algorithms): 

• Value iteration (VI) 
‣ simple, and effective in practice, but care needed with convergence detection 
‣ complexity unclear (depends on accuracy) 

• Linear programming 
‣ polynomial complexity 
‣ in principle, can yield exact (arbitrary precision) optimal values; likely scales worse than VI 

• Various other algorithms / optimisations 
‣ Policy iteration, VI + prioritisation, topological partitioning, parallelisation, … 
‣ Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), …
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MaxProb over a finite horizon
• Finite-horizon variant solvable with value iteration (without pre-computation) 

‣  where: 
 
 
 

• Running example 
‣ MaxProb≤k({s4,s5}) 
‣ optimal policy is not memoryless

V*(s) = xk
s
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xk
s =

1 if s ∈ goal
0 if s ∉ goal and n = 0
maxa∈A(s) ∑s′ ∈S Pa

s (s′ ) ⋅ xk−1
s′ 

otherwise

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
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Beyond MDPs
• How do we go beyond the assumptions made so far?  

• Full observability (of state, costs, …) 
‣ partially observable MDPs, beliefs over hidden state 

• Finite state spaces, action spaces 
‣ continuous state/action, dynamic systems 

• Full knowledge of the model 
‣ epistemic uncertainty, also sampling-based models 

• Fully controllable model 
‣ adversarial (or collaborative) scenarios: stochastic game models
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Summary (part 1)
• Markov decision processes 
‣ sequential decision making under (aleatoric) uncertainty 
‣ policies and objectives (MaxProb, SSP, finite-horizon, temporal logic) 
‣ solving MDPs (optimal policy generation) 

- linear programming (PTIME) 

- dynamic programming (value iteration) 

• Next: Stochastic games (adding adversarial aspects) 

• Next: Uncertain MDPs (adding epistemic uncertainty)
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