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Seqguential decision making under uncertainty

* Sequential decision making CuSeE Ucice Deose st
» Iterative interaction with an environment to achieve a goal
» sequential process of making observations and executing actions

» applications in: health, energy, transportation, robotics, ...

* Sequential decision making under uncertainty

»  NOISYy sensors, unpredictable conditions, lossy communication, 475901 791 7.88 -7.85 782 -1.79
human behaviour, hardware failures, ...
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Reasoning about uncertainty

Markov decision processes (MDPs) and variants
» standard models for sequential decision making under uncertainty

» stochastic processes quantify uncertainty

» but parameters of these often need to be estimated from data

We will distinguish between:

Aleatoric uncertainty (randomness intrinsic to environment)

» €.Qg., Sensor noise, actuator failure, human decisions

—pistemic uncertainty (quantifies lack of knowledge)
» reducible: can reduce by collecting more data/observations

» e.g., poor model quality due to low number of measurements
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»  effective navigation against
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* Radiation measuring

» safe navigation and task completion
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1NnIS course

* Model uncertainty in sequential decision making
» model-based technigues (probabilistic planning, not reinforcement learning)
» discrete time, discrete space
» fully observable environments (mostly)

» rigorous/precise/systematic quantification of uncertainty

models + data uncertain MDPs policies + analysis & guarantees

0.4 {hazard} {goaly}




Markov decision processes (MDPs) and stochastic games
» MDPs: key concepts and algorithms

» stochastic games: adding adversarial aspects

Uncertain MDPs

» MDPs + epistemic uncertainty, robust control,
'obust dynamic programming, interval MDPs,
uncertainty set representation, challenges, tools

Sampling-based uncertain MDPs

» removing the transition independence assumption

Bayes-adaptive MDPs

» maintaining a distribution over the possible models
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 Markov decision processes (MDPs)

» standard model for sequential decision making under uncertainty

« An MDRP is of the form ./ = (9, 5y, A, P) where:

» S is a (finite) set of states 0.5
d
»  Sp € S is an initial state @ N
0.5

» A is a (finite) set of actions

» P:SXAXS — |0,1]isa transition probability function
where %.-¢ P(s,a,s’) € {0,1}



« Foran MDP /L = (S, sy, A, P):

» the enabled actions A(s) C A in each state s
are A(s) ={a €A : P(s,a,s’) > 0 for some s’} o
» a path is a sequence @ = SydpSiay, ...

such that s; € §, a; € A(s;) and P(s;, a;,5;,1) > O forall i

e \We also use:

v P4 XS — [0,1]is the transition probability matrix for eacha € A
» P! € Dist(S) is the successor distribution for each state s and action a € A(s)

v (where Dist(S) is the set of discrete probability distributions over set S)

0.5
b
0.3
O O
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o Policies (or strategies) & resolves the choice of action in each state
» based on the execution of the MDP so far
» formally: a policy is a mapping 7 : (S X A)* X § — Dist(A)
such that z(syag.-..s,)(a,) > 0 implies a, € A(s,) 0.5 e

O
» (Spay---5,)(a,) is the probability of picking a,,
after observing MDP history syqy.. .S, 0.5

o 11, (orjustll)is the set of all (deterministic) policies for MDP ./

* Policies can be classified by (i) use of randomisation; (il) use of memory

» which matter for optimality, computation, practicality, ...

11



 Randomisation
» T IS deterministic (or pure) if it always picks a single action with probability 1
» and randomised (or probabilistic) otherwise

» for now, we’ll mostly assume deterministic policies and assume 7 : (S X A)*xX § — A

* Memory
» 7 is memoryless (or stationary, or Markovian) if z(sy, ..., s,) = w(sy, ..., S,) whens, = s,
in which case we write it in the formz : S — A
L1~ C llis the set of all memoryless policies
» otherwise x Is history dependent
» T IS finite-memory if it suffices to distinguish a finite number of “modes” based on the history

» sometimes write a (time-dependent) policy as tuple = = (&, 7y, ...) where ; : § = A
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* A policy tor an MDP yields an induced Markov chain

» and set of (infinite) paths

(finite-memory, deterministic)

(memoryless, randomised)
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* Example MDP: robot moving through terrain divided in to 3 x 2 grid

O.h {hazard} {goal,}
0.6 east
@ east S @‘

> south \ 0.5 stuck
0504 053 0.9

north
stuck east 0.1

SO O
west

{goal,} 0.4 {goal,}

* Objectives (or properties) define an optimisation problem for an MD

»  MaxProb: maximise the probability of reaching goal C

»  SSP (stochastic shortest path): minimise the cost of reaching goal C S

D)

j

we'll focus mainly
on these two

14



Defining objectives for MDPs

» Execution of an MDP under a policy

» for a policy # € Il on MDP /...

» Pr is a probability measure over all (infinite) paths from state s of #

»  [ET(X) is the expected value of X (with respect to Pry)

where X : (§ X A)* — R is a random variable over (infinite) paths

 Value function: V*: § — |
» glves the value of an objective under & starting from each state of the MDP
» define optimal value, e.g.: V¥(s) = max_. V*(s)

» and optimal policy, e.g.: #* = argmax_ . V”(sp)
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« MaxProb: Maximise the probability of reaching a target state set goal C S

» maximise V*(s) = Pr({sydps1a(5,... : §; € goal for some i})

« SSP: Minimise the expected cost of reaching a target state set goal C §

» foracost function C: § XA = R,

, minimise V*(s) = E*(X®) where X“(syagsa;...) = 22, C(s;,a;)

 Assumptions for SSP
»  goal states are absorbing and zero-cost
» there is a proper policy (i.e., which reaches goal with probability 1 from all states)

» every improper policy incurs an infinite cost from every state
from which it does not reach goal with probability 1

106



* What is the optimal policy for objective MaxProb(goal+)?

04/_\ {hazard} {goaIZ}

east
east S1 @‘

stuck

05204 055 0.9

north
east
QO O @

west

{goaly} 0'4 {goal;}
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* Some other common objectives for MDPs:

* Finite-horizon variants, e.qg., of MaxProb:
»  MaxProb=k: Maximise the probability of reaching goal C § within time horizon k

» maximise V*(s) = Pr({syags;a;5,... : §; € goal forsome i < k})

* Discounting infinite-horizon objectives
»  DiscSum: Maximise the expected discounted total reward sum

» for areward function R : § X A — R and discount factor y € (0,1)

, maximise V*(s) = EX(X") where X"(soags,a;...) = 220 y'R(s;, a;)

=




e Specification languages from formal veritication

{goal,}

»  probabillistic extensions of temporal logics, e.g., PCTL, PLTL o.h thazard)
0.6
e Examples south \ 2] stuck
P o5 500 N5
»  Pmax=2 [ F goali | - “probabilistic reachability” | - ;
N
stuck east
»  Prax=2 [ F=10 goalt | - “probabilistic bounded reachability” ‘@ 0.6 west @
» Prax=2 [ G =hazard ] - “probabilistic safety/invariance” 04 west
{goal,} {goal;}

»  Prax=2 | =hazard U goali | - “probabilistic reach-avoid”

»  Pmax=2 [ (G=hazard) A (GF goali) | - “maximise probability of avoiding hazard and also visiting
goal 1 infinitely often”

»  Pmax=2 | =zones U (zone1 A (F zones)) | - "maximise probability of patrolling zone 1 (whilst avoiding
zone 3) then zone 47

> Riime,min=2 [ mzones U (zone1 A (F zones)) | - "minimise the expected time to patrol zone 1 (whilst
avoiding zone 3) then zone 4
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We will mainly focus on MaxProb (techniques are very similar for 5SS

Key result: memoryless (deterministic) policies suffice

max e V*(s) = max, o V*(s)

he optimal value function satisfies the

Bellman equation:

if s € goal

1
x —
o {maxam %, e PES) - V() otherwise

Solution methods
» value iteration (dynamic programming)

» linear programming

» and many more (e.qg., policy iteration, Monte Carlo tree search, BRTDP, ...)

20



* Optimal values can be obtained using dynamic programming
» from the limit of the vector sequence defined below

y VE(s) = limk_)ooxsk where:

1 f s € goal
xk=230 f s & goal and k=0 ao'5
MaX e (s) 2eg P (8) - xk~1 otherwise @ 0 5

Bellman backup operator

 Known as value iteration (VI)

» the Bellman operator is (1) monotonic (ii) a contraction in the L. norm

» optimal values are the least fixed point of the Bellman operator

21



e Optimise via graph-based pre-computation
» potentially improves accuracy / convergence, resolves uniqueness
» compute state sets:
S = (all) states for which all policies reach goal with probability O (i.e., max = 0)
St goal = (some) states for which a policy reaches goal with probability 1 (i.e., max = 1)
St =85\$ush

| | Implementation detalls:
* [hen value iteration becomes:

» Extract optimal policy after/during:

1 if s € S () = argmax 4y ZS’ES P{(s’) - xf,—l
0 if s € SY
k - k+1 k
XN = . e Jerminate when || x — x| < €
S 0 fseS andk=0 | |

MaX e a(s) 2o P58 - xk=1 otherwise * Choose order to update states s

22



Running example: Value iteration

Examp‘e Max DI’Ob(QOaH) e FiX X4:X5:1 and XZZXSZO, jUSt SOlve fOI’ X0, X1
south :
s o - « lteration k=1: xo := max(0.4:0+ 0.6:0, 0.1-0+0.5:0+0.4-1)
| ' = max(0, 0.4)
] ; -
GOt OO
TR B N oS WESt X1 := max(1-0, 0.5:0+0.5-1)
1goak} {goaly} — max(0, 0.5)
= 0.5
_______ K X i X
T BT B + Iteration k=2: xo 1= max(0.4:0.4+ 0.6:0.5, 0.1:0.5+0.5:0+0.4-1)
....... 2 o D46 05 — max(0.46, 0.45)
_______ S i....Baga i 0o
_______ 4 043 05 = 0.46
_______ 5.1 049744 1 05
7 oo 05 xi := 0.5 (as before)
_______ 8....049983616 | 05
....... 9 .1.0499934464 | 05 e Finally: x0=0.5, x1=0.5

10 § 0.4999737856 i 0.5
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 Optimal values can be computed using linear programming (LP):

* . .
»  V*(s) equals the solution x, to: 04 (hazardy ~{90al}

minimise 2 ¢ X, subject to the constraints:

x, =1 for s € S!
x, =0 for s € SY
Xy 2 Zoeg PY(s) - X forse S, a e A(s)
X1
1 A
X0 2 X1 / Lo
' Minimise xo+x1 S.t.:
. » ' . . .
(SO.SOUth) - / 4n )I\(/IOIZII’;ISG Xo+X1 S.1.: X0 > 0.4%0 +0.6X
. ~ {— X0 > 0.1x14+0.5x3+0.4x
x+> 0.5 Xo=0.1x1+0.4 x? > % | ) ’
(s1:east) ~~—— - x12 0.0 x1> 0.5%2 +0.5x4
: / S R > 0. .
0 :



e Value Iteration:

0 f s € goal

S
1

min,e ) |Cls,a) + 2 Pi(s) . xX=11 otherwise

* Linear programming

4

maximise 2 ¢ X, subject to the constraints:

x, =0 for s € goal
X, < C(s,a) + Zyes PI(s) - Xy for s € So, a € A(s)

Pre-computation:

we can also use graph-based pre-computation
to identify/collapse states and relax SSP assumptions

oal
O'h {hazard} wgoalz)
0.6 east
east S
south 0.1 stuck
’ south \ o5
05/°Q4 05/ 0.9
north
stuck east 0.1
SORSSO
west
0.4
{goaly} {goal;}
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Solving MaxProb (or SSP) on MDPs (focusing on “exact” algorithms):

Value iteration (VI)
» simple, and effective in practice, but care needed with convergence detection

» complexity unclear (depends on accuracy)

Linear programming
» polynomial complexity

» N principle, can yield exact (arbitrary precision) optimal values; likely scales worse than V|

Various other algorithms / optimisations
» Policy iteration, VI + prioritisation, topological partitioning, parallelisation, ...

» Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), ...



-inite-horizon variant solvable with value iteration (without pre-computation)

>

VE(s) = xf where: i f s € goal

k=120 f s & goal and n =0
MaX e () 2 es Ps () xk=1 otherwise

0.4 {hazard} {goal:}

>

4

Running example
MaxProb<k({s4,ss})

optimal policy Is not memoryless

k Xo X1
0o 0o 0
o4 05

2 o046 05
"""" 3 | 0484 . 05
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How do we go beyond the assumptions made so far?

—ull observabillity (of state, costs, ...)

partially observable MDPs, beliets over hidden state

FInite state spaces, action spaces

continuous state/action, dynamic systems

~ull knowledge of the model

epistemic uncertainty, also sampling-based models

~ully controllable model

adversarial (or collaborative) scenarios: stochastic game models

28



 Markov decision processes

» sequential decision making under (aleatoric) uncertainty

» policies and objectives (MaxProb, SSP, finite-horizon, temporal logic)

» solving MDPs (optimal policy generation)

inear programming (PTIME)

dynamic programming (value iteration)

* Next: Stochastic games (adding adversarial aspects)

e Next: Uncertain M

D

°s (adding epistemic uncertainty)
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* Applications & challenges

» 1. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N. Jansen,
Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions,
Journal of Artificial Intelligence Research, 76, pages 341-391, 2023

» M. Budd, P. Duckworth, N. Hawes and B. Lacerda, Bayesian Reinforcement Learning for
Single-Episode Missions in Partially Unknown Environments, In CoRL, 2022

» C. Costen, M. Rigter, B. Lacerda and N. Hawes, Shared Autonomy Systems with Stochastic
Operator Models, [JCAI'22, 4614-4620, 2022

 Markov decision processes

»  Mausam & A. Kolobov, Planning with Markov Decision Processes: An Al Perspective,
Morgan & Claypool, 2012

» M. Puterman, Markov Decision Processes, Wiley, 1994
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