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Overview (Part 2)

• Introduction

• Model checking for Markov decision processes (MDPs)

− MDPs: definition

− Paths, strategies & probability spaces

− PCTL model checking

− Costs and rewards

− Case study: Firewire root contention

• Strategy synthesis for MDPs

− Properties and objectives

− Verification vs synthesis

− Case study: Dynamic power management

• Summary
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Recap: Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• Formally: DTMC D = (S, sinit, PPPP, L) where: 

− S is a set of states and sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

− L : S → 2AP labels states with atomic propositions

− define a probability space Prs over paths Paths

• Properties of DTMCs

− can be captured by the logic PCTL

− e.g. send → P≥0.95 [ F deliver ]

− key question: what is the probability
of reaching states T ⊆ S from state s?

− reduces to graph analysis + linear equation system
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Nondeterminism

• Some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple 
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary
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Markov decision processes

• Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

− discrete set of states representing possible configurations of 
the system being modelled

− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism

− in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states
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Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,α,δ,L) where: 

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− δ ⊆ S × α × Dist(S) is the transition
probability relation, where Dist(S) is the set
of all discrete probability distributions over S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− we also abuse notation and use δ as a function

− i.e. δ : S → 2α×Dist(S) where δ(s) = { (a,µ) | (s,a,µ) ∈ δ }

− we assume δ (s) is always non-empty, i.e. no deadlocks

− MDPs, here, are identical to probabilistic automata [Segala]

• usually, MDPs take the form: δ : S × α → Dist(S)
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Simple MDP example

• A simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step 
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart
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Example - Parallel composition
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Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected) 
states

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths
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Classification of strategies

• Strategies are classified according to

• randomisation: 

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and 
randomised otherwise

• memory: 

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such as 
σ(s0...sn) depends only on sn and the current mode, which is 
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)
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Example strategy

• Fragment of induced Markov chain for strategy which picks 
b then c in s1

finite-memory, 
deterministic
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PCTL

• Temporal logic for properties of MDPs (and DTMCs)

− extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ  ::=  X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Example: send → P≥0.95 [ true U≤10 deliver ]
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PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,α,δ,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ  is false

• Semantics of path formulas:

− for a path ω = s0(a0,µ0)s1(a1,µ1)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2
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PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all strategies σ”

− formally  s ⊨ P~p [ ψ ]  ⇔  Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• Some equivalences:

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

s

¬ψ

ψ Prs
σ(ψ) ~ p
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Minimum and maximum probabilities

• Letting:

− Prs
max(ψ) = supσ Prs

σ(ψ)

− Prs
min(ψ) = infσ Prs

σ(ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ]  ⇔  Prs
min(ψ) ~ p 

− if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ]  ⇔  Prs
max(ψ) ~ p

• Model checking P~p[ ψ ] reduces to the computation over all 
strategies of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless strategies suffice, i.e. there are always 
memoryless strategies σmin and σmax for which:

− Prs
σmin(ψ) = Prs

min(ψ) and Prs
σmax(ψ) = Prs

min(ψ) 
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Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ ψ ] and Pmax=? [ ψ ]

− i.e. “what is the minimum/maximum probability (over all 
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
Prs

min(ψ) or Prs
max(ψ) anyway 

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”
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Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [ F (agreement ∧ rounds≤2) ]

− “what is the minimum probability that agreement is reached 
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [ F collisions=k ]

− “what is the maximum probability of k collisions?” 

• Self-stabilisation protocols 

− Pmin=? [ F≤t stable ]

− “what is the minimum probability of reaching a stable state 
within k steps?”
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PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]

− inputs:  MDP M=(S,sinit,α,δ,L), PCTL formula φ

− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Basic algorithm same as PCTL model checking for DTMCs

− proceeds by induction on parse tree of φ

− non-probabilistic operators (true, a, ¬, ∧) straightforward

• Only need to consider P~p [ ψ ] formulas

− reduces to computation of Prs
min(ψ) or Prs

max(ψ) for all s ∈ S

− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

− these slides cover the case Prs
min(φ1 U φ2), i.e. ~ ∈ {≥,>}

− case for maximum probabilities is very similar

− next (X φ) and bounded until (φ1 U≤k φ2) are straightforward 
extensions of the DTMC case
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PCTL until for MDPs

• Computation of probabilities Prs
min(φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

− or: use policy iteration
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PCTL until - Precomputation

• Identify all states where Prs
min(φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [ φ1 U φ2 ]),  Sno = Sat(¬ P>0 [ φ1 U φ2 ])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all strategies the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists a strategy for which the probability is 0
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Method 1 - Linear programming

• Probabilities Prs
min(φ1 U φ2) for remaining states in the set 

S? = S \ (Syes ∪ Sno) can be obtained as the unique solution 
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the 
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

  

maximize xs subject to the constraints :
s∈ S ?∑

xs ≤ µ(s' )⋅ xs' +

s'∈S ?

∑ µ(s' )
s'∈S yes

∑

for all s ∈ S? and for all (a, µ) ∈ δ(s)



23

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4
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Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8
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Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8
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(x0, x1)

=

(2/3, 14/15)
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Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8
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Method 2 – Value iteration

• For probabilities Prs
min(φ1 U φ2) it can be shown that:

− Prs
min(φ1 U φ2) = limn→∞ xs

(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

  

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s' )⋅ xs'

(n−1)

s'∈S

∑
 

 
  

 

 
  if s ∈ S? and n > 0

 

 

 
 
 

 

 
 
 
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Example - PCTL until (value iteration)

Compute: Prsi
min(F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0, 0, 1, 0 ]

n=1: [ min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0 ]

= [ 0, 0.4, 1, 0 ]

n=2: [ min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0 ]

= [ 0.4, 0.6, 1, 0 ]

n=3: …
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Example - PCTL until (value iteration)

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]
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Example - Value iteration + LP

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

x0

x1

0
0

2/3

1
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Method 3 - Policy iteration

• Value iteration:

− iterates over (vectors of) probabilities

• Policy iteration:

− iterates over strategies (“policies”)

• 1. Start with an arbitrary (memoryless) strategy σ

• 2. Compute the reachability probabilities Prσ (F a) for σ

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

• Termination:

− finite number of memoryless strategies

− improvement in (minimum) probabilities each time
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Method 3 - Policy iteration

• 1. Start with an arbitrary (memoryless) strategy σ

− pick an element of δ(s) for each state s ∈ S

• 2. Compute the reachability probabilities Prσ(F a) for σ

− probabilistic reachability on a DTMC

− i.e. solve linear equation system

• 3. Improve the adversary in each state

• 4. Repeat 2/3 until no change in strategy

  

σ' (s) = argmin µ(s' ) ⋅ Prs'
σ(F a)

s'∈S

∑ | (a,µ) ∈ δ(s)
 
 
 

  

 
 
 

  
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Example - Policy iteration

Arbitrary strategy σ:

Compute: Prσ(F a)

Let xi = Prsi
σ(F a)

x2=1, x3=0 and:

• x0 = x1

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ(F a) = [ 1, 1, 1, 0 ]

Refine σ in state s0:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}

= min{1, 0.75} = 0.75

s0

s1 s2

s3
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1
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0.25

1
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Example - Policy iteration

Refined strategy σ’:

Compute: Prσ’(F a)

Let xi = Prsi
σ’(F a)

x2=1, x3=0 and:

• x0 = 0.25·x0 + 0.5

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ’(F a) = [ 2/3, 14/15, 1, 0 ]

This is optimal
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1

1
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1

Syes

Sno



35

Example - Policy iteration

s0
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1
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1

0.8
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σx1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

σ’
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PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity: 

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |δ(s)| is constant
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Costs and rewards for MDPs

• We can augment MDPs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue, 
number of messages successfully delivered, net profit

• Extend logic PCTL with R operator, for “expected reward”

− as for PCTL, either R~r [ … ], Rmin=? [ … ] or Rmax=? [ … ]

• Some examples:

− Rmin=? [ I=90 ],  Rmax=? [ C≤60 ],  Rmax=? [ F “end” ]

− “the minimum expected queue size after exactly 90 seconds”

− “the maximum expected power consumption over one hour”

− the maximum expected time for the algorithm to terminate
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Case study: FireWire root contention

• FireWire (IEEE 1394)

− high-performance serial bus for networking
multimedia devices; originally by Apple

− "hot-pluggable" - add/remove
devices at any time

− no requirement for a single PC (but need acyclic topology)

• Root contention protocol

− leader election algorithm, when nodes join/leave

− symmetric, distributed protocol

− uses randomisation (electronic coin tossing) and timing delays

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry
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Case study: FireWire root contention

• Detailed probabilistic model:

− probabilistic timed automaton (PTA), including:

• concurrency: messages between nodes and wires

• timing delays taken from official standard

• underspecification of delays (upper/lower bounds)

− maximum model size: 170 million states

• Probabilistic model checking (with PRISM)

− verified that root contention always
resolved with probability 1

• P≥1 [ F (end ∧ elected) ]

− investigated worst-case expected time
taken for protocol to complete

• Rmax=? [ F (end ∧ elected) ]

− investigated the effect of using biased coin



40

Case study: FireWire root contention

“minimum probability
of electing leader by time T”

(using a biased coin)

“maximum expected
time to elect a leader”

(using a biased coin)
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Verification vs synthesis

• Majority of research to date has focused on verification

− scalability and performance of algorithms

− extending expressiveness of models and logics

• Some work to date on counterexamples

− but difficult to represent them compactly

• In this lecture, focus on simpler problem of strategy synthesis

− can we find a strategy to guarantee that a given quantitative 
property is satisfied?

− advantage: correct-by-construction

• Not a well known fact…

− incidentally, can reuse the verification algorithms…
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Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [ F≤t fail]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from 
quantitative properties for probabilistic models

0.5

0.1

0.4
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Running example

• Example MDP

− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

States:

s0, s1, s2, s3, s4, s5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal1, goal2
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Properties and objectives

• The syntax:

− φ  ::=  P~p [ ψ ]   |   R~r [ ρ ]

− ψ  ::=  true | a | ψ ∧ ψ | ¬ ψ |  X ψ  |    ψ U≤k ψ     |   ψ U ψ 

− ρ ::=  F b  | C  |  C≤k

− where b is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ, 
and r ∈ ℝ≥0

− F b ≡ true U b

• We refer to φ as property, ψ and ρ as objectives

− (branching time more challenging for synthesis)

“until”

ψ is true with 
probability ~p

“bounded 
until”

“next”

expected 
reward is ~r

“reachability” “cumulative”
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Properties and objectives

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all strategies σ”

− formally  s ⊨ P~p [ ψ ]  ⇔  Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• R~r [ · ] means “the expected value of · satisfies ~r”

• Some examples:

− P≥0.4 [ F “goal” ] “probability of reaching goal is at least 0.4” 

− R<5 [ C≤60 ] “expected power consumption over one hour is 
below 5”

− R≤10 [ F “end” ] “expected time to termination is at most 10”
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Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ under any 
possible strategy σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy 
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the 
same techniques, namely computing optimal values for 
probability objectives:

− Prs
min(ψ) = infσ Prs

σ (ψ)

− Prs
max(ψ) = supσ Prs

σ (ψ)

− and similarly for expectations
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Computing reachability for MDPs

• Computation of probabilities Prs
max(F b) for all s ∈ S

• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithms, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)

− (i) solve linear programming problem

− (i) approximate with value iteration

− (iii) solve with policy (strategy) iteration

• 1. Precomputation:

− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1

− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0
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s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Reachability
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Syes

Sno

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Precomputation
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Reachability for MDPs

• 2. Numerical computation

− compute probabilities Prs
max(F b)

− for remaining states in S? = S \ (Syes ∪ Sno)

− obtained as the unique solution of the linear programming 
(LP) problem:

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

minimize x
s
 subject to the constraints:

s∈ S?∑
x

s
≥ δ(s,a)(s’) ⋅ x

s’
+

s’∈S?

∑ δ(s,a)(s’)

s’∈Syes

∑

for all s ∈ S?  and for all a ∈ A(s)



51

Example – Reachability (LP)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)
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Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

12/3

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)
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Example - Reachability (LP)

x0

x1

0
0

1

12/3

min

Solution:

(x0, x1) = (0.5, 0.5)

i.e.

Prs0
max(F goal1) = 0.5

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1

● x1 ≥ 0.5
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Reachability for MDPs

• 2. Numerical computation (alternative method)

− value iteration

− it can be shown that: Prs
max(F b) = limn→∞ xs

(n) where:

• Approximate iterative solution technique

− iterations terminated when solution converges sufficiently

x
s

(n) =

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? andn = 0

max δ(s,a)(s’) ⋅ x
s’

(n−1)

s’∈S

∑ |a ∈ A(s)











if s ∈ S? andn > 0














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Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Compute: Prs
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

S? = {x0, x1}

[ x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n) ]

n=0: [ 0, 0, 0, 0, 1, 1 ]

n=1: [ max(0.6·0+0.4·0, 0.1·0+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1 ]

= [ 0.1, 0.5, 0, 0, 1, 1 ]

n=2: [ max(0.6·0.5+0.4·0.1, 0.1·0.5+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1 ]

= [ 0.34, 0.5, 0, 0, 1, 1 ]
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Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

[x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n]

n=0: [0, 0, 0, 0, 1, 1]

n=1: [0.1, 0.5, 0, 0, 1, 1]

n=2: [0.34, 0.5, 0, 0, 1, 1]

n=3: [0.436, 0.5, 0, 0, 1, 1]

n=4: [0.4744, 0.5, 0, 0, 1, 1]

n=5: [0.48976, 0.5, 0, 0, 1, 1]

n=6: [0.495904, 0.5, 0, 0, 1, 1]

n=7: [0.4983616, 0.5, 0, 0, 1, 1]

n=8: [0.49934464, 0.5, 0, 0, 1, 1]

…

n=16: [0.49999957, 0.5, 0, 0, 1, 1]

n=17: [0.49999982, 0.5, 0, 0, 1, 1]

…       ≈ [0.5 0.5, 0, 0, 1, 1]x0

x1

0
0

1

1

min
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Memoryless strategies

• Memoryless strategies suffice for probabilistic reachability

− i.e. there exist memoryless strategies σmin & σmax such that:

− Probσmin(s, F a) = pmin(s, F a)  for all states s ∈ S

− Probσmax(s, F a) = pmax(s, F a)  for all states s ∈ S

• Construct strategies from optimal solution:

          

σmin(s) = argmin µ(s' ) ⋅ pmin (s' ,F a)
s'∈S

∑ | (a,µ) ∈ SSSStttteeeeppppssss (s)
 
 
 

  

 
 
 

  

          

σmax (s) = argmax µ(s' ) ⋅ pmax (s' ,F a)
s'∈S

∑ | (a,µ) ∈ SSSStttteeeeppppssss (s)
 
 
 

  

 
 
 

  
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Strategy synthesis

• Compute optimal probabilities Prs
max(F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally 
optimal action in each state

− in general depends on the method used to compute the 
optimal probabilities

• For reachability

− memoryless strategies suffice

• For step-bounded reachability

− need finite-memory strategies

− typically requires backward computation for a fixed number of 
steps
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Example - Strategy

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

x0

x1

0
0

1

12/3

min

x0 ≥ x1

(east)

x1 ≥ 0.5

(south)

Optimal strategy:

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : -
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s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

Pmax=? [ F≤3 goal2 ]

So compute:

Prs
max(F≤3 goal2) = 0.99

Optimal strategy

is finite-memory:

s4 (after 1 step): east

s4 (after2 steps): west

Example – Bounded reachability



61

Strategy synthesis for LTL objectives

• Reduce to the problem of reachability on the product of 
MDP M and an omega-automaton representing ψ

− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities 
Prs

max(ψ)

− since Prs
min(ψ) = 1 - Prs

max(¬ψ)

• To compute the optimal strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy with one mode for each 
state of the DRA for ψ
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Example - LTL

• P≥0.05 [ (G ¬hazard) ∧ (GF goal1) ]

− avoid hazard and visit goal1 infinitely often

• Prs0
max((G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Optimal strategy:

(in this instance,

memoryless)

s0 : south

s1 : -

s2 : -

s3 : -

s4 : east

s5 : west
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Multi-objective strategy synthesis

• Consider conjunctions of probabilistic LTL formulas P~p [ψ] 

− require all conjuncts to be satisfied

• Reduce to a multi-objective reachability problem on the 
product of MDP M and the omega-automata representing 
the conjuncts

− convert (by negation) to formulas with lower probability 
bounds (≤, <), then to DRA

− need to consider all combinations of objectives

• The problem can be solved using LP methods [TACAS07] or 
via approximations to Pareto curve [ATVA12]

− strategies may be finite memory and randomised

• Continue as for single-objectives to compute the strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy
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Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

• Multi-objective formula

− P≥0.7 [ G ¬hazard ] ∧ P≥0.2 [ GF goal1 ] ? True (achievable)

• Numerical query

− Pmax=? [ GF goal1 ] such that P≥0.7 [ G ¬hazard ] ? ~0.2278

• Pareto query

− for Pmax=? [ G ¬hazard ] ∧ Pmax=? [ GF goal1 ] ?

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1
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Example – Multi-objective strategies

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Strategy 1

(deterministic)

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1
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Example – Multi-objective strategies

Strategy 2

(deterministic)

s0 : south

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north
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Example – Multi-objective strategies

Optimal strategy:

(randomised)

s0 : 0.3226 : east

0.6774 : south

s1 : 1.0 : south

s2 : -

s3 : -

s4 : 1.0 : east

s5 : 1.0 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north
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Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power 
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: http://www.prismmodelchecker.org/files/tacas11/
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Summary (Part 2)

• Markov decision processes (MDPs)

− extend DTMCs with nondeterminism

− to model concurrency, underspecification, …

• Property specifications

− PCTL: exactly same syntax as for DTMCs

− but quantify over all strategies

• Model checking algorithms

− covered three basic techniques for MDPs: linear programming, 
value iteration, or policy iteration

• Strategy synthesis

− can reuse model checking algorithms
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PRISM: Recent & new developments

• Major new features:

1. multi-objective model checking

2. parametric model checking

3. real-time: probabilistic timed automata (PTAs)

4. games: stochastic multi-player games (SMGs)

• Further new additions:

− strategy (adversary) synthesis 

− CTL model checking & counterexample generation

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'13]

− benchmark suite & testing functionality [QEST'12]
www.prismmodelchecker.org/benchmarks/
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PhD Comics and Oxford…

• You are welcome to visit Oxford!
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