
Probabilistic model Probabilistic model Probabilistic model Probabilistic model cccchecking with PRISMhecking with PRISMhecking with PRISMhecking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

4th SSFT, Menlo College, May 2014



Markov decision processes

Part 2



3

Overview (Part 2)

• Introduction

• Model checking for Markov decision processes (MDPs)

− MDPs: definition

− Paths, strategies & probability spaces

− PCTL model checking

− Costs and rewards

− Case study: Firewire root contention

• Strategy synthesis for MDPs

− Properties and objectives

− Verification vs synthesis

− Case study: Dynamic power management

• Summary



4

Recap: Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• Formally: DTMC D = (S, sinit, PPPP, L) where: 

− S is a set of states and sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

− L : S → 2AP labels states with atomic propositions

− define a probability space Prs over paths Paths

• Properties of DTMCs

− can be captured by the logic PCTL

− e.g. send → P≥0.95 [ F deliver ]

− key question: what is the probability
of reaching states T ⊆ S from state s?

− reduces to graph analysis + linear equation system

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}



5

Nondeterminism

• Some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple 
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary



6

Markov decision processes

• Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

− discrete set of states representing possible configurations of 
the system being modelled

− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism

− in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a



7

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,α,δ,L) where: 

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− δ ⊆ S × α × Dist(S) is the transition
probability relation, where Dist(S) is the set
of all discrete probability distributions over S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− we also abuse notation and use δ as a function

− i.e. δ : S → 2α×Dist(S) where δ(s) = { (a,µ) | (s,a,µ) ∈ δ }

− we assume δ (s) is always non-empty, i.e. no deadlocks

− MDPs, here, are identical to probabilistic automata [Segala]

• usually, MDPs take the form: δ : S × α → Dist(S)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a



8

Simple MDP example

• A simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step 
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart



9

Example - Parallel composition

1 1 1

s0 s0  t0 s0  t1 s0  t2

s1  t0

s2  t0

s1  t1

s2  t1

s1  t2

s2  t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here



10

Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence (s0...sn) of (connected) 
states

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a



11

Classification of strategies

• Strategies are classified according to

• randomisation: 

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and 
randomised otherwise

• memory: 

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such as 
σ(s0...sn) depends only on sn and the current mode, which is 
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)



12

Example strategy

• Fragment of induced Markov chain for strategy which picks 
b then c in s1

finite-memory, 
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a



13

PCTL

• Temporal logic for properties of MDPs (and DTMCs)

− extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ  ::=  X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Example: send → P≥0.95 [ true U≤10 deliver ]



14

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,α,δ,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ  is false

• Semantics of path formulas:

− for a path ω = s0(a0,µ0)s1(a1,µ1)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2



15

PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all strategies σ”

− formally  s ⊨ P~p [ ψ ]  ⇔  Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• Some equivalences:

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

s

¬ψ

ψ Prs
σ(ψ) ~ p



16

Minimum and maximum probabilities

• Letting:

− Prs
max(ψ) = supσ Prs

σ(ψ)

− Prs
min(ψ) = infσ Prs

σ(ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ]  ⇔  Prs
min(ψ) ~ p 

− if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ]  ⇔  Prs
max(ψ) ~ p

• Model checking P~p[ ψ ] reduces to the computation over all 
strategies of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless strategies suffice, i.e. there are always 
memoryless strategies σmin and σmax for which:

− Prs
σmin(ψ) = Prs

min(ψ) and Prs
σmax(ψ) = Prs

min(ψ) 



17

Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ ψ ] and Pmax=? [ ψ ]

− i.e. “what is the minimum/maximum probability (over all 
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
Prs

min(ψ) or Prs
max(ψ) anyway 

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”



18

Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [ F (agreement ∧ rounds≤2) ]

− “what is the minimum probability that agreement is reached 
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [ F collisions=k ]

− “what is the maximum probability of k collisions?” 

• Self-stabilisation protocols 

− Pmin=? [ F≤t stable ]

− “what is the minimum probability of reaching a stable state 
within k steps?”



19

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]

− inputs:  MDP M=(S,sinit,α,δ,L), PCTL formula φ

− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Basic algorithm same as PCTL model checking for DTMCs

− proceeds by induction on parse tree of φ

− non-probabilistic operators (true, a, ¬, ∧) straightforward

• Only need to consider P~p [ ψ ] formulas

− reduces to computation of Prs
min(ψ) or Prs

max(ψ) for all s ∈ S

− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

− these slides cover the case Prs
min(φ1 U φ2), i.e. ~ ∈ {≥,>}

− case for maximum probabilities is very similar

− next (X φ) and bounded until (φ1 U≤k φ2) are straightforward 
extensions of the DTMC case



20

PCTL until for MDPs

• Computation of probabilities Prs
min(φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

− or: use policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [ F a ]

≡

P≥p [ true U a ]



21

PCTL until - Precomputation

• Identify all states where Prs
min(φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [ φ1 U φ2 ]),  Sno = Sat(¬ P>0 [ φ1 U φ2 ])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all strategies the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists a strategy for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [ F a ])

Sno = Sat(¬P>0 [ F a ])

Example:

P≥p [ F a ]



22

Method 1 - Linear programming

• Probabilities Prs
min(φ1 U φ2) for remaining states in the set 

S? = S \ (Syes ∪ Sno) can be obtained as the unique solution 
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the 
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

  

maximize xs subject to the constraints :
s∈ S ?∑

xs ≤ µ(s' )⋅ xs' +

s'∈S ?

∑ µ(s' )
s'∈S yes

∑

for all s ∈ S? and for all (a, µ) ∈ δ(s)



23

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno



24

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8



25

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)



26

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3



27

Method 2 – Value iteration

• For probabilities Prs
min(φ1 U φ2) it can be shown that:

− Prs
min(φ1 U φ2) = limn→∞ xs

(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

  

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s' )⋅ xs'

(n−1)

s'∈S

∑
 

 
  

 

 
  if s ∈ S? and n > 0

 

 

 
 
 

 

 
 
 



28

Example - PCTL until (value iteration)

Compute: Prsi
min(F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0, 0, 1, 0 ]

n=1: [ min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0 ]

= [ 0, 0.4, 1, 0 ]

n=2: [ min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0 ]

= [ 0.4, 0.6, 1, 0 ]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno



29

Example - PCTL until (value iteration)

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno



30

Example - Value iteration + LP

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

x0

x1

0
0

2/3

1



31

Method 3 - Policy iteration

• Value iteration:

− iterates over (vectors of) probabilities

• Policy iteration:

− iterates over strategies (“policies”)

• 1. Start with an arbitrary (memoryless) strategy σ

• 2. Compute the reachability probabilities Prσ (F a) for σ

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

• Termination:

− finite number of memoryless strategies

− improvement in (minimum) probabilities each time



32

Method 3 - Policy iteration

• 1. Start with an arbitrary (memoryless) strategy σ

− pick an element of δ(s) for each state s ∈ S

• 2. Compute the reachability probabilities Prσ(F a) for σ

− probabilistic reachability on a DTMC

− i.e. solve linear equation system

• 3. Improve the adversary in each state

• 4. Repeat 2/3 until no change in strategy

  

σ' (s) = argmin µ(s' ) ⋅ Prs'
σ(F a)

s'∈S

∑ | (a,µ) ∈ δ(s)
 
 
 

  

 
 
 

  



33

Example - Policy iteration

Arbitrary strategy σ:

Compute: Prσ(F a)

Let xi = Prsi
σ(F a)

x2=1, x3=0 and:

• x0 = x1

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ(F a) = [ 1, 1, 1, 0 ]

Refine σ in state s0:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}

= min{1, 0.75} = 0.75

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno



34

Example - Policy iteration

Refined strategy σ’:

Compute: Prσ’(F a)

Let xi = Prsi
σ’(F a)

x2=1, x3=0 and:

• x0 = 0.25·x0 + 0.5

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ’(F a) = [ 2/3, 14/15, 1, 0 ]

This is optimal

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno



35

Example - Policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

σx1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

σ’



36

PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity: 

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |δ(s)| is constant



37

Costs and rewards for MDPs

• We can augment MDPs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue, 
number of messages successfully delivered, net profit

• Extend logic PCTL with R operator, for “expected reward”

− as for PCTL, either R~r [ … ], Rmin=? [ … ] or Rmax=? [ … ]

• Some examples:

− Rmin=? [ I=90 ],  Rmax=? [ C≤60 ],  Rmax=? [ F “end” ]

− “the minimum expected queue size after exactly 90 seconds”

− “the maximum expected power consumption over one hour”

− the maximum expected time for the algorithm to terminate



38

Case study: FireWire root contention

• FireWire (IEEE 1394)

− high-performance serial bus for networking
multimedia devices; originally by Apple

− "hot-pluggable" - add/remove
devices at any time

− no requirement for a single PC (but need acyclic topology)

• Root contention protocol

− leader election algorithm, when nodes join/leave

− symmetric, distributed protocol

− uses randomisation (electronic coin tossing) and timing delays

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry



39

Case study: FireWire root contention

• Detailed probabilistic model:

− probabilistic timed automaton (PTA), including:

• concurrency: messages between nodes and wires

• timing delays taken from official standard

• underspecification of delays (upper/lower bounds)

− maximum model size: 170 million states

• Probabilistic model checking (with PRISM)

− verified that root contention always
resolved with probability 1

• P≥1 [ F (end ∧ elected) ]

− investigated worst-case expected time
taken for protocol to complete

• Rmax=? [ F (end ∧ elected) ]

− investigated the effect of using biased coin



40

Case study: FireWire root contention

“minimum probability
of electing leader by time T”

(using a biased coin)

“maximum expected
time to elect a leader”

(using a biased coin)



41

Verification vs synthesis

• Majority of research to date has focused on verification

− scalability and performance of algorithms

− extending expressiveness of models and logics

• Some work to date on counterexamples

− but difficult to represent them compactly

• In this lecture, focus on simpler problem of strategy synthesis

− can we find a strategy to guarantee that a given quantitative 
property is satisfied?

− advantage: correct-by-construction

• Not a well known fact…

− incidentally, can reuse the verification algorithms…



42

Quantitative (probabilistic) verification

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [ F≤t fail]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from 
quantitative properties for probabilistic models

0.5

0.1

0.4



43

Running example

• Example MDP

− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

States:

s0, s1, s2, s3, s4, s5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal1, goal2



44

Properties and objectives

• The syntax:

− φ  ::=  P~p [ ψ ]   |   R~r [ ρ ]

− ψ  ::=  true | a | ψ ∧ ψ | ¬ ψ |  X ψ  |    ψ U≤k ψ     |   ψ U ψ 

− ρ ::=  F b  | C  |  C≤k

− where b is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ, 
and r ∈ ℝ≥0

− F b ≡ true U b

• We refer to φ as property, ψ and ρ as objectives

− (branching time more challenging for synthesis)

“until”

ψ is true with 
probability ~p

“bounded 
until”

“next”

expected 
reward is ~r

“reachability” “cumulative”



45

Properties and objectives

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all strategies σ”

− formally  s ⊨ P~p [ ψ ]  ⇔  Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• R~r [ · ] means “the expected value of · satisfies ~r”

• Some examples:

− P≥0.4 [ F “goal” ] “probability of reaching goal is at least 0.4” 

− R<5 [ C≤60 ] “expected power consumption over one hour is 
below 5”

− R≤10 [ F “end” ] “expected time to termination is at most 10”



46

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ under any 
possible strategy σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy 
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the 
same techniques, namely computing optimal values for 
probability objectives:

− Prs
min(ψ) = infσ Prs

σ (ψ)

− Prs
max(ψ) = supσ Prs

σ (ψ)

− and similarly for expectations



47

Computing reachability for MDPs

• Computation of probabilities Prs
max(F b) for all s ∈ S

• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithms, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)

− (i) solve linear programming problem

− (i) approximate with value iteration

− (iii) solve with policy (strategy) iteration

• 1. Precomputation:

− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1

− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0



48

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Reachability



49

Syes

Sno

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)

Example - Precomputation



50

Reachability for MDPs

• 2. Numerical computation

− compute probabilities Prs
max(F b)

− for remaining states in S? = S \ (Syes ∪ Sno)

− obtained as the unique solution of the linear programming 
(LP) problem:

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

minimize x
s
 subject to the constraints:

s∈ S?∑
x

s
≥ δ(s,a)(s’) ⋅ x

s’
+

s’∈S?

∑ δ(s,a)(s’)

s’∈Syes

∑

for all s ∈ S?  and for all a ∈ A(s)



51

Example – Reachability (LP)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)

Example:

P≥0.4 [ F goal1 ]

So compute:

Prs
max(F goal1)



52

Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

12/3

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)



53

Example - Reachability (LP)

x0

x1

0
0

1

12/3

min

Solution:

(x0, x1) = (0.5, 0.5)

i.e.

Prs0
max(F goal1) = 0.5

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1

● x1 ≥ 0.5



54

Reachability for MDPs

• 2. Numerical computation (alternative method)

− value iteration

− it can be shown that: Prs
max(F b) = limn→∞ xs

(n) where:

• Approximate iterative solution technique

− iterations terminated when solution converges sufficiently

x
s

(n) =

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? andn = 0

max δ(s,a)(s’) ⋅ x
s’

(n−1)

s’∈S

∑ |a ∈ A(s)











if s ∈ S? andn > 0

















55

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Compute: Prs
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

S? = {x0, x1}

[ x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n) ]

n=0: [ 0, 0, 0, 0, 1, 1 ]

n=1: [ max(0.6·0+0.4·0, 0.1·0+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1 ]

= [ 0.1, 0.5, 0, 0, 1, 1 ]

n=2: [ max(0.6·0.5+0.4·0.1, 0.1·0.5+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1 ]

= [ 0.34, 0.5, 0, 0, 1, 1 ]



56

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

[x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n]

n=0: [0, 0, 0, 0, 1, 1]

n=1: [0.1, 0.5, 0, 0, 1, 1]

n=2: [0.34, 0.5, 0, 0, 1, 1]

n=3: [0.436, 0.5, 0, 0, 1, 1]

n=4: [0.4744, 0.5, 0, 0, 1, 1]

n=5: [0.48976, 0.5, 0, 0, 1, 1]

n=6: [0.495904, 0.5, 0, 0, 1, 1]

n=7: [0.4983616, 0.5, 0, 0, 1, 1]

n=8: [0.49934464, 0.5, 0, 0, 1, 1]

…

n=16: [0.49999957, 0.5, 0, 0, 1, 1]

n=17: [0.49999982, 0.5, 0, 0, 1, 1]

…       ≈ [0.5 0.5, 0, 0, 1, 1]x0

x1

0
0

1

1

min



57

Memoryless strategies

• Memoryless strategies suffice for probabilistic reachability

− i.e. there exist memoryless strategies σmin & σmax such that:

− Probσmin(s, F a) = pmin(s, F a)  for all states s ∈ S

− Probσmax(s, F a) = pmax(s, F a)  for all states s ∈ S

• Construct strategies from optimal solution:

          

σmin(s) = argmin µ(s' ) ⋅ pmin (s' ,F a)
s'∈S

∑ | (a,µ) ∈ SSSStttteeeeppppssss (s)
 
 
 

  

 
 
 

  

          

σmax (s) = argmax µ(s' ) ⋅ pmax (s' ,F a)
s'∈S

∑ | (a,µ) ∈ SSSStttteeeeppppssss (s)
 
 
 

  

 
 
 

  



58

Strategy synthesis

• Compute optimal probabilities Prs
max(F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally 
optimal action in each state

− in general depends on the method used to compute the 
optimal probabilities

• For reachability

− memoryless strategies suffice

• For step-bounded reachability

− need finite-memory strategies

− typically requires backward computation for a fixed number of 
steps



59

Example - Strategy

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

x0

x1

0
0

1

12/3

min

x0 ≥ x1

(east)

x1 ≥ 0.5

(south)

Optimal strategy:

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : -



60

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

Pmax=? [ F≤3 goal2 ]

So compute:

Prs
max(F≤3 goal2) = 0.99

Optimal strategy

is finite-memory:

s4 (after 1 step): east

s4 (after2 steps): west

Example – Bounded reachability



61

Strategy synthesis for LTL objectives

• Reduce to the problem of reachability on the product of 
MDP M and an omega-automaton representing ψ

− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities 
Prs

max(ψ)

− since Prs
min(ψ) = 1 - Prs

max(¬ψ)

• To compute the optimal strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy with one mode for each 
state of the DRA for ψ



62

Example - LTL

• P≥0.05 [ (G ¬hazard) ∧ (GF goal1) ]

− avoid hazard and visit goal1 infinitely often

• Prs0
max((G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Optimal strategy:

(in this instance,

memoryless)

s0 : south

s1 : -

s2 : -

s3 : -

s4 : east

s5 : west



63

Multi-objective strategy synthesis

• Consider conjunctions of probabilistic LTL formulas P~p [ψ] 

− require all conjuncts to be satisfied

• Reduce to a multi-objective reachability problem on the 
product of MDP M and the omega-automata representing 
the conjuncts

− convert (by negation) to formulas with lower probability 
bounds (≤, <), then to DRA

− need to consider all combinations of objectives

• The problem can be solved using LP methods [TACAS07] or 
via approximations to Pareto curve [ATVA12]

− strategies may be finite memory and randomised

• Continue as for single-objectives to compute the strategy σ* 

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy



64

Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

• Multi-objective formula

− P≥0.7 [ G ¬hazard ] ∧ P≥0.2 [ GF goal1 ] ? True (achievable)

• Numerical query

− Pmax=? [ GF goal1 ] such that P≥0.7 [ G ¬hazard ] ? ~0.2278

• Pareto query

− for Pmax=? [ G ¬hazard ] ∧ Pmax=? [ GF goal1 ] ?

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1



65

Example – Multi-objective strategies

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Strategy 1

(deterministic)

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1



66

Example – Multi-objective strategies

Strategy 2

(deterministic)

s0 : south

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north



67

Example – Multi-objective strategies

Optimal strategy:

(randomised)

s0 : 0.3226 : east

0.6774 : south

s1 : 1.0 : south

s2 : -

s3 : -

s4 : 1.0 : east

s5 : 1.0 : west

0.80.60.4 10.20 
0 

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north



68

Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power 
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: http://www.prismmodelchecker.org/files/tacas11/



69

Summary (Part 2)

• Markov decision processes (MDPs)

− extend DTMCs with nondeterminism

− to model concurrency, underspecification, …

• Property specifications

− PCTL: exactly same syntax as for DTMCs

− but quantify over all strategies

• Model checking algorithms

− covered three basic techniques for MDPs: linear programming, 
value iteration, or policy iteration

• Strategy synthesis

− can reuse model checking algorithms



70

PRISM: Recent & new developments

• Major new features:

1. multi-objective model checking

2. parametric model checking

3. real-time: probabilistic timed automata (PTAs)

4. games: stochastic multi-player games (SMGs)

• Further new additions:

− strategy (adversary) synthesis 

− CTL model checking & counterexample generation

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'13]

− benchmark suite & testing functionality [QEST'12]
www.prismmodelchecker.org/benchmarks/



71

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC, EPSRC, Microsoft Research

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org



7272

PhD Comics and Oxford…

• You are welcome to visit Oxford!

• PhD scholarships, postdocs in verification and synthesis, 
and more


