UNIVERSITY OF

OXFORD

Probabilistic model checking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

4th SSFT, Menlo College, May 2014

Part 2

Markov decision processes

Overview (Part 2)

Introduction

Model checking for Markov decision processes (MDPs)

— MDPs: definition

— Paths, strategies & probability spaces

— PCTL model checking

— Costs and rewards

— Case study: Firewire root contention
. Strategy synthesis for MDPs

— Properties and objectives

— Verification vs synthesis

— Case study: Dynamic power management
- Summary

Recap: Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

— state-transition systems augmented with probabilities
Formally: DTMC D = (S, s,,, P, L) where:

— Sis a set of states and s,,;, € S is the initial state

— P:S xS - [0,1]is the transition probability matrix

— L:S — 2AP |abels states with atomic propositions

— define a probability space Pr_ over paths Path,

Properties of DTMCs
— can be captured by the logic PCTL
— e.g. send — P_, s [F deliver]

— key question: what is the probability
of reaching states T < S from state s?

— reduces to graph analysis + linear equation system

501 lsucc}

Nondeterminism

- Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,,;, and d

maxX

Unknown environments
— e.g. probabilistic security protocols - unknown adversary

Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism {heads}

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

Markov decision processes

Formally, an MDP M is a tuple (S,s;,i;,,0,L) where:
— Sis a set of states (“state space”)
— Si,ie € S is the initial state
— o is an alphabet of action labels

— 0 € S X o X Dist(S) is the transition
probability relation, where Dist(S) is the set 0.3 {tails}
of all discrete probability distributions over S

— L:S — 2A%is a labelling with atomic propositions

Notes:
— we also abuse notation and use 6 as a function
— j.e. 8 : S — 20xDist®) where 8(s) = { (a,M) | (s,a,u) € 0}
— we assume 0 (s) is always non-empty, i.e. no deadlocks

— MDPs, here, are identical to probabilistic automata [Segala]
. usually, MDPs take the form: © : S X o — Dist(S) v

Simple MDP example

- A simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

Example - Parallel composition

Asynchronous parallel 0.5
composition of two w]
3-state DTMCs

Action labels
omitted here

Paths and strategies

- A (finite or infinite) path through an MDP {heads}

— is a sequence (s,...s) of (connected)
states

— represents an execution of the system

— resolves both the probabilistic and
nondeterministic choices

- A strategy o (aka. “adversary” or “policy”) of an MDP

— is a resolution of nondeterminism only

— is (formally) a mapping from finite paths to distributions

— induces a fully probabilistic model

— i.e. an (infinite-state) Markov chain over finite paths

— on which we can define a probability space over infinite paths

10

Classification of strategies

- Strategies are classified according to

randomisation:

— o is deterministic (pure) if o(s,...s,) is a point distribution, and
randomised otherwise

memory:
— o is memoryless (simple) if o(s,...s,) = o(s,) for all s,...s_

— o is finite memory if there are finitely many modes such as
o(s,...s,) depends only on s_and the current mode, which is
updated each time an action is performed

— otherwise, o is infinite memory

.- A strategy o induces, for each state s in the MDP:
— a set of infinite paths Patho (s)
— a probability space Pro, over Path? (s)

11

Example strategy

- Fragment of induced Markov chain for strategy which picks

b then cin s,

finite—-memory,
deterministic

12

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
— extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P

— quantitative extension of CTL’s A and E operators

PCTL syntax:

—¢ =truelaldAd| [P ,[w] (state formulas)
—P = Xd|dUskd|dUD (path formulas)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- Example: send — P_;os [true U='0 deliver]

13

PCTL semantics for MDPs

PCTL formulas interpreted over states of an MDP
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the MDP (S,s,,;;,%,0,L):

—SkEa < a € L(s)
—SE O AP, < sE¢, and s E= ¢,
— s E —¢ < s E ¢ is false

- Semantics of path formulas:

— for a path w = sy(ay,Mg)s;(a;,M;)S5... in the MDP:
- wEX$ S S E
— wkE ¢, Uskdp, < 3Ti<ksuchthats, = b, and Vj<i, s, = b,

~wEd Ud, < 3k=0 such that w = ¢, Usk ¢, 4

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific strategy o

— s = P_, [@] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s=P_[w] < Pro) ~ p for all strategies o
— where we use Pr.o(p) to denote Pr.°{ w € Path,° | w = @ }

- Some equivalences:
—Fd=0dp=trueUd (eventually, “future”)
—-God=0d¢=—-(F—-9) (always, “globally”) 15

Minimum and maximum probabilities

- Letting:

— Pr,max(@) = sup, Pr.o(p)
— Pr,mn(y) = inf; Pr,o(y)

- We have:

—if~e{z,>} thenseP_[w] & Prmn(y) ~p
—if~e{<,slthens=EP_[Y] & Prm>(yp) ~p
- Model checking P_,[@] reduces to the computation over all
strategies of either:

— the minimum probability of Y holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL on MDPs

— memoryless strategies suffice, i.e. there are always
memoryless strategies o,,,, and o,,,, for which:

— Promin(y) = Pr,min(p) and Pr.%max(y) = Pr,min(y)

max

16

Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): P, [w]land P ., [W]

— i.e. "what is the minimum/maximum probability (over all
adversaries) that path formula p is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pr.min(p) or Pr,m2(y) anyway

1

— useful to spot patterns/trends
0.8
£06
Example: CSMA/CD protocol 3°
Q0
— “min/max probability £ 04,
that a message is sent 0.2l |: ——maximum
1 ~“a\{e_rage
within the deadline” — minimum
gOO 1000 1200 1400 1600 1800

-
17

Some real PCTL examples

Byzantine agreement protocol
— P, [F (agreement A rounds<2)]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Pax-> [F collisions=k]
— “what is the maximum probability of k collisions?”

- Self-stabilisation protocols

— P.in_ [FSt stable]

— “what is the minimum probability of reaching a stable state
within k steps?”

18

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
— inputs: MDP M=(S,s,,;;,x,0,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- Basic algorithm same as PCTL model checking for DTMCs
— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [¢] formulas

— reduces to computation of Pr,m"(p) or Pr.m2(yp) for all s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case Pr,m"(¢, U ¢,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

— next (X ¢) and bounded until (b, U=k ¢,) are straightforward
extensions of the DTMC case 19

PCTL until for MDPs

- Computation of probabilities Pr,m"(¢, U ¢,) forall s € S
First identify all states where the probability is 1T or 0

— “precomputation” algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

Example:
P.,[Fa]

P.,[trueUa]

20

PCTL until - Precomputation

Identify all states where Pr,m"(¢, U ¢,)is 1 or 0
— Sves = Sat(P.; [d, U, 1), S"°=Sat(—P_,[P; U,])
- Two graph-based precomputation algorithms:

— algorithm Prob1A computes Syes

. for all strategies the probability of satisfying &, U &, is 1
— algorithm ProbOE computes S

. there exists a strategy for which the probability is 0

Sves = Sat(P_, [Fa])

Sno = Sat(—=P_.,[Fal)

21

Method 1 - Linear programming

- Probabilities Pr,mn(b, U ¢,) for remaining states in the set
S? =S\ (S¥es U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ZS o X subject to the constraints
X, < D u(s")- X, + D u(s")
s'eS’ s'eSYes

for all s € S” and for all (a, n) € 8(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques

— e.g. Simplex, ellipsoid method, branch-and-cut .

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xo = X
° XO < 025X0 + 05
e X; =0.1-x5+0.5-x; + 0.4

23

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
« Xo=2/3
e X <0.2:%x,+ 0.8

| xo <2/3 | x;, <0.2-x,
' ' + 0.8

2/3 1 0 1
24

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
« Xo=2/3
e X <0.2:%x,+ 0.8

Solution:

|] ma% (XO’ x])

(2/3, 14/15)

2/3 1 25

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
« Xo=2/3
e X <0.2:%x,+ 0.8

2,
X; <0.2:xy + 0.8 _ ma%
wo memoryless
/'/' adversaries
XO = X] /

0 2/3 1 26

Method 2 - Value iteration

- For probabilities Prym"(¢p, U ¢,) it can be shown that:

— Pr,min(, U &,) = lim,_ x.™ where:

-

] ifs e §¥
0 ifse S™
(n)
X, =) 0 ifseS andn=0
min(a,u)eSteps(s) [Z H(S')' XS'(n])J if s e S? andn>0
L s'eS

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

27

Example — PCTL until (value iteration)

Compute: Pr,™n(F a)
Sves = {x,}, Sn° ={x3}, §* = {Xq, X}

[Xo(n),xl(n),xz(n),x?)(n)]
n=0: [0,0,1,0]

n=1: [min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4, 1, 0]
=10,0.4,1,0]

2: [min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4,1, 0]
=[10.4,0.6,1,0]

n=3:

n

28

Example — PCTL until (value iteration)

[XO(“),X1(”),X2(“),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, T
[0.600000, 0.740000, 1
[0.650000, 0.830000, 1
[0.662500, 0.880000, 1
[0.665625, 0.906250, 1, 0]
1
1
1

[0.666406, 0.919688,
[0.666602, 0.926484,
[0.666650, 0.929902,

5 3 3 3 3 3 3 3 35 5
I
© X NV AWN 7O

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

> S
Il
N N
— O

29

Example - Value iteration + LP

[XO(“),X1(”),X2(“),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, T
[0.600000, 0.740000, 1
[0.650000, 0.830000, 1
[0.662500, 0.880000, 1
[0.665625, 0.906250, 1, 0]
1
1
1

[0.666406, 0.919688,
[0.666602, 0.926484,
[0.666650, 0.929902,

|
5 3 3 3 3 3 3 3 35 5
I
© X NV AWN 7O

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

0 2/3 Xo

> S
Il
N N
— O

30

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:
— iterates over strategies (“policies”)

1. Start with an arbitrary (memoryless) strategy o

2. Compute the reachability probabilities Pro (F a) for o
3. Improve the strategy in each state

- 4. Repeat 2/3 until no change in strategy

-« Termination:

— finite number of memoryless strategies
— improvement in (minimum) probabilities each time

31

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) strategy o
— pick an element of d(s) for each state s € S
- 2. Compute the reachability probabilities Pro(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system
- 3. Improve the adversary in each state

¢ (s) = argmin {Zu(s')- Pro(Fa) | (a,pn) e 8(5)}

s'eS

- 4. Repeat 2/3 until no change in strategy

32

Example - Policy iteration

Arbitrary strategy o:
Compute: Pro(F a)
Let x; = Pr 9(F a)

* Xy = X,

*X; = 0.1-x45 + 0.5:x;, + 0.4
Solution:

Pro(Fa)=1[1,1,1,0]

Refine o in state s;:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

33

Example - Policy iteration

Refined strategy o’:
Compute: Pro'(F a)

Let x; = Pr o (F a)

x,=1, x3=0 and:

* X = 0.25-%, + 0.5

*X; = 0.1-x5 + 0.5-x; + 0.4

Solution:
Pro'(Fa)=1[2/3,14/15,1,0]

This is optimal

34

Example - Policy iteration

PCTL model checking - Summary

- Computation of set Sat(®) for MDP M and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— @&, U=k @, : k matrix-vector multiplications, O(k|S|?)

— @, U d, : linear programming problem, polynomial in [S|
(assuming use of linear programming)

- Complexity:

— linear in |®| and polynomial in |S]
— S is states in MDP, assume |d(s)| is constant

36

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

Extend logic PCTL with R operator, for “expected reward”
— as for PCTL, either R_ [...], Rjijns [.- JOor Ry o [.-]

Some examples:
— Ryine? [1729], Riay? [C=90], R_..> [F “end”]
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”

— the maximum expected time for the algorithm to terminate
37

Case study: FireWire root contention

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove

devices at any time .!

— no requirement for a single PC (but need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses randomisation (electronic coin tossing) and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

38

Case study: FireWire root contention

- Detailed probabilistic model:
— probabilistic timed automaton (PTA), including: gm = @
. concurrency: messages between nodes and wires @ W \

. timing delays taken from official standard

. underspecification of delays (upper/lower bounds) -

— maximum model size: 170 million states

- Probabilistic model checking (with PRISM)

— verified that root contention always
resolved with probability 1

. P_; [F (end A elected)] g o 2

— investigated worst-case expected time
taken for protocol to complete

+ Raxe? [F (end A elected)]
— investigated the effect of using biased coin

uuuuu

Case study: FireWire root contention

“maximum expected
time to elect a leader”

“minimum probability

of electing leader by time T” (using a biased coin)

@ x 10
<10
. . . S
[0}
(using a biased coin) 8
E
[}
2 6
(1]
g
2 4
- 2
i g
goax & 2
50 =
© E
2os = o
S £ 0.2 0.4 0.6 0.8
© 04 probability of choosing fast
7
'né"o.z
Q
£ 0
€ 1

10

0.45

maximum expected time to elect a leader (ns)

0.5 0.55 0.6 0.65 0.7
probability of choosing fast

40

Verification vs synthesis

Majority of research to date has focused on verification
— scalability and performance of algorithms
— extending expressiveness of models and logics

Some work to date on counterexamples
— but difficult to represent them compactly

In this lecture, focus on simpler problem of strategy synthesis

— can we find a strategy to guarantee that a given quantitative
property is satisfied?

— advantage: correct-by-construction
Not a well known fact...
— incidentally, can reuse the verification algorithms...

41

Quantitative (probabilistic) verification

Automatic verification and strategy synthesis from
quantitative properties for probabilistic models

Probabilistic model
System e.g. Markov chain

0.5 30.4

_} 0.1

e® : P_o.o1 [F=* fail]

Probabilistic

\

) Result

v X

Quantitative
results

model checker

—> e.g. PRISM

J

QS t
ystem S
require- Probabilistic temporal

ments

logic specification

e.g. PCTL, CSL, LTL

Strategy

42

Running example

Example MDP
— robot moving through terrain divided into 3 x 2 grid

States:

Sos S1s S2, S35 Say St

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal,, goal,

43

Properties and objectives

. @ is true with

R The Syntax: probability ~p expected
.. ; reward IS Nr

Lo P Wl | R [pe e

-~ =truela|lYAY |- Xp | Uy | pUY
____________ Y i A
: 7 it “bounded : : “yntil” :

A until" R :

— where b is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k € N,
and r € R_,

— Fb=trueUDb

- We refer to ¢ as property, Y and p as objectives

— (branching time more challenging for synthesis) 44

Properties and objectives

- Semantics of the probabilistic operator P
— can only define probabilities for a specific strategy o

— s = P_, [@] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s=P_[w] < Pro) ~ p for all strategies o
— where we use Pr.o(p) to denote Pr.°{ w € Path,° | w = @ }

R.. [-] means “the expected value of - satisfies ~r”

- Some examples:
— P.o4 [F “goal”’] “probability of reaching goal is at least 0.4”
— R_s [C=50] “expected power consumption over one hour is
below 5”

— R_;o [F “end”] "expected time to termination is at most 10"
45

Verification and strategy synthesis

- The verification problem is:

— Given an MDP M and a property ¢, does M satisfy & under any
possible strategy o?

- The synthesis problem is dual:

— Given an MDP M and a property ¢, find, if it exists, a strategy
o such that M satisfies ¢ under o

- Verification and strategy synthesis is achieved using the
same techniqgues, namely computing optimal values for
probability objectives:

— Prymn(y) = inf_ Pr.% ()

— Prymax(y) = sup, Pr.° ()

— and similarly for expectations

46

Computing reachability for MDPs

- Computation of probabilities Pr,ma(F b) for all s € S

- Step 1: pre-compute all states where probability is 1 or O
— graph-based algorithms, yielding sets Syes, Sno

- Step 2: compute probabilities for remaining states (S

— (i) solve linear programming problem

— (i) approximate with value iteration

— (iii) solve with policy (strategy) iteration

1. Precomputation:
— algorithm Prob1E computes Sves
. there exists a strategy for which the probability of "F b" is 1
— algorithm ProbOA computes Sn°

. for all strategies, the probability of satisfying "F b" is O
47

Example - Reachability

{hazard} {goal,}

Example:
Poos [Fgoal]

So compute:

Pr,;max(F goal,)
48

Example - Precomputation

Example:
Poos [Fgoal]

So compute:

Pr,;max(F goal,)
49

Reachability for MDPs

2. Numerical computation
— compute probabilities Pr,max(F b)
— for remaining states in S’ = S\ (Sves U Sno)

— obtained as the unique solution of the linear programming
(LP) problem:

minimize >, _x_subject to the constraints:

X 2 D ds5a)(s)-x, + D, &s,a)s)

for all se S’ and for all a € A(s)

- This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut

50

Example - Reachability (LP)

Let x; = Pr,m2(F goal,)

SYes: Xy=Xs=1

Sno: x,=x3=0

For S7 = {Xq, X;}:

Minimise x,+X,; subject to:
e Xg = 0.4:-%Xy + 0.6-X; (east)
e Xo = 0.1-%; + 0.7 (south)
e X; = 0.5 (south)

e X; = 0 (easy)

Example:
Poos [Fgoal]

So compute:

Pr,;max(F goal,)
51

Example - Reachability (LP)

Let x; = Pr,m2(F goal,)
Sves: X4=Xs=1

Sno: x,=x3=0

For S7 = {Xq, X;}:

Minimise x,+X,; subject to:
e Xg = Xy (east)
e Xo = 0.1-%; + 0.7 (south)
e X; = 0.5 (south)

X

A

1

Example - Reachability (LP)

Let x; = Pr,m2(F goal,)
Sves: X4=Xs=1

Sno: x,=x3=0

For S7 = {Xq, X;}:

Minimise x,+X,; subject to:
. Xg = X
e Xo=0.1-x; + 0.1
e X7 =0.5

Solution:
(Xg, X7) = (0.5, 0.5)
i.e.
PrsomaX(F goal;) = 0.5

Reachability for MDPs

2. Numerical computation (alternative method)
— value iteration

— it can be shown that: Pr,m(F b) = lim,_ X, where:
] ifs e S
o) ifse S™
X" =1 0 ifse S"andn=0

max {Z (s, a)(s’) - x‘sr,“” |la e A(s)} ifse S"andn>0

s’eS

- Approximate iterative solution technique
— iterations terminated when solution converges sufficiently

54

Example - Reachability (val. iter.)

Compute: Pr,m(F goal,)

SYes: X,=Xs=1
Sno: x,=x3=0

S? = {Xq, X;}

[x0<”),x1(“),x2<”),x3(“),x4(”),x5<”)]
n=0: [0,0,0,0,1,1]
n=1: [max(0.6-0+0.4-0, 0.1-0+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]
=[0.1,0.5,0,0,1, 1]
n=2: [max(0.6-0.5+0.4-0.1, 0.1-0.5+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]

=[0.34,0.5,0,0,1, 1] 55

Example - Reachability (val. iter.)

[XO(“),X] (”),xz(“),x3(”),x4(“),x5(”]
n=0: [0,0,0,0,1, 1]
n=1: [0.1, 0.5,0,0, 1, 1]
n=2: [0.34, 0.5,0,0, 1, 1]
n=3: [0.436, 0.5, 0,0, 1, 1]
n=4: [0.4744, 0.5, 0,0, 1, 1]
n=>5: [0.48976, 0.5, 0,0, 1, 1]
n=06: [0.495904, 0.5, 0,0, 1, 1]
n=7: [0.4983616, 0.5, 0,0, 1, 1]
n=38: [0.49934464, 0.5, 0,0, 1, 1]

n=16: [0.49999957,0.5,0,0,1, 1]
n=17: [0.49999982, 0.5,0,0, 1, 1]

~ [0.50.5,0,0,1, 1]
56

Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability
— i.e. there exist memoryless strategies o, & 0,,,, such that:
— Prob®min(s, F a) = p,,(s, F a) for all statess €S

— Prob®max(s, F a) = p,,.,(s, Fa) for all statess €S

maxX

- Construct strategies from optimal solution:

Gmin(S) = argmin {ZM(S') - Pmin(s',Fa) [(a,n) € Steps (s)}

s'eS

Gmax (S) = argmax {ZMS') - Pmax (8',F@) | (a,pn) € Steps (s)}

s'eS

57

Strategy synthesis

- Compute optimal probabilities Pr,ma(F b) for all s € S

- To compute the optimal strategy o*, choose the locally
optimal action in each state

— in general depends on the method used to compute the
optimal probabilities

For reachability
— memoryless strategies suffice
For step-bounded reachability
— need finite-memory strategies

— typically requires backward computation for a fixed number of
steps

58

Example - Strategy

Optimal strategy:
Sy . east

s, . south

S, -

Sy -
s, . east

59

Example - Bounded reachability

Example:
Pmax=? [F=3 goalz]

So compute:
Pr,max(F=3 goal,) = 0.99

Optimal strategy

is finite—-memory:
s, (after 1 step): east
s, (after2 steps): west

60

Strategy synthesis for LTL objectives

- Reduce to the problem of reachability on the product of
MDP M and an omega-automaton representing

— for example, deterministic Rabin automaton (DRA)

- Need only consider computation of maximum probabilities
Prsmax(q))
— since Prymn(p) = 1 - Pr,max(—y)

- To compute the optimal strategy o*
— find memoryless deterministic strategy on the product

— convert to finite—-memory strategy with one mode for each
state of the DRA for

61

Example - LTL

P.o.os [(G —hazard) A (GF goal,)]
— avoid hazard and visit goal, infinitely often

Pr,,m((G —hazard) A (GF goaly)) = 0.1

Optimal strategy:
(in this instance,
memoryless)

Sg - south

S, .-

S, i —

Sy i -

S, . east

Sc . west

62

Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas P_; [W]
— require all conjuncts to be satisfied

Reduce to a multi-objective reachability problem on the
product of MDP M and the omega-automata representing
the conjuncts

— convert (by negation) to formulas with lower probability
bounds (<, <), then to DRA

— need to consider all combinations of objectives

- The problem can be solved using LP methods [TACASO7] or
via approximations to Pareto curve [ATVA12]

— strategies may be finite memory and randomised
Continue as for single-objectives to compute the strategy o*
— find memoryless deterministic strategy on the product

— convert to finite-memory strategy

63

Example - Multi-objective

Y, = G —hazard
0.44 T~ Y, = GF goal,
0.3 T~
0-2_ ... ' \\\
0.1 -
0 | | | | | | I | | | > ll)]
0O 0.2 04 06 08 1

Multi-objective formula
— Py, [G —hazard] A P.y, [GF goal,] ? True (achievable)

Numerical query
— Pax-> [GF goal,] such that P_,, [G —hazard] ? ~0.2278
Pareto query

— for P> [G —hazard] A P, [GF goal,]? 64

Example - Multi-objective strategies

Strategy 1
(deterministic)
Sy - east

s, . south

S, 1 -
Sy -
s, . east
Ss . west

Y,
O.Si Y, = G —hazard
04] T ~-_ W, =GFgoal
0.3 Tl
0.2_ ... ' \\\
0.1- -
0 E —r» Y

| | | | | | | |
0 0.2 0.4 06 0.8 1 65

Example - Multi-objective strategies

Strategy 2
(deterministic)
Sy - south
s, . south

S, 1 -
S3 -
s, . east
Ss : west

Y,
O.Si Y, = G —hazard
04] T ~-_ W, =GFgoal
0.3 Tl
0.2_ ... ' \\\
0.1- -
0 E —r» Y

| | | | | | | |
0 0.2 0.4 06 0.8 1 66

Example - Multi-objective strategies

0.4 {hazard} {goaly} Optimal strategy:

(randomised)

Sog . 0.3226 : east
0.6774 : south

s, : 1.0 : south

S, & —

53:_

s, . 1.0 : east
s: . 1.0 : west

Y,
O.Si Y, = G —hazard
04] T ~-_ W, =GFgoal
0.3 Tl
0.2_ ... ' \\\
0.1- -
0 E —r» Y

| | | | | | | |
0 0.2 0.4 06 0.8 1 67

Case study: Dynamic power management

Synthesis of dynamic power management schemes
— for an IBM TravelStar VP disk drive
— 5 different power modes: active, idle, idlelp, stby, sleep

— power manager controller bases decisions on current power
mode, disk request queue, etc.

Build controllers that

— minimise energy
consumption, subject to
constraints on e.g.

— probability that a request .
waits more than K steps 2.0

— expected number of
lost disk requests

ti
[\S)
=)
o
o

o

- -
o v
o o
o o

500

min power consumptio

See: http://www.prismmodelchecker.org/files/tacas11/ 68

Summary (Part 2)

Markov decision processes (MDPs)

— extend DTMCs with nondeterminism

— to model concurrency, underspecification, ...
Property specifications

— PCTL: exactly same syntax as for DTMCs

— but quantify over all strategies
Model checking algorithms

— covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

- Strategy synthesis
— can reuse model checking algorithms

69

PRISM: Recent & new developments

Major new features:
1. multi-objective model checking
2. parametric model checking
3. real-time: probabilistic timed automata (PTAS)
4. games: stochastic multi-player games (SMGs)

Further new additions:
— strategy (adversary) synthesis
— CTL model checking & counterexample generation

— enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

— efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'1 3]

— benchmark suite & testing functionality [QEST'1 2]
www.prismmodelchecker.org/benchmarks/

70

Acknowledgements

My group and collaborators in this work

Project funding
— ERC, EPSRC, Microsoft Research
— Oxford Martin School, Institute for the Future of Computing

+ Seealso
— VWARL www.veriware.org

— PRISM www.prismmodelchecker.orqg

/1

PhD Comics and Oxford...

PID TALES FROM e «2™ pesserts”

ROAD PRECENTS: WWW.PHDCOMICS.COM

THAT AFTERNOON | GO TO OXFORD, WHERE AFTER THE LECTURE, | WAS
THE AT-CAPACTTY AUDITORIM MAKES T, INVITED FOR DINNER AT HIGH
CLEAR WHO THE BIGGER CELEBRITY (&: M TABLE N TRINTY COLLEGE

PLEASE WELCOME
JORGE CHAM.

~ { clap. clap.
[

(et

| umooo!!?
g ' 4

N —

- You are welcome to visit Oxford!

» PhD scholarships, postdocs in verification and synthesis,
and more

72 72

