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What is probabilistic model checking?

• Probabilistic model checking…

− is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems
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Why formal verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps 
(2010)

Patients die because 
of incorrect dosage.

Cause: software 
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are 
naturally modelled in a stochastic fashion
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Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements: 

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy? 

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?
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Probabilistic models
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Course material

• 4th SSFT slides and lab session

− http://www.prismmodelchecker.org/courses/ssft14/

• Reading

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker. 
Automated Verification Techniques for Probabilistic Systems. 
LNCS vol 6659, p53-113, Springer 2011.

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic 
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and 
Katoen, MIT Press 2008

• See also

− 20 lecture course taught at Oxford

− http://www.prismmodelchecker.org/lectures/pmc/

• PRISM website www.prismmodelchecker.org



Discrete-time Markov chains

Part 1
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Overview (Part 1)

• Introduction

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case studies: Bluetooth, DNA programming

• Summary
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Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of 
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}



16

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,PPPP,L) where: 

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

where Σs’∈S PPPP(s,s’) = 1 for all s ∈ S 

− L : S → 2AP is function labelling states with atomic 
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− can add self loops to represent

final/terminating states

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}



17

Paths and probabilities

• A (finite or infinite) path through a DTMC 

− is a sequence of states s0s1s2s3… such that PPPP(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the 
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s
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Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all 
finite paths ω starting in s

• Probability measure Prs

− define probability PPPPs(ω) for finite path ω = ss1…sn as:

• PPPPs(ω) = 1 if ω has length one (i.e. ω = s)

• PPPPs(ω) = PPPP(s,s1) · … · PPPP(sn-1,sn) otherwise

• define Prs(C(ω)) = PPPPs(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details
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Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− PPPPs0(ω) = PPPP(s0,s1) · PPPP(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = PPPPs0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0( C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ … )

= PPPPs0(s0s1s3) + PPPPs0(s0s1s1s3) + PPPPs0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898… 

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}
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PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [ true U≤10 deliver ]

− “if a message is sent, then the probability of it being delivered 
within 10 steps is at least 0.95”
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PCTL syntax

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with 
probability ~p

“bounded 
until”

“next”
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PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC (S,sinit,PPPP,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ  is false

• Examples

− s3 ⊨ succ

− s1 ⊨ try ∧ ¬fail
s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}



24

PCTL semantics for DTMCs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the DTMC:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}
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PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition:  s ⊨ P~p [ ψ ] means that “the probability, 
from state s, that ψ is true for an outgoing path satisfies ~p”

− example:  s ⊨ P<0.25 [ X fail ] ⇔ “the probability of atomic 
proposition fail being true in the next state of outgoing paths 
from s is less than 0.25”

− formally:  s ⊨ P~p [ψ]  ⇔  Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?
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Quantitative properties

• Consider a PCTL formula P~p [ ψ ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ ψ ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [ F err/total>0.1 ]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”
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PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs:  DTMC D=(S,sinit,PPPP,L),  PCTL formula φ

− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [ F error ]

− e.g. compute result of P=? [ F≤k error ] for 0≤k≤100
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PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ ψ ] operator 

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [ · U · ]

¬

fail fail

succtry
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PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [ φ1 U φ2 ])

− Sno = Sat(P≤0 [ φ1 U φ2 ])

• Then solve linear equation system for remaining states

• We refer to the first phase as “precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− reduces the set of states for which probabilities must be 
computed numerically (which is more expensive)

− gives exact results for the states in Syes and Sno (no round-off)

− for P~p[·] where p is 0 or 1, no further computation required
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PCTL until - Linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the 
unique solution of the following set of linear equations:

− can be reduced to a system in |S?| unknowns instead of |S| 
where S? = S \ (Syes ∪ Sno)

• This can be solved with (a variety of) standard techniques

− direct methods, e.g. Gaussian elimination

− iterative methods, e.g. Jacobi, Gauss-Seidel, …
(preferred in practice due to scalability)

  

Prob(s, φ1 U φ2)  =   

1

0

P(s,s' )⋅ Prob(s',  φ1 U φ2)
s'∈S

∑

 

 

 
 

 

 
 

if s ∈ Syes

if s ∈ Sno

otherwise
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PCTL until - Example

• Example: P>0.8 [¬a U b ]

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5
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PCTL until - Example

• Example: P>0.8 [¬a U b ]
Sno =

Sat(P≤0 [¬a U b ])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b ])

0.1

0.5
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PCTL until - Example

• Example: P>0.8 [¬a U b ]

• Let xs = Prob(s, ¬a U b) 

• Solve:

x4 = x5 = 1

x1 = x3 = 0

x0 = 0.1x1+0.9x2  =  0.8

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b ])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b ])

0.1

0.5
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PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity: 

− linear in |Φ| and polynomial in |S|
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Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only 
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

− supported by PRISM

− (not covered in this lecture)

• Another direction: extend DTMCs with costs and rewards…
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Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue, 
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise 
costs and to maximise rewards 

− we will consistently use the terminology “rewards” regardless
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Reward-based properties

• Properties of DTMCs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period
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DTMC reward structures

• For a DTMC (S,sinit,PPPP,L), a reward structure is a pair (ρ,ιιιι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ιιιι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of 
jobs in the queue in that state, ιιιι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ιιιι is zero 

(equivalently, ρ is zero and ιιιι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ιιιι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ιιιι as the energy cost of

each transition
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PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ  ::=  …  |  P~p [ ψ ]  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected 
reward is ~r

“cumulative”“instantaneous”
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Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ ψ ]  ⇔  Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [ I=k ]  ⇔  Exp(s, XI=k) ~ r

− s ⊨ R~r [ C≤k ]  ⇔  Exp(s, XC≤k) ~ r

− s ⊨ R~r [ F Φ ]  ⇔  Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs
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Model checking reward properties

• Instantaneous: R~r [ I=k ]

• Cumulative: R~r [ C≤k ]

− variant of the method for computing bounded until 
probabilities 

− solution of recursive equations

• Reachability: R~r [ F φ ] 

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL
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PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…

− discrete-time Markov chains, continuous-time Markov chains, 
Markov decision processes, probabilistic timed automata, 
stochastic multi-player games, …

• Simple but flexible high-level modelling language

− based on guarded commands; see later…

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …
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PRISM…

• Model checking for various temporal logics…

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

− quantitative extensions, costs/rewards, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction 
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …



48

PRISM modelling language

• Simple, textual, state-based modelling language

− used for all probabilistic models supported by PRISM

− based on Reactive Modules [AH99]

• Language basics

− system built as parallel composition of interacting modules

− state of each module given by finite-ranging variables

− behaviour of each module specified by guarded commands

• annotated with probabilities/rates and (optional) action label

− transitions are associated with state-dependent probabilities

− interactions between modules through synchronisation

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update
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Simple example

dtmc

module M1

x : [0..3] init 0;

[a] x=0 -> (x’=1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’=3);

endmodule

module M2

y : [0..3] init 0;

[a] y=0 -> (y’=1);

[b] y=1 -> 0.4 : (y’=2) + 0.6 : (y’=3);

endmodule
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Costs and rewards

• We augment models with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue, 
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise 
costs and to maximise rewards 

− we consistently use the terminology “rewards” regardless

• Properties (see later)

− reason about expected cumulative/instantaneous reward



51

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max. 

queue size, receive = action label)

rewardsrewardsrewardsrewards “total_queue_size”
truetruetruetrue : queue1+queue2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “time”
truetruetruetrue : 1;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “power”
sleep=truetruetruetrue : 0.25;
sleep=falsefalsefalsefalse : 1.2 * up;
[wake] true : 3.2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards "dropped"
[receive] q=q_max : 1;

endrewardsendrewardsendrewardsendrewards
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PRISM – Property specification

• Temporal logic-based property specification language

− subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [ F “crash” ] – “the probability of a crash is at most 0.01”

− S>0.999 [ “up” ] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [ F “crash” ]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary
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PRISM – Property specification

• Properties can combine numerical + exhaustive aspects

− Pmax=? [ F≤10 “fail” ] – “worst-case probability of a failure 
occurring within 10 seconds, for any possible scheduling of 
system components”

− P=? [ G
≤0.02 !“deploy” {“crash”}{max} ] - “the maximum 

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [ F “end” ] – “expected algorithm execution time”

− R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy 
consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators

− e.g. P=? [ F fail1 ] / P=? [ F failany ] – “conditional failure prob.”
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PRISM GUI: Editing a model
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PRISM GUI: The Simulator
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PRISM GUI: Model checking and graphs
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PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies
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Case study: Bluetooth

• Device discovery between pair of Bluetooth devices

− performance essential for this phase

• Complex discovery process

− two asynchronous 28-bit clocks

− pseudo-random hopping between 32 frequencies

− random waiting scheme to avoid collisions

− 17,179,869,184 initial configurations
(too many to sample effectively)

• Probabilistic model checking

− e.g. “worst-case expected discovery time
is at most 5.17s”

− e.g. “probability discovery time exceeds
6s is always < 0.001”

− shows weaknesses in simplistic analysis

freq = [CLK16-12+k+ 

(CLK4-2,0-CLK16-12) 

mod 16] mod 32



59

DNA programming

2nm

DNA origami

• “Computing with soup” (The Economist 2012)

− DNA strands are mixed together in a test tube

− single strands are inputs and outputs

− computation proceeds autonomously

• Can we transfer verification to this new application domain?

− probability essential!
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Case study: DNA programming

• DNA: easily accessible, cheap to synthesise information 
processing material

• DNA Strand Displacement language, induces CTMC models

− for designing DNA circuits [Cardelli, Phillips, et al.]

− accompanying software tool for analysis/simulation 

− now extended to include auto-generation of PRISM models

• Transducer: converts input <t^ x> into output <y t^>

• Formalising correctness: does it finish successfully?…

− A [ G "deadlock" => "all_done" ]

− E [ F "all_done" ]                         (CTL, but probabilistic also…)
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Transducer flaw

• PRISM identifies a 5-step trace to the
“bad” deadlock state

− problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates

− previously found manually  [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:Counterexample:Counterexample:Counterexample:
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates
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Summary

• Discrete-time Markov chains (DTMCs)

− state transition systems + discrete probabilistic choice

− probability space over paths through a DTMC

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL, LTL

− also: expected value of costs/rewards

• Model checking algorithms

− combination of graph-based algorithms, numerical 
computation, automata constructions

− also applicable to continuous-time Markov chains via 
discretisation

• Next: Markov decision processes (MDPs)


