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Introduction

Probabilistic model checking




What is probabilistic model checking?

Probabilistic model checking...

— is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems



Why formal verification?

Errors in computerised systems can be costly...

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Self-destructs 37secs Software “glitch”

Intel (eventually) offers  into maiden launch. found in anti-lock
to replace faulty chips. Cause: uncaught braking system.

Estimated loss: $475m  overflow exception. 185,000 cars recalled.

- Why verify?
- “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]
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Why probability?

- Some systems are inherently probabilistic...

- Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes
. CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
. |EEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)

— Randomised algorithms for anonymity, contract signing, ...



Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance



Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

- To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion



Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness

— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

- Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?
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Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditqcrete Markov chains processes (MDPs)
Ime (DTMCs) (probabilistic automata)
_ _ TMDPs/IM
Conti Continuous-time C 5/IMCs
O”ti'rﬂ‘éous Markov chains

(CTMCs)

Probabilistic timed
automata (PTAS)
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Overview

- Lecture 1

— Introduction

— 1 - Discrete time Markov chains

— 2 - Markov decision processes

— 3 - Compositional probabilistic verification
— 4 - Probabilistic timed automata

- Course materials available here:
— http://www.prismmodelchecker.org/courses/marktoberdorfl1/

— lecture slides, reference list, exercises
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Part 1

Discrete-time Markov chains




Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
- Costs and rewards

- Case study: Bluetooth device discovery
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Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

- Transitions

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions
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Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;,P,L) where:
— Sis a finite set of states (“state space”)
— Siie € Sis the initial state
— P:S xS —[0,1]is the transition probability matrix

where 2., P(s,s’) = 1 forall s € S
— L : S — 2AP s function labelling states with atomic propositions

Note: no deadlock states
— j.e. every state has at least
one outgoing transition
— can add self loops to represent
final/terminating states
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DTMCs: An alternative definition

- Alternative definition: a DTMC is:
— a family of random variables { X(k) | k=0,1,2,... }
— X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k

- Memorylessness (Markov property)
— Pr(X(k)=sy | X(k-T)=s, 4, ..., X(0)=5s( )
= Pr( X(k)=s, | X(k-1)=s,_;)

- We consider homogenous DTMCs

— transition probabilities are independent of time
— P(s,_1,5,) = Pr( X(k)=s, | X(k-T)=s,_;)
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Paths and probabilities

+ A (finite or infinite) path through a DTMC
— is a sequence of states s,5;5,55... such that P(s;,s;.;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths
Intuitively: A

.
.
.
o

—} .....
— sample space: Path(s) = set of all f:’j:::
infinite paths from a state s \‘Q.'I.'I.'

.
‘.,
.

— events: sets of infinite paths from s
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)
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Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, Z, Pr)
— Q is the sample space
— 2 is the set of events: og-algebra on Q
— Pr: 2 — [0,1]is the probability measure:
Pr(Q) = 1 and Pr(u; A) = Z; Pr(A,) for countable disjoint A,
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Probability space over paths

- Sample space QO = Path(s)
set of infinite paths with initial state s
Event set 25,00
— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpathes) IS the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P(w) = P(s,s;) - ... - P(s,_,5,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths w
— Pr, extends uniquely to a probability measure Prg:3,. 6 —[0,1]

- See [KSK76] for further details
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Probability space - Example

Paths where sending fails the first time
— W = 545;5;
— C(w) = all paths starting s45;5...
— P.o(w) = P(s(,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = P,o(w) = 0.01

Paths which are eventually successful and with no failures
— C(5(S7153) U C(5(5:57S3) U C(5¢515751S3) U ...
— Pro( C(syS;:53) U C(545:51S3) U C(5¢5;5151S3) U ... )
= P.o(505153) + P.o(S0S15153) + P,o(S¢S:5151S3) + ...
=1-0.98 +1-:0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery
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PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P45 [ true U=10 deliver ]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”
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PCTL syntax

. W is true with

PCTL syntax: /pfobab"'W~p

—¢ =truelaldAd|-d|P (W] (state formulas)
- =Xod | dUkd | dUP (path formulas)
T ................ Ao T
snans ;‘. ............ ;; ..... E l‘bou nded ....;; ......... :...’.,....
next = - ntil
............................ until

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k € N

- A PCTL formula is always a state formula
— path formulas only occur inside the P operator
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PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

- Examples

— for a state s of the DTMC (S,s,,,.,P,L):

- SskEa < a € L(s)

— SE¢; A P, < sEJ, and s E ¢,
— s kE —¢ < s E ¢ is false

— S3 E succ
— s, E try A —fail
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PCTL semantics for DTMCs

- Semantics of path formulas:
— for a path w = s45,5,... in the DTMC:
- WEX® S S, o
- wkE o, Uskd, <« di<ksuchthats, =, and Vj<i, s, = o,
- wkEd, Ud, < Jk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}
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PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [ @ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s = P_y,: [ X fail ] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [¢] < Prob(s, ) ~p
— where: Prob(s, @) = Pr, { w € Path(s) | w = @ }
— (sets of paths satisfying y are always measurable [Var85])

..... Y Prob(s, ) ~p ?
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More PCTL...

- Usual temporal logic equivalences:
— false = —true
— ¢1 v ¢2 = _'(_'431 A _'Cbz)
— ¢~ P, =, V P,

—Fd=0d=trueU o

-~ Gd=0d¢=—(F —¢)
— bounded variants: F=k ¢, G=k ¢

- Negation and probabilities

— e.g. _'P>p[¢] UCI)Z]Eng [d)] UCI)Z]
-eg. P [CGd]l=P  ,[F-0d]

(false)
(disjunction)
(implication)

(eventually, “future”)
(always, “globally”)
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Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

- A PCTL property P_, [ @ ] is...
— qualitative when p is either 0 or 1

— quantitative when p is in the range (0,1) 1eads}
- P_o[F ¢ ]isidentical to EF ¢ @. 1
— there exists a finite path to a ¢-state 0.5 9’

{tails}
- Py [F d]is (similar to but) weaker than AF ¢

— e.g. AF “tails” (CTL) =+ P_, [ F “tails” ] (PCTL)
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Quantitative properties

- Consider a PCTL formula P_, [y ]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— we allow the form P_, [ @ ]
— “what is the probability that path formula p is true?”
Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

-0---0--=-0---

g PRISM [21]
Example | gessgmocgEn- Ee ol

—a— ) =0.02
— P_, [ F err/total>0.1 ]

—&— ) =0.03
— “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

—o— AL =0.04
Analytical [7]
“H-e-2-001
-8- A=0.02
’ A s F < -4a- k=003
- e =0---9 -0~ L=0.04

Probability

1 2 3 4 5 8 7
Number of restorative stages
V)



Some real PCTL examples

NAND multiplexing system
— P_, [ F err/total>0.1 ]

— “what is the probability that 10% of the NAND gate outputs are
erroneous?”

_ o . performance |
Bluetooth ereless Communlcatlon protocol/ ..............................................

— P_, [ F=treply_count=k ]

— “what is the probability that the sender has received k
acknowledgements within t clock-ticks?”

--------------------------------------

fairness

- Security: EGL contract signing protocol / """"""""""""""""" ’
— P_, [ F (pairs_a=0 & pairs_b>0) ]
— “what is the probability that the party B gains an unfair
advantage during the execution of the protocol?”
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery
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PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(5,s;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check that s E ¢ V s € S, i.e. Sat(dp) = S
— sometimes, just want to know if s, .. = ¢, i.e. if s, .. € Sat(})

- Sometimes, focus on quantitative results
— e.g. compute result of P=?[ F error ]
— e.g. compute result of P=? [ F=k error ] for 0<k<100
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PCTL model checking for DTMCs

.+ Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_j 45 [ —fail U succ ]

- For the non-probabilistic operators:
— Sat(true) = S

— Sat(a) ={seS|aeclL(s)} =
— Sat(—¢) = S\ Sat(d) / \

— Sat(d; A &,) = Sat(d,) N Sat(d,) A Poogs [ - U -]

- For the P_, [ Y ] operator — %D - é@

— need to compute the
probabilities Prob(s, v) © ©
for all states s € S fail fail

— focus here on “until”
case: Y = ¢, U ¢, 24




PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U &) forall s € S
First, identify all states where the probability is 1 or O

— S =Sat(P.; [, U P, ])

— S"° = Sat(P_,[ ¢, U ¢, ])
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S") and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S™ (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
35



PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if s€S™
Prob(s, ¢; U ¢,) = 1 0 if s&S™
EP(s,s')- Prob(s’, ¢, U ¢,) otherwise

s'eS

— can be reduced to a system in |S?| unknowns instead of |S|
where S? = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.qg. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)
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PCTL until - Example

- Example: P_yg["a Ub]

Sho —
Sat(P_, [~aUb])
1 0.3

: Syes —
% sat(P,, [~aUb])
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PCTL until - Example

Example: P.yg[-a Ub]

Sno —
Sat(P_, [-aUb])
Let x, = Prob(s, —a U b) =
1 0.3
. Solve: 4 .
0.1 0.7 ~

X4 = Xg =1 bgsat(Pm[ aUb])
X =x3=0 T 09D 05N f

Prob(-aUb) =x=1[0.8,0, 8/9,0,1, 1]

Sat(P.og[ "aUDb]) =1{5s,,54,5:} 1



PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X ® : one matrix-vector multiplication, O(|S|?)
— ®, U=k &, : k matrix-vector multiplications, O(k|S|?)
— &, U @, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery
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Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P_, [...] always contains a single temporal operator)

- Another direction: extend DTMCs with costs and rewards...
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LTL - Linear temporal logic

+ LTL syntax (path formulae only)

—pu=true lalpAaw|-p|Xw|[puy
— where a € AP is an atomic proposition
— usual equivalences hold: Fd =true U d, G b = —(F —¢)

- LTL semantics (for a path w)

— w E true always

— WkEa < a € L(w(0))

- WEY, AY, S WEY,and w E Y,

— WE Y S WHEY

—WEXY < wl[l...]=yY

- wWwEY, Uy, < Jk=0s.t. wlk...] E Y, AVi<k w[i...] E P,

where w(i) is ith state of w, and wli...] is suffix starting at w(i)
43



LTL examples

(F tmp_fail,) A (F tmp_fail,)
— “both servers suffer temporary failures at some point”

- GF ready

— “the server always eventually returns to a ready-state

FG error
— “an irrecoverable error occurs”

G (req — X ack)
— “requests are always immediately acknowledged”
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LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:

— Prob(s, W) = Pr,{ w € Path(s) | w = @ }

— all such path sets are measurable [Var85]

- A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

— e.g. P_, [ GF ready ] - “with probability 1, the server always
eventually returns to a ready-state”

— e.g. P_y; [ FG error | - “with probability at most 0.01, an
irrecoverable error occurs”

- PCTL* subsumes both LTL and PCTL

—e.g. Py [ GF crit; ] A P.ys [ GF crit, ]
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Fundamental property of DTMCs

- Strongly connected component (SCC)
— maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
— SCC T from which no state outside T is reachable from T

- Fundamental property of DTMCs:

— “with probability 1,
a BSCC will be reached
and all of its states
visited infinitely often”

- Formally:

— Pr.{ w € Path(s) | 3 i=0, 3 BSCC T such that
V j=i w(i) € T and
V €T w(k) = s' for infinitely many k} = 1
46



LTL model checking for DTMCs

LTL model checking for DTMCs relies on:
— computing probability of reaching a set of “accepting” BSCCs

— e.g. for two simple LTL formulae: GF a (“always eventually a”),
FG a (“eventually always a’) we have:

Prob(s, GF a) = Prob(s, F T¢.)

— where T, = union of all BSCCs
containing some state satisfying a

Prob(s, FG a) = Prob(s, F T¢.)

— where T, = union of all BSCCs Example:
containing only a-states Prob(s,, GF )
— PrOb(So, F TGFa)
- To extend this idea to arbitrary = Prob(sy, F {s3,5,,55})

LTL formula, we use w-automata... =2/3+1/6=5/6 ,,



Deterministic Rabin automata

w-automata represent sets of infinite words
— e.dg. Buchi automata, Rabin automata, ...
— for probabilistic model checking, need deterministic automata
— so we use deterministic Rabin automata (DRAs)

- A deterministic Rabin automaton is a tuple (Q, 2, 9, q,, Acc):
— Qs a finite set of states, g, € Q is an initial state
— 2 is an alphabet, 5 : Q X 2 — Q is a transition function
— Acc ={ (L, K) }_; € 22 x 2Qis an acceptance condition

- A run of a word on a DRA is accepting iff:

— for some pair (L;, K,), the states in L; are visited finitely often
and (some of) the states in K, are visited infinitely often

—orinLTL: V (FG-L; A GFK)) 48
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LTL & DRASs

Example: DRA for FG a
— acceptance condition is ’
Acc = { ({aohia, D } g (9, a
—a

—d

- Can convert any LTL formula y on atomic propositions AP

— into an equivalent DRA A, over alphabet 2#*
— i.e. W F Y < trace(w) € L(Ay) for any path w

— can potentially incur a double exponential blow-up
(but, in practice, this does not occur and  is small anyway)

LTL model checking for DTMCs - the basic idea
— construct product of DTMC D and DRA A,
— compute ProbP(s, ) on product DTMC D ® A
49



Product DTMC for a DRA

» The product DTMC D ® A for:
— for DTMC D = (§,s;,,P,L) and
— and (total) DRA A = (Q, %, 0, qq, { (L;, K) }_7 )
— is the DTMC (5xQ, (S;,i;Dinie)s P’5 L) where:
init = 9(o,L(Sinip))

P'((5,,0,),(5,,0,)) = {

P(Spsz) If q2 = S(CI],L(SZ))
0] otherwise

. e LU'(s,q) ifqg e L, and k, € L'(s,q) if g € K,

- Note:

— D ® A can be seen as unfolding of D where g for each state
(s,q) records state of automata A for path fragment so far

— since A is deterministic, D ® A is a DTMC
— each path in D has a corresponding (unique) path in D ® A
— the probabilities of paths in D are preserved in D ® A 50



Product DTMC for a DRA

- For DTMC D and DRA A

PI’ObD(S, A) — PrObD®A((S!q5)1 v]gigk (FG ﬁli A GF I(I)

— where g, = 8(qg,L(s))

- Hence:

ProbP(s, A) = ProbP®A((s,q.), F T.)

— where T, is the union of all accepting BSCCs in D®A

— an accepting BSCC T of D®A is such that, for some 1<i<k,
no states in T satisfy |, and some state in T satisfies k;

- Reduces to computing BSCCs and reachability probabilities

— so overall complexity for LTL is doubly exponential in ||,

polynomial in [M|; but can be reduced to singly exponential
51



Example: LTL for DTMCs

- Compute Prob(s,, G=b A GF a) for DTMC D:

DTMC D DRA A, for p = G-b A GF a

52




Example: LTL for DTMCs

DRA A, for p = G-b A GF a




Example: LTL for DTMCs

DRA A, for p = G-b A GF a

= ProbPeAv (F T))
= 3/4
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery
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Costs and rewards

We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless
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Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period
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DTMC reward structures

For a DTMC (S,s;,;,P,L), @ reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
—1:S XS — R,,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and vis zero
(equivalently, p is zero and t returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and t as the energy cost of
each transition cg



PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

FUeEsEEEsEssEEssEssEssEEsEEsEEsEEssEssEEEEEe

expected

A/rewm"“r .....
g }

—¢ = | PLIw] | RATIER] | RLICK]T | R, [Fé]

___________________________________________________ B N

. “instantaneous” | | “cumulative” | | “reachability”

— wherere R_,, ~ € {<,>,<,2}, ke N

R.. [ - ] means “the expected value of - satisfies ~r”
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Types of reward formulas

Instantaneous: R_, [ I7% ]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

- Cumulative: R_ [ C=k]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

Reachability: R_, [F ¢ ]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”

— e.g. “the expected time for the algorithm to terminate”
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Reward formula semantics

Formal semantics of the three reward operators
— based on random variables over (infinite) paths

Recall:
-sEP,[w] & Pri{wePath(s) [ wEY}~p

For a state s in the DTMC:
— sER_[IFK] < Exp(s, X,_,) ~r
—skER_[Ck] & Exp(s, Xco) ~ 1
—sER,[F®P] & Exp(s, Xgp) ~ ¥

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R., with respect to the probability measure Pr,
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Reward formula semantics

- Definition of random variables:
— for an infinite path w= s,s,5,...

X (W) = p(s,)

) - 0 ifk=0
Csk B { 2 :(:_0] E(Si) +1(s;,,S,,,) otherwise

0 if s, €Sat(d)
X (W) = 0 if s, &Sat(p) foralli=0

E:i%_]_p(si)ﬂ(si,sm) otherwise

— where kd, =min{ j | S; é }
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Model checking reward properties

- Instantaneous: R_, [ I7% ]
+ Cumulative: R_ [ C=t]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

- Reachability: R, [F ¢ ]

— similar to computing until probabilities

— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

- For more details, see e.g. [KNPO7a]
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
+ Costs and rewards

- Case study: Bluetooth device discovery
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The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs ‘

- Support for:

— discrete-/continuous-time Markov chains (D/CTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAs)

— PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Multiple efficient model checking engines

— mostly symbolic (BDDs) (up to 1019 states, 107-108 on avg.)
- Successfully applied to a wide range of case studies

— communication protocols, security protocols, dynamic power
management, cell signalling pathways, ...

— http://www.prismmodelchecker.orq/
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Bluetooth device discovery

Bluetooth: short-range low-power wireless protocol
— widely available in phones, PDAs, laptops, ...
— open standard, specification freely available

Uses frequency hopping scheme
— to avoid interference (uses unregulated 2.4GHz band)

— pseudo-random selection over 32 of 79 frequencies
Formation of personal area networks (PANSs)

— piconets (1 master, up to 7 slaves)

— self-configuring: devices discover themselves
Device discovery

— mandatory first step before any communication possible

— relatively high power consumption so performance is crucial

— master looks for devices, slaves listens for master
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Slave (receiver) behaviour

Listens (scans) on frequencies for inquiry packets
— must listen on right frequency at right time

— cycles through frequency sequence at much slower speed
(every 1.28s)

o ) e[
sleep . scan hear response
628.75ms | max 11.251115‘) 0.625ms
"

On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

— avoid repeated collisions with other slaves

random wait
N x 0.625ms
N = Rand|0..127]

4
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Bluetooth - PRISM model

Modelled/analysed using PRISM model checker [DKNPO6]
— model scenario with one sender and one receiver
— synchronous (clock speed defined by Bluetooth spec)
— model at lowest-level (one clock-tick = one transition)
— randomised behaviour so model as a DTMC
— use real values for delays, etc. from Bluetooth spec

Modelling challenges
— complex interaction between sender/receiver
— combination of short/long time-scales - cannot scale down

— sender/receiver not initially synchronised, so huge number of
possible initial configurations (17,179,869,184)

69



Bluetooth — Results

Huge DTMC - initially, model checking infeasible
— partition into 32 scenarios, i.e. 32 separate DTMCs
— on average, approx. 3.4 x 10° states (536,870,912 initial)
— can be built/analysed with PRISM's MTBDD engine

- We compute:

— R=?[ F replies=K {“init"{max} ]

— “worst-case expected time to hear K replies over all possible
initial configurations”

- Also look at:

— how many initial states for each possible expected time

— cumulative distribution function (CDF) for time, assuming
equal probability for each initial state
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Bluetooth — Time to hear 1 reply

>

-y
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1 1.92 1.93

number of states
(&)
prob hear a reply by time T
o
A

0.5 ‘ I | I

0 ' - — ' : ' ' ‘ :
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
time to hear one reply (sec) T (sec)

_

OO

- Worst-case expected time = 2.5716 sec
—in 921,600 possible initial states
— best-case = 635 us
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Bluetooth — Time to hear 2 replies

X 108
____________________________ Vi e
2 w -_ - -.
2 0.8} '
Q. '
1.5 | | 2 oo
' 5 g Y 0.6 :
: ; [ ommmat
{ i () v
1 : < ;
2.58 2.6 2.62 9 0.4 "= -2
T o ;
0.5 1 Eoof
i E - 0.2
1 5 —exgct
0 | | g_ - ==derived
0 1 2 3 4 5 0 ' : ' ' :
. . 0 1 2 3 4 5
expected time to hear two replies (sec) T (sec)

- Worst-case expected time = 5.177 sec
— in 444 possible initial states
— compare actual CDF with derived version which assumes times
to reply to first/second messages are independent
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Bluetooth — Results

Other results: (see [DKNPO6])
— compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower
— power consumption analysis (using costs + rewards)

Conclusions:
— successful analysis of complex real-life model
— detailed model, actual parameters used
— exhaustive analysis: best/worst-case values

. can pinpoint scenarios which give rise to them
. not possible with simulation approaches
— model still relatively simple
. consider multiple receivers?
. combine with simulation?
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Summary

Probabilistic model checking
— automated quantitative verification of stochastic systems
— to model randomisation, failures, ...

Discrete-time Markov chains (DTMCs)
— state transition systems + discrete probabilistic choice
— probability space over paths through a DTMC

Property specifications
— probabilistic extensions of temporal logic, e.g. PCTL, LTL
— also: expected value of costs/rewards

Model checking algorithms

— combination of graph-based algorithms, numerical
computation, automata constructions

Next: Markov decision processes (MDPs)
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