UNIVERSITY OF

OXFORD

Advances in
Probabilistic Model Checking

Marta Kwiatkowska
Department of Computer Science, University of Oxford

Marktoberdorf, August 2011

Introduction

Probabilistic model checking

What is probabilistic model checking?

Probabilistic model checking...

— is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

Why formal verification?

Errors in computerised systems can be costly...

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Self-destructs 37secs Software “glitch”

Intel (eventually) offers into maiden launch. found in anti-lock
to replace faulty chips. Cause: uncaught braking system.

Estimated loss: $475m overflow exception. 185,000 cars recalled.

- Why verify?
- “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

Model checking

Finite-state
System model
Result
_}
— v X
~
Model checker
—p e.g. SMV, Spin
v
000:: —EF fail — N Counter-
— example
System Temporal logic ~0>0>0+0
require- specification

ments

Probabilistic model checking

Probabilistic model —) Result

e.g. Markov chain 7 x

Quantitative
results

Probabilistic)

model checker
—> e.g. PRISM —

Poi [Ffail]| mm—

System I —)» Counter-
require- Probabilistic example
ments temporal logic

specification ~owa 0

e.g. PCTL, CSL, LTL 6

Why probability?

- Some systems are inherently probabilistic...

- Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes
. CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
. |EEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)

— Randomised algorithms for anonymity, contract signing, ...

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.qg. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

- To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness

— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

- Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?

10

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditqcrete Markov chains processes (MDPs)
Ime (DTMCs) (probabilistic automata)
_ _ TMDPs/IM
Conti Continuous-time C 5/IMCs
O”ti'rﬂ‘éous Markov chains

(CTMCs)

Probabilistic timed
automata (PTAS)

11

Overview

- Lecture 1

— Introduction

— 1 - Discrete time Markov chains

— 2 - Markov decision processes

— 3 - Compositional probabilistic verification
— 4 - Probabilistic timed automata

- Course materials available here:
— http://www.prismmodelchecker.org/courses/marktoberdorfl1/

— lecture slides, reference list, exercises

12

Part 1

Discrete-time Markov chains

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
- Costs and rewards

- Case study: Bluetooth device discovery

14

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

- Transitions

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

15

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;,P,L) where:
— Sis a finite set of states (“state space”)
— Siie € Sis the initial state
— P:S xS —[0,1]is the transition probability matrix

where 2., P(s,s’) = 1 forall s € S
— L : S — 2AP s function labelling states with atomic propositions

Note: no deadlock states
— j.e. every state has at least
one outgoing transition
— can add self loops to represent
final/terminating states

16

DTMCs: An alternative definition

- Alternative definition: a DTMC is:
— a family of random variables { X(k) | k=0,1,2,... }
— X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k

- Memorylessness (Markov property)
— Pr(X(k)=sy | X(k-T)=s, 4, ..., X(0)=5s()
= Pr(X(k)=s, | X(k-1)=s,_;)

- We consider homogenous DTMCs

— transition probabilities are independent of time
— P(s,_1,5,) = Pr(X(k)=s, | X(k-T)=s,_;)

17

Paths and probabilities

+ A (finite or infinite) path through a DTMC
— is a sequence of states s,5;5,55... such that P(s;,s;.;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths
Intuitively: A

.
.
.
o

—}
— sample space: Path(s) = set of all f:’j:::
infinite paths from a state s \‘Q.'I.'I.'

.
‘.,
.

— events: sets of infinite paths from s
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)

18

Probability spaces

Let Q be an arbitrary non-empty set

- A o-algebra (or o-field) on Q is a family 2 of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, Z, Pr)
— Q is the sample space
— 2 is the set of events: og-algebra on Q
— Pr: 2 — [0,1]is the probability measure:
Pr(Q) = 1 and Pr(u; A) = Z; Pr(A,) for countable disjoint A,

19

Probability space over paths

- Sample space QO = Path(s)
set of infinite paths with initial state s
Event set 25,00
— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpathes) IS the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P(w) = P(s,s;) - ... - P(s,_,5,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths w
— Pr, extends uniquely to a probability measure Prg:3,. 6 —[0,1]

- See [KSK76] for further details

20

Probability space - Example

Paths where sending fails the first time
— W = 545;5;
— C(w) = all paths starting s45;5...
— P.o(w) = P(s(,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = P,o(w) = 0.01

Paths which are eventually successful and with no failures
— C(5(S7153) U C(5(5:57S3) U C(5¢515751S3) U ...
— Pro(C(syS;:53) U C(545:51S3) U C(5¢5;5151S3) U ...)
= P.o(505153) + P.o(S0S15153) + P,o(S¢S:5151S3) + ...
=1-0.98 +1-:0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

21

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery

22

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P45 [true U=10 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

23

PCTL syntax

. W is true with

PCTL syntax: /pfobab"'W~p

—¢ =truelaldAd|-d|P (W] (state formulas)
- =Xod | dUkd | dUP (path formulas)
T Ao T
snans ;‘. ;; E l‘bou nded;; :...’.,....
next = - ntil
............................ until

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k € N

- A PCTL formula is always a state formula
— path formulas only occur inside the P operator

24

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

- Examples

— for a state s of the DTMC (S,s,,,.,P,L):

- SskEa < a € L(s)

— SE¢; A P, < sEJ, and s E ¢,
— s kE —¢ < s E ¢ is false

— S3 E succ
— s, E try A —fail

25

PCTL semantics for DTMCs

- Semantics of path formulas:
— for a path w = s45,5,... in the DTMC:
- WEX® S S, o
- wkE o, Uskd, <« di<ksuchthats, =, and Vj<i, s, = o,
- wkEd, Ud, < Jk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

26

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [@ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s = P_y,: [X fail] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [¢] < Prob(s,) ~p
— where: Prob(s, @) = Pr, { w € Path(s) | w = @ }
— (sets of paths satisfying y are always measurable [Var85])

..... Y Prob(s,) ~p ?

27

More PCTL...

- Usual temporal logic equivalences:
— false = —true
— ¢1 v ¢2 = _'(_'431 A _'Cbz)
— ¢~ P, =, V P,

—Fd=0d=trueU o

-~ Gd=0d¢=—(F —¢)
— bounded variants: F=k ¢, G=k ¢

- Negation and probabilities

— e.g. _'P>p[¢] UCI)Z]Eng [d)] UCI)Z]
-eg. P [CGd]l=P ,[F-0d]

(false)
(disjunction)
(implication)

(eventually, “future”)
(always, “globally”)

28

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

- A PCTL property P_, [@] is...
— qualitative when p is either 0 or 1

— quantitative when p is in the range (0,1) 1eads}
- P_o[F ¢]isidentical to EF ¢ @. 1
— there exists a finite path to a ¢-state 0.5 9’

{tails}
- Py [F d]is (similar to but) weaker than AF ¢

— e.g. AF “tails” (CTL) =+ P_, [F “tails”] (PCTL)

29

Quantitative properties

- Consider a PCTL formula P_, [y]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— we allow the form P_, [@]
— “what is the probability that path formula p is true?”
Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

-0---0--=-0---

g PRISM [21]
Example | gessgmocgEn- Ee ol

—a—) =0.02
— P_, [F err/total>0.1]

—&—) =0.03
— “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

—o— AL =0.04
Analytical [7]
“H-e-2-001
-8- A=0.02
’ A s F < -4a- k=003
- e =0---9 -0~ L=0.04

Probability

1 2 3 4 5 8 7
Number of restorative stages
V)

Some real PCTL examples

NAND multiplexing system
— P_, [F err/total>0.1]

— “what is the probability that 10% of the NAND gate outputs are
erroneous?”

_ o . performance |
Bluetooth ereless Communlcatlon protocol/ ..

— P_, [F=treply_count=k]

— “what is the probability that the sender has received k
acknowledgements within t clock-ticks?”

fairness

- Security: EGL contract signing protocol / """"""""""""""""" ’
— P_, [F (pairs_a=0 & pairs_b>0)]
— “what is the probability that the party B gains an unfair
advantage during the execution of the protocol?”

31

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery

32

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(5,s;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check that s E ¢ V s € S, i.e. Sat(dp) = S
— sometimes, just want to know if s, .. = ¢, i.e. if s, .. € Sat(})

- Sometimes, focus on quantitative results
— e.g. compute result of P=?[F error]
— e.g. compute result of P=? [F=k error] for 0<k<100

33

PCTL model checking for DTMCs

.+ Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_j 45 [—fail U succ]

- For the non-probabilistic operators:
— Sat(true) = S

— Sat(a) ={seS|aeclL(s)} =
— Sat(—¢) = S\ Sat(d) / \

— Sat(d; A &,) = Sat(d,) N Sat(d,) A Poogs [- U -]

- For the P_, [Y] operator — %D - é@

— need to compute the
probabilities Prob(s, v) © ©
for all states s € S fail fail

— focus here on “until”
case: Y = ¢, U ¢, 24

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U &) forall s € S
First, identify all states where the probability is 1 or O

— S =Sat(P.; [, U P,])

— S"° = Sat(P_,[¢, U ¢,])
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S") and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S™ (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
35

PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if s€S™
Prob(s, ¢; U ¢,) = 1 0 if s&S™
EP(s,s')- Prob(s’, ¢, U ¢,) otherwise

s'eS

— can be reduced to a system in |S?| unknowns instead of |S|
where S? = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.qg. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)

36

<
O
=
S
X
"
|
m
-
S
1
T
O
o

- Example: P_yg["a Ub]

37

PCTL until - Example

- Example: P_yg["a Ub]

Sho —
Sat(P_, [~aUb])
1 0.3

: Syes —
% sat(P,, [~aUb])

38

PCTL until - Example

Example: P.yg[-a Ub]

Sno —
Sat(P_, [-aUb])
Let x, = Prob(s, —a U b) =
1 0.3
. Solve: 4 .
0.1 0.7 ~

X4 = Xg =1 bgsat(Pm[aUb])
X =x3=0 T 09D 05N f

Prob(-aUb) =x=1[0.8,0, 8/9,0,1, 1]

Sat(P.og["aUDb]) =1{5s,,54,5:} 1

PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X ® : one matrix-vector multiplication, O(|S|?)
— ®, U=k &, : k matrix-vector multiplications, O(k|S|?)
— &, U @, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]

40

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery

41

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P_, [...] always contains a single temporal operator)

- Another direction: extend DTMCs with costs and rewards...

42

LTL - Linear temporal logic

+ LTL syntax (path formulae only)

—pu=true lalpAaw|-p|Xw|[puy
— where a € AP is an atomic proposition
— usual equivalences hold: Fd =true U d, G b = —(F —¢)

- LTL semantics (for a path w)

— w E true always

— WkEa < a € L(w(0))

- WEY, AY, S WEY,and w E Y,

— WE Y S WHEY

—WEXY < wl[l...]=yY

- wWwEY, Uy, < Jk=0s.t. wlk...] E Y, AVi<k w[i...] E P,

where w(i) is ith state of w, and wli...] is suffix starting at w(i)
43

LTL examples

(F tmp_fail,) A (F tmp_fail,)
— “both servers suffer temporary failures at some point”

- GF ready

— “the server always eventually returns to a ready-state

FG error
— “an irrecoverable error occurs”

G (req — X ack)
— “requests are always immediately acknowledged”

44

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:

— Prob(s, W) = Pr,{ w € Path(s) | w = @ }

— all such path sets are measurable [Var85]

- A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

— e.g. P_, [GF ready] - “with probability 1, the server always
eventually returns to a ready-state”

— e.g. P_y; [FG error | - “with probability at most 0.01, an
irrecoverable error occurs”

- PCTL* subsumes both LTL and PCTL

—e.g. Py [GF crit;] A P.ys [GF crit,]

45

Fundamental property of DTMCs

- Strongly connected component (SCC)
— maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
— SCC T from which no state outside T is reachable from T

- Fundamental property of DTMCs:

— “with probability 1,
a BSCC will be reached
and all of its states
visited infinitely often”

- Formally:

— Pr.{ w € Path(s) | 3 i=0, 3 BSCC T such that
V j=i w(i) € T and
V €T w(k) = s' for infinitely many k} = 1
46

LTL model checking for DTMCs

LTL model checking for DTMCs relies on:
— computing probability of reaching a set of “accepting” BSCCs

— e.g. for two simple LTL formulae: GF a (“always eventually a”),
FG a (“eventually always a’) we have:

Prob(s, GF a) = Prob(s, F T¢.)

— where T, = union of all BSCCs
containing some state satisfying a

Prob(s, FG a) = Prob(s, F T¢.)

— where T, = union of all BSCCs Example:
containing only a-states Prob(s,, GF)
— PrOb(So, F TGFa)
- To extend this idea to arbitrary = Prob(sy, F {s3,5,,55})

LTL formula, we use w-automata... =2/3+1/6=5/6 ,,

Deterministic Rabin automata

w-automata represent sets of infinite words
— e.dg. Buchi automata, Rabin automata, ...
— for probabilistic model checking, need deterministic automata
— so we use deterministic Rabin automata (DRAs)

- A deterministic Rabin automaton is a tuple (Q, 2, 9, q,, Acc):
— Qs a finite set of states, g, € Q is an initial state
— 2 is an alphabet, 5 : Q X 2 — Q is a transition function
— Acc ={ (L, K) }_; € 22 x 2Qis an acceptance condition

- A run of a word on a DRA is accepting iff:

— for some pair (L;, K,), the states in L; are visited finitely often
and (some of) the states in K, are visited infinitely often

—orinLTL: V (FG-L; A GFK)) 48

l=<i<

LTL & DRASs

Example: DRA for FG a
— acceptance condition is ’
Acc = { ({aohia, D } g (9, a
—a

—d

- Can convert any LTL formula y on atomic propositions AP

— into an equivalent DRA A, over alphabet 2#*
— i.e. W F Y < trace(w) € L(Ay) for any path w

— can potentially incur a double exponential blow-up
(but, in practice, this does not occur and is small anyway)

LTL model checking for DTMCs - the basic idea
— construct product of DTMC D and DRA A,
— compute ProbP(s,) on product DTMC D ® A
49

Product DTMC for a DRA

» The product DTMC D ® A for:
— for DTMC D = (§,s;,,P,L) and
— and (total) DRA A = (Q, %, 0, qq, { (L;, K) }_7)
— is the DTMC (5xQ, (S;,i;Dinie)s P’5 L) where:
init = 9(o,L(Sinip))

P'((5,,0,),(5,,0,)) = {

P(Spsz) If q2 = S(CI],L(SZ))
0] otherwise

. e LU'(s,q) ifqg e L, and k, € L'(s,q) if g € K,

- Note:

— D ® A can be seen as unfolding of D where g for each state
(s,q) records state of automata A for path fragment so far

— since A is deterministic, D ® A is a DTMC
— each path in D has a corresponding (unique) path in D ® A
— the probabilities of paths in D are preserved in D ® A 50

Product DTMC for a DRA

- For DTMC D and DRA A

PI’ObD(S, A) — PrObD®A((S!q5)1 v]gigk (FG ﬁli A GF I(I)

— where g, = 8(qg,L(s))

- Hence:

ProbP(s, A) = ProbP®A((s,q.), F T.)

— where T, is the union of all accepting BSCCs in D®A

— an accepting BSCC T of D®A is such that, for some 1<i<k,
no states in T satisfy |, and some state in T satisfies k;

- Reduces to computing BSCCs and reachability probabilities

— so overall complexity for LTL is doubly exponential in ||,

polynomial in [M|; but can be reduced to singly exponential
51

Example: LTL for DTMCs

- Compute Prob(s,, G=b A GF a) for DTMC D:

DTMC D DRA A, for p = G-b A GF a

52

Example: LTL for DTMCs

DRA A, for p = G-b A GF a

Example: LTL for DTMCs

DRA A, for p = G-b A GF a

= ProbPeAv (F T))
= 3/4

54

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

- Costs and rewards

- Case study: Bluetooth device discovery

55

Costs and rewards

We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

56

Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

57

DTMC reward structures

For a DTMC (S,s;,;,P,L), @ reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
—1:S XS — R,,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and vis zero
(equivalently, p is zero and t returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and t as the energy cost of
each transition cg

PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

FUeEsEEEsEssEEssEssEssEEsEEsEEsEEssEssEEEEEe

expected

A/rewm"“r
g }

—¢ = | PLIw] | RATIER] | RLICK]T | R, [Fé]

___ B N

. “instantaneous” | | “cumulative” | | “reachability”

— wherere R_,, ~ € {<,>,<,2}, ke N

R.. [-] means “the expected value of - satisfies ~r”

59

Types of reward formulas

Instantaneous: R_, [I7%]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

- Cumulative: R_ [C=k]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

Reachability: R_, [F ¢]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”

— e.g. “the expected time for the algorithm to terminate”

60

Reward formula semantics

Formal semantics of the three reward operators
— based on random variables over (infinite) paths

Recall:
-sEP,[w] & Pri{wePath(s) [wEY}~p

For a state s in the DTMC:
— sER_[IFK] < Exp(s, X,_,) ~r
—skER_[Ck] & Exp(s, Xco) ~ 1
—sER,[F®P] & Exp(s, Xgp) ~ ¥

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R., with respect to the probability measure Pr,

61

Reward formula semantics

- Definition of random variables:
— for an infinite path w= s,s,5,...

X (W) = p(s,)

) - 0 ifk=0
Csk B { 2 :(:_0] E(Si) +1(s;,,S,,,) otherwise

0 if s, €Sat(d)
X (W) = 0 if s, &Sat(p) foralli=0

E:i%_]_p(si)ﬂ(si,sm) otherwise

— where kd, =min{ j | S; é }

62

Model checking reward properties

- Instantaneous: R_, [I7%]
+ Cumulative: R_ [C=t]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

- Reachability: R, [F ¢]

— similar to computing until probabilities

— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

- For more details, see e.g. [KNPO7a]

63

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
+ Costs and rewards

- Case study: Bluetooth device discovery

64

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs ‘

- Support for:

— discrete-/continuous-time Markov chains (D/CTMCs)

— Markov decision processes (MDPs)

— probabilistic timed automata (PTAs)

— PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Multiple efficient model checking engines

— mostly symbolic (BDDs) (up to 1019 states, 107-108 on avg.)
- Successfully applied to a wide range of case studies

— communication protocols, security protocols, dynamic power
management, cell signalling pathways, ...

— http://www.prismmodelchecker.orq/

65

Bluetooth device discovery

Bluetooth: short-range low-power wireless protocol
— widely available in phones, PDAs, laptops, ...
— open standard, specification freely available

Uses frequency hopping scheme
— to avoid interference (uses unregulated 2.4GHz band)

— pseudo-random selection over 32 of 79 frequencies
Formation of personal area networks (PANSs)

— piconets (1 master, up to 7 slaves)

— self-configuring: devices discover themselves
Device discovery

— mandatory first step before any communication possible

— relatively high power consumption so performance is crucial

— master looks for devices, slaves listens for master

66

OOANNOOANNOOANNOOANNNNOOANNOOANNOONNWOO
TN TN TN NNM T MMM NN

OO OO OO~ OO OO OO LD
TN T MM MMM MM MMM —M

ITTOOITITOOTITOOITIITOOITITOOTITOOITITOOOO
TN O T M T TN MO M =M M

(selspleIerIesleploriexIesleslerIerleslor]esleslorIe)IepleplerIerloslosler [0 eplspler epler) 0))
AN AN AN~ A~ AN~ AN AN~ A~ AN

AN 00 00 CNEN 00 €0 O\ CNIQ0 €0 00 00 CNTCNI00 0O NN CO 0O NN 00 0O ANNONIANIONI €O €O
AN AN~ A ANANN~ AN AN N~ AN ————O QN

D wd B S okt Dl Bl el el Ik el Dl B sl I D el I DR el I B] IR ek d D
AN AN A AN AN AN N~ AN~ AN AN N

OOVWOOOVWOWOOOOVWVOOVWOVOOWVVOOWVWVWWVOOWW
AN AN AN AN AN AN NN AN N

LW O O ww Yelle} LW L0 5 OO w0
DONAPOANNC ANCONNC OO NN NN

67

T e A R S
M-Q OO QR[N RQN SRR/ QRO RQ{NRR
wol{oooo{ooJo oo JNNNoo YooY
OO O PO N OO N O NN OO RO NN OO NN OONS

[olelele] (@] oo oo (ol [ole) QO
D RIS TS T A RS TS R Te YA A ReVIVh I B A PN PV AN A I TR B PNTeY

2222202222 L RPN LR DD

~ o b ~

ANANNNLPNANL L NNRRANNLLOD AL O NNRD R X

———

S..
Y
2 0
- L1 o
= N U
—_
O Y
> > ©
(qv] v 9
-~ > £ hrobhEecbhecbhecbebectie o b tn
3
V o E .
O S 2 3 |3 5
— = £ | 7
— ~ O = =~ l. i
A4 < v o g |3 e
- - —
. — & o v = un O S o 5
© U conw 2 L2323 g []7
c y ¥ TN U 2w v v < |3 v
o UCd v - QO Y c w,,u :
< O T 0 €S wao Vo E IRCE
W T % +£3%3 &3 ts
~ v S5 2 o wn g |3 %
o) o — O 4= > U AR ¥
| - (- - + © mo - T «w O = 5 lS
() 2 T “<25 Eha= i -
! o v) g |a 3
= C o 899" S > c e 3
pd S oY egl3Yw €56 T l|7
(gv] = - 5 c v O = > - I3
S0~ 0%£8m , 30w i s
M v > — - v e E N - o < & |3 o5
v O I L C .= w nn Y *
= < -~ mor>mcci « 13 <
L U Ox =20 g U g.2 g | g
= 3 Y1 75N> T O “ % B°
8 Tc&E0ON8—3 ® - c - .
o @ | | o v g |2
- rWh < ,.“
AN Lo (e RN s nm

=
—

Slave (receiver) behaviour

Listens (scans) on frequencies for inquiry packets
— must listen on right frequency at right time

— cycles through frequency sequence at much slower speed
(every 1.28s)

o) e[
sleep . scan hear response
628.75ms | max 11.251115‘) 0.625ms
"

On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

— avoid repeated collisions with other slaves

random wait
N x 0.625ms
N = Rand|0..127]

4

68

Bluetooth - PRISM model

Modelled/analysed using PRISM model checker [DKNPO6]
— model scenario with one sender and one receiver
— synchronous (clock speed defined by Bluetooth spec)
— model at lowest-level (one clock-tick = one transition)
— randomised behaviour so model as a DTMC
— use real values for delays, etc. from Bluetooth spec

Modelling challenges
— complex interaction between sender/receiver
— combination of short/long time-scales - cannot scale down

— sender/receiver not initially synchronised, so huge number of
possible initial configurations (17,179,869,184)

69

Bluetooth — Results

Huge DTMC - initially, model checking infeasible
— partition into 32 scenarios, i.e. 32 separate DTMCs
— on average, approx. 3.4 x 10° states (536,870,912 initial)
— can be built/analysed with PRISM's MTBDD engine

- We compute:

— R=?[F replies=K {“init"{max}]

— “worst-case expected time to hear K replies over all possible
initial configurations”

- Also look at:

— how many initial states for each possible expected time

— cumulative distribution function (CDF) for time, assuming
equal probability for each initial state

70

Bluetooth — Time to hear 1 reply

>

-y

o
—

O
o2)

o
o))

O
»

1 1.92 1.93

number of states
(&)
prob hear a reply by time T
o
A

0.5 ‘ I | I

0 ' - — ' : ' ' ‘ :
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
time to hear one reply (sec) T (sec)

_

OO

- Worst-case expected time = 2.5716 sec
—in 921,600 possible initial states
— best-case = 635 us

/1

Bluetooth — Time to hear 2 replies

X 108
____________________________ Vi e
2 w -_ - -.
2 0.8} '
Q. '
1.5 | | 2 oo
' 5 g Y 0.6 :
: ; [ommmat
{ i () v
1 : < ;
2.58 2.6 2.62 9 0.4 "= -2
T o ;
0.5 1 Eoof
i E - 0.2
1 5 —exgct
0 | | g_ - ==derived
0 1 2 3 4 5 0 ' : ' ' :
. . 0 1 2 3 4 5
expected time to hear two replies (sec) T (sec)

- Worst-case expected time = 5.177 sec
— in 444 possible initial states
— compare actual CDF with derived version which assumes times
to reply to first/second messages are independent

72

Bluetooth — Results

Other results: (see [DKNPO6])
— compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower
— power consumption analysis (using costs + rewards)

Conclusions:
— successful analysis of complex real-life model
— detailed model, actual parameters used
— exhaustive analysis: best/worst-case values

. can pinpoint scenarios which give rise to them
. not possible with simulation approaches
— model still relatively simple
. consider multiple receivers?
. combine with simulation?

73

Summary

Probabilistic model checking
— automated quantitative verification of stochastic systems
— to model randomisation, failures, ...

Discrete-time Markov chains (DTMCs)
— state transition systems + discrete probabilistic choice
— probability space over paths through a DTMC

Property specifications
— probabilistic extensions of temporal logic, e.g. PCTL, LTL
— also: expected value of costs/rewards

Model checking algorithms

— combination of graph-based algorithms, numerical
computation, automata constructions

Next: Markov decision processes (MDPs)
74

