
Model Repair for Markov Decision Processes

Taolue Chen1, Ernst Moritz Hahn1, Tingting Han1, Marta Kwiatkowska1, Hongyang Qu2 and Lijun Zhang3
1 Department of Computer Science, University of Oxford

2 Department of Automatic Control and Systems Engineering, University of Sheffield
3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

Abstract—Markov decision processes (MDPs) are often used
for modelling distributed systems with probabilistic failure or
randomisation. We consider the problem of model repair for
MDPs defined as follows: if the MDP fails to satisfy a property,
we aim to find new values for the transition probabilities so
that the property is guaranteed to hold, while at the same
time the cost of repair is minimised. Because solving the MDP
repair problem exactly is infeasible, in this paper we focus on
approximate solution methods. We first formulate a region-based
approach, which yields an interval in which the minimal repair
cost is contained. As an alternative, we also consider sampling-
based approaches, which are faster but unable to provide lower
bounds on the repair cost. We have integrated both methods into
the probabilistic model checker PRISM and demonstrated their
usefulness in practice using a computer virus case study.

I. Introduction

Distributed randomised protocols, for example wire-
less communication protocols, are naturally modelled using
Markov decision processes (MDPs), which combine nonde-
terminism, needed to express concurrency, with probabilistic
behaviour, such as communication failures or random back off.
When used in formal verification, their correctness properties
are specified using the temporal logic PCTL, which can express
properties such as “the minimum probability of reaching
an unsafe state is below 0.01”, and “the expected number
of steps to completion is not greater than 10”. The PCTL
model checking problem for Markov decision processes is
to decide whether a given state satisfies such a property [1],
which reduces to the computation of the minimum/maximum
probability or expectation to reach a certain set of states.

An important question is what to do if the property is not
satisfied. Similarly to the classical transition systems setting,
counterexamples that witness the violation of the property have
been proposed. Various algorithms for computing probabilistic
counterexamples have been studied [2]. However, counterex-
amples for probabilistic models are are often very involved and
computationally expensive, and have thus far found limited
application.

The probabilities in MDP models are often not precise,
and are determined by characteristics of network connections,
or refined later in the design stage. Over the past years, the
parametric model checking problem has been formulated and
studied for Markov chains with probabilities as parameters [3],
[4]. Instead of computing the probability value, a rational func-
tion over the parameters is obtained. Then, given a property,
one can identify parameter valuations under which the property
is guaranteed to hold. Recently, based on the parametric model
checking approach, the model repair problem for Markov
chains has been introduced [5], where a repair means a change

in the transition probabilities. The input of the model repair
problem is a controllable Markov chain, namely, a Markov
chain with a set of transition probabilities that can be repaired
with certain costs, and a PCTL property. Assuming that the
property is not satisfied, then the aim is to repair the input
model so that the modified model satisfies the desired property,
while keeping the repair cost minimal. The possible changes
to probabilities can be expressed by adding parameters to the
original model, thus giving rise to a parametric Markov chain
in the sense of [4]. By exploiting the rational function obtained
for the parametric Markov chain, the model repair problem is
reduced to a nonlinear optimisation problem. The approach
exploits existing efficient solvers for optimisation problems,
and turns out to be very attractive as a refinement-based design
technique.

In this paper, we consider an extension of the model repair
problem to Markov decision processes. As for Markov chains,
if the property is violated, we aim to find new values for
transition probabilities so that the property holds and the cost
of the repair is minimal, that is, the repaired MDP is as
close to the input one as possible. Unfortunately, we cannot
directly apply the repair technique for Markov chains, since for
parametric MDPs we cannot guarantee that a single rational
function over the parameters can be obtained. In addition, the
exact values of optimal repairs might not be representable
using rational numbers, and hence it might be impossible
to compute them precisely. Because of this, we consider
approximate solutions of this problem.

We consider two complementary approaches. The first
variant is a region-based approach, which builds on our work
on parametric MDPs [6] (see also [7] for a related approach).
A region represents a set of parameter valuations. Given a
division of the parameter space into regions, we can compute
both the lower and upper bounds on optimal parameter values
by evaluating the edge points of the regions. If the result
is too imprecise, some regions might have to be split. The
second variant [8] involves three alternative approaches based
on sampling-based methods. The main idea here is to define
a probability density on the parameter space, and then use
stochastic search to find a good sample point, corresponding
to a low repair cost. To enforce that a point is chosen in which
the model is actually repaired, we use a penalty value which
is added to the repair cost if this is not the case.

All methods have been integrated into the probabilistic
model checker PRISM [9]. The sampling methods are faster
than the region approach, but are unable to compute lower
bounds for the minimal repair cost. To show the practicality
of our methods, we have successfully applied them to a case
study that repairs the behaviour of a virus infecting a network.

1

II. Preliminaries

We begin by introducing notation and definitions needed
to state the model repair problem and its solution precisely.
As a notational convention, we use the vector notation ~v =
(v1, . . . , vn) to denote a sequence of variables, constants, etc.

A. Markov Decision Processes (MDPs)

In this section we define the model used in this paper.
Throughout, we assume a fixed set of atomic propositions AP .

Definition 1: A Markov decision process (MDP) is defined
as a tuple M = (S, s0,Act ,P,L, r) where

• S is a finite set of states,
• s0 ∈ S is the initial state,
• Act is a finite set of actions,
• P : S ×Act × S → [0, 1] is the probability matrix,
• L : S → 2AP is a state labelling function, mapping

states to a subset of the atomic propositions, and
• r : S ×Act → R≥0 is a reward structure.

We require
∑
s′∈S P(s, α, s′) ∈ {0, 1} for all states s ∈ S

and actions α ∈ Act . Furthermore, for each s ∈ S there is
at least one α ∈ Act with

∑
s′∈S P(s, α, s′) = 1. We use

Act(s) = {α | ∑s′∈S P(s, α, s′) = 1} to denote the set of
enabled actions of the state s.

The nondeterministic choices are resolved by schedulers.
When in state s, a scheduler can choose any action α which
is enabled. Different types of schedulers exist, for example
memoryless, but we do not need to consider them in detail.

Rewards can be interpreted as either costs or bonuses,
depending on the model under consideration. If a scheduler
chooses action α in state s, a reward of r(s, α) is obtained.

The behaviour of an MDP is as follows. Starting in the
initial state s0, the scheduler selects an action α0 ∈ Act(s0).
A reward of r(s0, α0) is obtained, and a probabilistic choice
of successor states is made, where some successor state, say
s1 ∈ S, is selected with probability P(s0, α0, s1). Afterwards,
the scheduler repeats the process from s1, and so forth.

B. Parametric MDPs (PMDPs)

To state the model repair problem, we define a parametric
variant of MDPs. We fix V

def
= {x1, . . . , xn} as the set

of variables with domain R. An evaluation v is a function
v : V → R. A polynomial g over V is a sum of monomials

g(~x) =
∑

i1,...,in

ai1,...,inx
i1
1 · · ·xinn ,

where each ij ∈ N and each ai1,...,in ∈ R. A rational function
f over a set of variables V is a fraction f(~x) = g1(~x)

g2(~x)
of two

polynomials g1, g2 over V . Let FV denote the set of rational
functions from V to R. Given f ∈ FV and an evaluation v, we
let f〈v〉 def

= f(v(x1), . . . , v(xn)) denote the rational number
obtained by substituting each occurrence of xi with v(xi).

Definition 2: A parametric Markov decision process
(PMDP) is a tuple M = (S, s0,Act ,P,L, r), where S, s0,
Act , and L are the same as in Definition 1,

• P : S ×Act × S → FV is the parametric probability
matrix, and

• r : S×Act → FV is the parametric reward structure.

For a given evaluation, a PMDP induces a (nonparametric)
MDP.

Definition 3: Given a PMDP M = (S, s0,Act ,P,L, r)
and an evaluation v, the MDP induced by v is defined by
Mv

def
= (S, s0,Act ,Pv,L, rv) where for s, s′ ∈ S, α ∈ Act

• Pv(s, α, s
′)

def
= P(s, α, s′)〈v〉, and

• rv(s, α)
def
= r(s, α)〈v〉.

The set of valid evaluations Evals(M) is defined as the
set of all evaluations v so that

• Mv is a valid MDP (cf. Definition 1), and
• for all s ∈ S, α ∈ Act(s) and s′ ∈ S, we have that

either P(s, α, s′)〈v〉 6= 0, or P(s, α, s′)〈v′〉 = 0 for
all evaluations v′.

For an evaluation to be valid, we require that all transition
probabilities are between zero and one, and that they sum up to
one for valid nondeterministic choices. We assume that rewards
are nonnegative. In addition, we require that evaluations do not
change the structure of the PMDP, that is, an evaluation is valid
only if it does not set a probabilistic choice to zero, unless it
is zero for all possible evaluations.

C. Probabilistic CTL

To specify the properties of the models, we utilise the
probabilistic temporal logic PCTL [1]. The syntax is given
by:

Φ = > | a | ¬Φ | Φ ∧ Φ | P./p(ϕ) | R./m(♦Φ),

ϕ = X Φ | Φ U Φ | Φ U≤n Φ,

where ./ ∈ {<,≤,≥, >}, n ∈ N, p ∈ [0, 1], m ∈ R and
a ∈ AP . Here, Φ is a formula which has a boolean value in
a state, whereas ϕ is interpreted on paths.

The definition of >, a and ∧ being satisfied in a state is
standard. For state s, the formula P./p(ϕ) is fulfilled if for all
schedulers the probability of paths which start in s and fulfil
ϕ meets the bound ./ p. For ./ ∈ {<,≤} (./ ∈ {≥, >}),
this is equivalent to asking whether the maximal (minimal)
probability meets the bound ./ p.

Given a path, the next state formula X Φ asks whether
on the second state of this path Φ holds. The unbounded
until formula Φ1 U Φ2 requires that some state on the path
fulfils Φ2, and, for all states on the path before that point, ϕ1

must hold. The bounded until formula Φ1 U≤n Φ2 is similar,
but additionally requires that Φ2 occurs by the nth step. We
write M |= Φ if the initial state of an MDP fulfils the PCTL
state formula Φ. The reachability reward formula [10], [11]
R./m(♦Φ) states that the expected accumulated reward until
a state satisfying Φ is reached should meet the bound ./ m
for all schedulers.

III. The Model Repair Problem for MDPs

We are now ready to define the model repair problem for
MDPs formally. For V = {x1, · · · , xn}, we write span(V) =

2

{w1x1 + . . . + wnxn | ~w ∈ Rn} ⊂ FV for the set of linear
expressions over V .

A. Problem Statement

Definition 4: A controllable MDP is a tuple
∼M=

(M,Z, z) where

• M = (S, s0,Act ,P,L, r) is an MDP,
• Z : S × Act × S → span(V) is a transition repair

matrix, and
• z : S ×Act → span(V) is a reward repair matrix.

We require that, for all s, s′ ∈ S and α ∈ Act , we only have
Z(s, α, s′) 6= 0 in case α ∈ Act(s). Moreover, for all s ∈ S
and α ∈ Act(s) we require

∑
s′∈S Z(s, α, s′) = 0.

Definition 5: Given

• a controllable MDP
∼M= (M,Z, z) with M =

(S, s0,P,Act ,L, r),
• a PCTL formula ϕ for which M 6|= ϕ, and
• a polynomial g = w1x

2
1 + · · ·+ wnx

2
n, ~w ∈ Rn>0,

we define the PMDP

M′ = (S, s0,Act ,P + Z,L, r + z).

Then the model repair problem is to find an evaluation
v : V → R which satisfies the following constraints:

v ∈argmin g〈v〉 (1)
v ∈ Evals(M) (2)
M′v |= ϕ (3)

Constraint (1) requires that the repaired model has the proba-
bility transition matrix P + Z and rewards r + z that are the
closest to P, in terms of the weighted distance g〈v〉, under the
given side conditions. Note that the weights w1, . . . , wn can be
chosen so that the importance or priority of certain parameters
with respect to others can be expressed. The function g is
always positive, continuous, differentiable, and, for ~w = ~1n,
g is the square of the L2-norm ||~x||22. Constraint (2) requires
that the MDP is changed by v in such a way that it remains
an MDP, and that does not delete any transitions from the
MDP before the repair. Constraint (3) states that the model is
repaired, that is, it now fulfills its PCTL specification.

B. Fast Model Repair Problem

In practice, many computer systems need to adapt dynam-
ically and predictably to rapid changes in system workload,
environment and objectives by altering some parameter values,
in order to guarantee certain correctness properties, as well
as performance [12]. Typical examples are multi-processor
systems and modern distributed storage systems, where com-
ponents (such as memories or processors) may fail and only
lower- and upper-bounds on failure probabilities are known. If
certain components are replaced with similar ones, the system
should be able to adjust the failure rates to maintain the
reliability.

We observe that, in practice, there are many scenarios
where we do not need to find the optimal probability value, but

x1

x2

0

x2

0
x1

x1

x2

0.4

0.4
a) b)a)a)

c)

Fig. 1. The procedure of model repair

it suffices to find one such value rapidly. Indeed, finding an op-
timal repair might not even be possible, as it might correspond
to an evaluation which assigns irrational numbers to repair
parameters which cannot be represented exactly. Examples
where fast repairs are needed include runtime verification of
adaptive systems as described in [13].

In this paper we focus on these scenarios. To achieve this,
the fast model repair problem is to seek an evaluation v so
that the repaired MDPM′v satisfies the constraints (2)-(3) and
v should be obtained as quickly as possible. At the same time,
the cost of the repair must be sufficiently low.

IV. Solving Model Repair Problem for MDPs

In this section, we propose two complementary methods to
solve the fast model repair problem. The region-based method
focuses on finding a repair with known lower and upper bounds
for the repair, whereas the sampling-based methods aim to
achieve a faster repair.

A. Region-based Method

We formulate an approximate solution that involves region
refinement through the parameter space, and thus allows one
to compute lower and upper bounds for the optimal repair
cost. This algorithm builds upon our previous work concerning
solving the problem of PCTL model checking for PMDPs [6].

In [6], we assumed that for all parameters we are given a
certain range, that is, a lower and upper bound for the values
of this parameter. Consequently, all parameter valuations re-
specting these bounds are valid, with finitely many exceptions,
and the area of valid evaluations (parameter space) forms
a hyper-rectangle. However, for the model repair problem
this assumption is no longer valid. For instance, we could
have a transition repair matrix which increases two transitions
with the initial probability of p1 = p2 = 0.3 by x1 and
x2 respectively, and decreases another transition with the
probability of p3 = 0.4 by x1 + x2. In the resulting PMDP,
these transitions thus have the probabilities p′1 = 0.3 + x1,
p′2 = 0.3 + x2, and p′3 = 0.4 − x1 − x2. Because of this, to
ensure that all probabilities are nonnegative, the area of valid
evaluations is now a triangle, as depicted in Figure 1 a), and
the parameter space is no longer a hyper-rectangle as assumed
in [6].

To overcome this problem, we encode the validity of
parameter valuations into the formula. Instead of consider-
ing the original PCTL formula ϕ, we consider the formula
ϕvalid

def
= ϕ ∧ valid where

valid ≡
∧

s,s′∈S,α∈Act

0 ≤ P′(s, α, s′)〈v〉 ≤ 1

∧
∧

s,s′∈S,α∈Act

P′(s, α, s′) 6= 0→ P′(s, α, s′)〈v〉 6= 0.
(4)

3

The requirement that, for all s ∈ S and α ∈ Act(s), we have∑
s′∈S P

′(s, α, s′)〈v〉 = 1 already follows from the definition
of the original model and that of the repair matrix. We
remark that Equation (4) involves statements over parameter
valuations v of the model, which can be handled by our
solution algorithm.

We can now apply our previous analysis techniques on
the PMDP as in Definition 5, for the modified PCTL formula
ϕvalid. For this, we first introduce some notation.

Definition 6: We define

• the range of a parameter x is an interval range(x) =
[Lx, Ux],

• a region is a high-dimensional rectangle r =×x∈V [lx, ux] so that for all x ∈ V we have [lx, ux] ⊆
range(x),

• we define the volume µ of a region r =×x∈V [lx, ux]

as µ(r)
def
=
∏
x∈V

ux−lx
Ux−Lx

,
• a set of regions K is interior-disjoint in case the

interiors of different regions do not overlap,
• for an interior-disjoint set K = {r1, . . . , rn} of

regions, we define µ(K)
def
=
∑n
i=1 µ(ri), and

• for evaluation v we write v ∈ r =×x∈V [lx, ux] if for
all x ∈ V we have v(x) ∈ [lx, ux].

Given a PMDP M and a PCTL formula ϕ, a mapping
m : K → {⊥, ?,>} over an interior-disjoint set K with
µ(K) = 1 is an ε-solution mapping in case

• K is an interior-disjoint set and µ(K) = 1,
• µ({m(r) = ? | r ∈ K}) ≤ ε,
• for r ∈ K with m(r) = > we have Mv |= ϕ for all

v ∈ r,
• for r ∈ K with m(r) = ⊥ we have Mv 6|= ϕ for all

v ∈ r,

Each parameter has a range, which specifies the bounds
assumed for this parameter. A region denotes a set of variable
valuations. The volume of a region (interior-disjoint set of
regions) is the fraction of the whole parameter space a region
(set of regions) occupies.

An ε-solution mapping divides the parameter space into
areas for which a given property is valid or invalid with
respect to the induced nonparametric MDPs in the given area.
A certain volume of the parameter area is allowed to remain
undecided. In [6], we discussed how we can compute such
mappings. The basic idea is to prove the truth value (> or ⊥)
of an undecided region (m(r) = ?) using constraint solvers
[14]–[16]. In case the truth value cannot be decided for a
region, for instance because there are different truth values for
evaluations contained in the same region, a region is split into
smaller regions. The algorithm then tries to decide the validity
of the smaller regions. This procedure is repeated, until the
volume of undecided regions is below ε.

For the model repair, we use the PMDP defined in Defini-
tion 5, and apply the algorithm on ϕvalid.

We illustrate the procedure in Figure 1 b) and c). Part b)
shows the parameter space with two parameters x1 and x2.
Point x1 = x2 = 0 represents the original, non-repaired model.
The area in which the modified model satisfies the property is

shown in dark colour. Thus, by setting xi to values in those
areas, we can obtain a repaired model.

Now, by applying our algorithm, we obtain the mapping
depicted in Figure 1 c). Here, the semi-dark regions represent
undecided regions, the white regions represent areas in which
the property is not fulfilled, and the dark regions the areas in
which the property is fulfilled.

To obtain upper bounds on the minimal repair cost, we
can evaluate the repair cost function at the vertices of regions
r with m(r) = >, and afterwards take the minimum over all
these values. In the figure, these vertices are marked by circles.
To obtain a lower bound, we do this instead for regions r with
m(r) = ?. We mark such points by triangles.

B. Sampling-based Methods

The sampling-based methods involve randomised search
through the parameter space, yielding some good parameter
values efficiently, rather than finding all such values or finding
a closest value. In this paper we apply Monte Carlo sampling
techniques to the fast model repair problem. For simplicity, we
will focus on the problem of finding a parameter evaluation
in a PMDP so that the weighted distance from the original is
sufficiently small. Therefore, Constraint (1) and Constraint (3)
in the model repair problem are merged into

g〈v〉+ P(v) ≤ b, (5)

where b is a constant and P(v) is a penalty function defined
as follows:

P(v) =

{
0 if M′v |= ϕ
δ otherwise. (6)

The penalty function is used to guide the search for a good
evaluation. If an evaluation v does not make M′ satisfy ϕ,
then a penalty, which is a predefined positive constant value
δ, e.g., 10000, is generated. This way, the sampling methods
get feedback that they are unlikely to find a good evaluation
if they continue to follow the current search direction.

Formally, the general rationale of sampling-based methods
is to draw samples according to a probability distribution

pd(v) =
1

K
e−βO(v), (7)

where β is some weighting factor, K is the normalising factor,
and O is the objective (or oracle), which, given v, checks if
the associated MDP M′v satisfies ϕ and returns g〈v〉+ P(v).
If samples were drawn according to pd , we would have, for
instance, for two points (evaluations) v1 and v2 with O(v1)�
O(v2), that the vicinity of v1 is more likely to be sampled than
that of v2 in the long run. Note that pd is not known a priori:
it is not in closed form, and even computing pd(v) for a given
v is difficult, since the normalising factor K is not known.
This is one of the main difficulties we have to overcome.

When applying these methods, an a priori threshold is
given which is the maximal number of the samples being
tested. The procedures are terminated when either a good
sample point is found which solves the fast repair problem,
that is, a sample point in which the property is fulfilled and in
which g is low, or the threshold is reached.

4

×

+

1st proposal

α< γ
discard

w
al

k
Initial

sample
walk

2nd proposal

×
3rd ppsl.

2nd ppsl.
×

+
4th ppsl.

5th ppsl.

6th ppsl.

√good
sample

5th ppsl.

Fig. 2. The evolution of Markov chain Monte Carlo

Below we describe three approaches introduced in [8],
namely, the Markov chain Monte Carlo (MCMC), cross en-
tropy (CE), and the particle swarm optimisation (PSO), which
turn out to be efficient for our purpose.

Markov chain Monte Carlo method. The Metropolis-
Hastings algorithm (M-H algorithm, [17] [18]) is a variant of
the MCMC algorithm. The main idea of the M-H algorithm
is to generate a series of samples that are linked in a Markov
chain (typically with a continuous state space), where each
sample is correlated only with the directly preceding sample.
At sufficiently long times (when the equilibrium is reached),
the distribution of the generated samples matches the desired
probability distribution. Roughly speaking, this algorithm pro-
ceeds by randomly attempting to move about the sample space,
sometimes accepting the moves and sometimes remaining in
place.

In the algorithm, an acceptance ratio ᾱ is needed to
indicate how probable the new proposed sample is with respect
to the current sample, according to the distribution pd . If we
attempt to move to a point that is more probable than the
existing point (i.e. a point in a higher-density region of pd),
we will always accept the move. However, if we attempt to
move to a less probable point, we will sometimes reject the
move, and the higher the relative drop in probability, the more
likely we are to reject the new point. Thus, we will tend to
stay in (and return large numbers of samples from) the high-
density regions of pd , while only occasionally visiting low-
density regions. We refer the reader to [19] for an exposition.

A schematic illustration of the procedure is given in
Figure 2. Each iteration of the sampler generates a new
proposal v′ ∈ Evals(M) from the current sample v using
some proposal scheme. Note that, here, the support of the
distribution is the parameter space Evals(M). The objective
O(v′) is computed for this proposal. We then compute the
acceptance ratio ᾱ def

= e−(O(v′)−O(v)) and accept the proposal
randomly, with probability ᾱ. Note that, if ᾱ ≥ 1, then the
proposal is definitely accepted. If the proposal is accepted
then v′ becomes a new sample; otherwise, v remains to be
the current sample.

Technically, in each iteration, we run a random walk over
the parameter space to sample Evals(M). There are many
ways to walk randomly but the two ways with the best bounds
on the mixing time are the hit-and-run and ball walk; see [20]
for more explanation. Here we give a brief account.

• Hit-and-run. (1) Choose a line ` through the current point
v ∈ Evals(M) uniformly at random. (2) Move to a point v′
chosen uniformly from Evals(M) ∩ `.
• Ball walk. (1) Choose v′ uniformly at random from the

ball of radius δ centred at the current point v. (2) If v′ is in
the convex set then move to v′; if not, try again.

Fig. 3. The evolution of cross entropy

Cross-Entropy Method. The cross-entropy method starts from
a family of distributions U and attempts to find a distribution
which is as close to pd as possible. Note that pd may not be
contained in U , but the distributions in U usually have a closed
form (normal distributions for instance) and are thus easier to
sample from. Here closeness of distributions is measured using
the standard Kullback-Liebler divergence (KL divergence, aka.
the cross-entropy) [21].

The general idea of the CE method is that, at each
step, it generates samples according to the current candidate
distribution from the family U . Then it uses these samples to
tilt the current candidate distribution towards a new candidate.
We partition the parameter space Evals(M) into a set of
disjoint measurable cells C1, . . . , Ck, where Cj (1 ≤ j ≤ k) is
bounded and has a finite volume. The family of distributions U
is parameterised by the individual cell sampling probabilities
θ : (z1, . . . , zk) ∈ [0, 1]k with

∑k
i=1 zi = 1. Here zk denotes

the probability that a point from the cell Ci is sampled. In
order to sample from a given distribution pθ in the family, we
choose a cell Ci with probability zi for each 1 ≤ i ≤ k. As
a result, the candidate distribution is expected to get closer to
the target distribution. We refer the reader to [22] for details.

A schematic illustration of the method is given in Figure 3,
where there are 12 cells and initially the goal is to find 3
samples in each cell (this makes it a uniform distribution with
1
12 each). As the procedure goes on, the distribution changes
and more samples need to be found in the central cells.

In theory, given the distribution pdθ(h) (at the h-th step) and
the samples v1, . . . , vm, the process of tilting is to minimise
the empirical KL distance over these samples (at the (h+1)-
st step) θ(h + 1). This is standard from the theory of the
CE method [22]. In practice, the tilting is usually performed
gradually by taking θ(h + 1)

def
=βθ(h) + (1 − β)θ, where

0 < β < 1 is a discount factor.

Particle swarm optimisation method. The particle swarm
optimisation method [23] [24] is based on swarm intelligence,
and its idea is to simulate the movement of a bird flock or
fish school. Recall that, given a PMDP

∼M with parameters
in V , we associate with M constraints Evals(M) ∈ Rm as
the search space. Moreover, the objective function is given
by O(·), which returns the optimal reachability probability
for a given valuation v ∈ Evals(M). The PSO algorithm is
based on a population (swarm) of n particles, each of which is
associated with a velocity, which indicates where the particle
is moving to. By abuse of notation, let the position (~v) and
the velocity (~r) of each particle be given as m-dimensional
vectors. For each step t ∈ N, the new position (at (t + 1)-st
step) of the i-th particle (1 ≤ i ≤ n), denoted by ~vi(t+ 1), is
given by

~vi(t+ 1) = ~vi(t) + ~ri(t+ 1). (8)

The associated velocity vector is updated accordingly by

5

Fig. 4. The evolution of particle swarm

~ri(t + 1) = f(~ri(t), ~vi(t)), where, intuitively, the function f
is a randomised combination of (1) the direction to the best
position of the i-th particle, and (2) the direction to the best
global (among all) particle position.

A schematic illustration of the PSO procedure is given in
Figure 4. We remark on the stopping criteria. In our case,
clearly, if one particle finds a position ~v such that O(~v) is less
than the probability/reward bound in the PCTL formula, then
we can stop immediately. Otherwise, to ensure the termination
of the procedure, we stop when the norm of the velocity vector
~r is smaller than some given ε > 0 for all particles, which is a
standard approach for the PSO algorithm. In our experiments,
we typically set ε to be 0.001, and we apply the L1-norm ||~r||1
for vectors.

V. PRISM Support

We implemented both model repair methods as an exten-
sion of the probabilistic model checker PRISM [9]. In this
extension, parametric models can be specified in PRISM’s
guarded command language, similarly to nonparametric mod-
els. We have decided to allow the specification of parametric
models, rather than a nonparametric model and a repair matrix.
The reason is that the repair matrix can be easily added to a
nonparametric model in the model description. Also, this way
of specifying parametric models has the advantage of being
general purpose, and is not restricted to model repair problems
only. The implementation is currently based on the PRISM
“explicit” engine written in JAVA, and hence the state space
representation is not represented symbolically. We note that
parametric analysis is quite expensive at present, and unlikely
to be able to handle large models. Our implementation is
written in such a way that it allows for rapid integration of
future improvements of, e.g., the representation of regions or
functions. The region-based method is a re-implementation of
the tool PARAM 2.0 [6], [25]. It will be included in one of
the forthcoming releases of PRISM. The implementation for
sampling methods was introduced in [8].

The input models used for parametric analyses are specified
in the same way as for other types of analyses. Parameters can
be expressed as unevaluated constants (e.g. const double
x;) in the model. Thus, if, for instance, a repairable transition
probability is given as 0.5 in the original model description,
the PMDP for the repair (cf. Definition 5) can be expressed
using the probability of 0.5+x. The user can then specify
the ranges of parameters when performing the analysis. These
parameters can only be used to specify probabilities or rewards,
but cannot occur, e.g., in guards of commands or as lower or
upper bounds of model variables. Properties are given as the
usual PCTL formulae, where we allow the parameter constants
to appear within the formula. This allows one to express, e.g.,
the constraint from Equation (4). To specify the minimal values

(1,1) (1,2) (1,3)

(2,2) (2,3)

(3,1) (3,2)

high nodes

barrier nodes

low nodes

(2,1)

(3,3)
infected

Fig. 5. Network virus case study

from Definition 5, we introduced a new language construct
constfilter. Similarly to the existing filter construct,
which filters for the minimum/maximum/average of values
over the states, constfilter allows one to filter for values
over parameter valuations. Currently, this construct supports
computing upper bounds over minima and lower bounds over
maxima. For instance, using

constfilter(min,x1*x1+x2*x2,<Phi>)

one obtains an upper bound for the minima over the function
g(x1, x2) = x21 + x22 for the values of x1 and x2 within their
respective ranges, for which the induced model fulfils Φ.

In case the constfilter construct is used, the output
will be the bound to the initial state of the model. Otherwise,
an assignment of parameter regions to either rational functions
or truth values will be returned. It is also possible to export
the result into LATEX code which uses the TIKZ library.

VI. Case Study

We consider as a case study a parametric model of a
computer virus infecting a network [26]1 derived from [27],
[28]. The network is a grid of N by N nodes, with each node
connected to four neighbours (the nodes that are above, below,
to the left and to the right), except for the nodes on the border,
for which some of the neighbours are not present.

We model the situation where the virus spawns/multiplies.
More concretely, once a node is infected, the virus remains at
that node and repeatedly tries to infect uninfected neighbouring
nodes.

We suppose that in the network there are “low” and “high”
nodes, and that these nodes are divided by “barrier” nodes
which scan the traffic between the “high” nodes from the “low”
nodes. Initially, only one corner “low” node is infected. A
graphical representation of the network for N = 3 is given in
Figure 5.

We suppose that both the events of the virus entering a node
and infecting a node are probabilistic, in that, for each of these
steps, there is a chance of success and of failure respectively.

On the other hand, we suppose that the choice as to which
node the virus attempts to infect next (out of the neighbouring
nodes that are not infected) is nondeterministic. This choice
depends on the precise topology of the network, that is, the
virus can only infect nodes connected to already infected
nodes.

We consider a network configuration with N = 3 and
suppose that the probability of infection equals 0.5 for all node

1http://www.prismmodelchecker.org/casestudies/virus.php

6

types. The default probability plh of detection by the firewall
of the “low” and “high” nodes also equals 0.5 by default, as
well as the probability pba of the “barrier” nodes. However,
both probabilities are subject to repair to improve reliability,
by increasing the probability by plhadd and pbaadd respectively,
the repair cost of which we assume to be

p2lhadd + p2baadd. (9)

The corresponding probabilities in the resulting parametric
MDP are 0.5 + plhadd and 0.5 + pbaadd. In principle, this
would also allow decreasing the probabilities, as opposed to
increasing them to repair the model. We do not consider
this possibility, because a decrease of the probability of virus
detection cannot lead to an improvement of the virus stopping
mechanism, so we assume that the minimal values of plhadd
and pbaadd are 0.

We consider the minimal expected number of attacks re-
quired by the virus until an infection of the node (1, 1) starting
at (N,N). We are interested in ensuring that this value does
not become lower than 20, and thus search for the values of
plhadd and plhadd which minimise Equation (9), for which the
property under consideration is fulfilled.

In Figure 6, we provide a graphical representation of
the minimal expected number of attacks depending on the
correction by plhadd and pbaadd. For the original unmodified
model (plhadd = pbaadd = 0), this number equals 16, so that
the requirement is not satisfied.

A. Region-based Model Repair Results

0
0.1

0.2
0.30

0.2

20

30

40

plhadd

pbaadd

Fig. 6. Minimal expected number of attacks until infection

We apply the region-based method to obtain an upper
bound for the minimal repair cost by using the specification
constfilter(min,

detect1*detect1 + detect2*detect2,
R{"attacks"}>=20[F s11=2]).

We used a tolerance (cf. Definition 6) of ε = 0.05. In Figure 7,
we have divided the parameter space into regions for which
R{"attacks"}>=20[F s11=2]) is fulfilled (dark), is not
fulfilled (white), or this is undecided or different for different
parameter valuations within the region (semi-dark).

Undecided regions exist for two different reasons. At
first, consider the undecided regions which form the three
lines, one of which is a diagonal through the model. These
undecided regions exist because, at the lines where they appear,
the optimal strategy of the computer virus changes, since it

0 0.3

0.3

≈ 0.09902

≈ 0.02044

Fig. 7. Checking whether minimal expected number of attacks until infection
is higher than 20

depends on the probabilities in the model. Due to the way
our parametric analysis works, we cannot decide a rectangle
in case it is crossed by such a line, but can only split it into
smaller rectangles. Another set of undecided regions appears
between the regions in which all parameter valuations are valid
(dark), and those in which all of them are not valid (white).
Here, the reason for the undecided regions is that these two
areas are divided by a curve rather than a straight horizontal or
vertical line, such that we cannot cover the whole parameter
space by rectangles, but always have to leave a volume for a
certain tolerance value undecided.

By evaluating the regions in which the property is fulfilled
at their edges, we find a value of optval ≈ 0.02044 at plhadd ≈
0.09902 and pbaadd ≈ 0.10313 (marked in Figure 7 by two
black lines). This means that the minimal cost of repair to
ensure that the property holds is no higher than optval , which
is obtained by choosing the repair parameters as described
above.

The model of the virus consists of 809 states. The total time
to perform the experiments using the region-based approach
was two minutes on an Intel(R) Core(TM) i7-3770 CPU with
3.40GHz.

B. Sampling-based Model Repair Results

To make the sampling-based methods deal with the full
model repair problem, i.e., searching for a point at which
R{"attacks"}>=20[F s11=2]) is satisfied and which
minimises Equation (9), we use p2lhadd + p2baadd + P ≤ b as
the objective function, as discussed in Section IV-B.

Table I reports the experimental results for the sampling-
based methods. For PSO and MCMC, we restricted the max-
imum number of trial points to 500. For CE, each parameter
domain was partitioned into 5 intervals and refinement was
performed 4 times. Due to randomness of these methods,
each method was performed for 5 rounds, and we did not
compute the average time since the actual time in each round
could vary dramatically. We also tested two bounds, i.e.,
p2lhadd + p2baadd +P ≤ 0.0 and p2lhadd + p2baadd +P ≤ 0.0225.
The former asked the methods to search for a global minimum
point for Equation (9), and the latter told them to stop when a
suboptimal point is found. Table I shows that the latter allows
the methods to terminate much faster than the former. For
each round, we report the running time, the number of samples
(#samples), and the result (p2lhadd + p2baadd + P).

7

TABLE I. EXPERIMENTAL RESULTS FOR THE SAMPLING-BASED METHODS

bound method round 1 round 2 round 3 round 4 round 5
time (s) #samples result time (s) #samples result time (s) #samples result time (s) #samples result time (s) #samples result

0.0
MCMC 18.599 500 0.02701 11.508 500 0.02489 13.362 500 0.02479 11.271 500 0.02227 10.338 500 0.02164

CE 7.95 663 0.02106 9.358 663 0.02368 12.118 662 0.02193 8.984 665 0.02119 6.515 662 0.02133
PSO 4.439 327 0.02000 4.406 371 0.02036 6.303 377 0.02001 5.5 319 0.02040 6.322 344 0.02000

0.0225
MCMC 15.449 500 0.02372 14.719 500 0.02359 6.687 355 0.02219 15.304 500 0.02454 1.544 56 0.02170

CE 8.741 504 0.02228 7.855 485 0.02205 5.143 354 0.02213 16.715 659 0.02288 7.375 307 0.02146
PSO 3.745 234 0.02056 3.509 192 0.02197 4.408 200 0.02148 6.641 498 0.02374 3.907 209 0.02235

With bound 0.0, MCMC is slower than the other two due
to the satisfiability check of constraints. For the larger bound,
its performance is not stable: in two rounds, it can find a good
point very quickly; but in the other rounds, it fails to obtain a
good point, and hence runs slowly. Both CE and PSO are stable
regarding finding a good point, but PSO has better performance
than CE, since CE has to check all partitions during the search.

C. Region-based method vs sampling-base methods

We can see from Table I that all sampling-based methods
terminated within 20 seconds; in particular, PSO was able to
finish within 5 seconds in most rounds. Thus, they were all
superior to the region-based method which took 2 minutes. In
terms of accuracy of the parameters values, the sampling-based
methods can match the region-based method; interestingly,
PSO found a smaller value for p2lhadd+p2baadd than the region-
based method. Therefore, sampling-based methods are able to
provide a fast solution for model repair. Although they do not
guarantee that a good point is found due to random sampling,
they provide an efficient solution for real world scenarios if
no lower bounds are required.

VII. Conclusion

We have considered the model repair problem for MDPs,
as an extension model repair for Markov chains proposed in
[5]. Two approaches to compute approximate solutions to this
problems were introduced, and their relative advantages and
disadvantages discussed. The methods have been integrated
into PRISM, and their practical applicability has been demon-
strated on a case study.

Acknowledgements. The authors are partly supported by
ERC AdG VERIWARE and EPSRC grant EP/F001096.

References

[1] A. Bianco and L. D. Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in FSTTCS, ser. LNCS. Springer, 1995,
pp. 499–513.

[2] N. Jansen, E. Ábrahám, B. Zajzon, R. Wimmer, J. Schuster, J.-P. Katoen,
and B. Becker, “Symbolic counterexample generation for discrete-time
Markov chains,” in FACS, 2012, pp. 134–151.

[3] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in ICTAC, ser. LNCS. Springer, 2004, pp. 280–294.

[4] E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability
for parametric Markov models,” in SPIN, 2009, pp. 88–106.

[5] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A.
Smolka, “Model repair for probabilistic systems,” in TACAS, ser. LNCS.
Springer, 2011.

[6] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for PCTL in parametric
Markov decision processes,” in NFM, ser. LNCS. Springer, 2011, vol.
6617, pp. 146–161.

[7] L. Fribourg and É. André, “An inverse method for policy iteration based
algorithms,” in INFINITY, ser. EPTCS. Open Publishing Association,
2009, pp. 44–61.

[8] T. Chen, T. Han, M. Kwiatkowska, and H. Qu, “Efficient probabilistic
parameter synthesis for adaptive systems,” Department of Computer
Science, University of Oxford, Tech. Rep. CS-RR-13-04, 2013.

[9] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in CAV, 2011, pp. 585–591.

[10] B. R. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier,
“Model checking performability properties,” in DSN, 2003, pp. 103–
112.

[11] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in SFM, ser. LNCS. Springer, 2007, pp. 220–270.

[12] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient proba-
bilistic model checking,” in ICSE, 2011, pp. 341–350.

[13] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic QoS management and optimisation in service-based
systems,” IEEE TSE, vol. 37, no. 3, pp. 387–409, 2011.

[14] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” JSAT, vol. 1, no. 3–4, pp. 209–236, 2007.

[15] S. Ratschan, “Efficient solving of quantified inequality constraints over
the real numbers,” ACM TCL, vol. 7, no. 4, pp. 723–748, 2006.

[16] G. O. Passmore and P. B. Jackson, “Combined decision techniques for
the existential theory of the reals,” in Calculemus/MKM, 2009, pp. 122–
137.

[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[18] W. K. Hastings, “Monte Carlo samping methods using Markov chains
and their applications,” Biometrika, pp. 97–109, 1970.

[19] S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings
algorithm,” TAS, vol. 49, no. 4, pp. 327–335, Nov. 1995.

[20] L. Lovász and R. Kannan, “Faster mixing via average conductance,” in
STOC, 1999, pp. 282–287.

[21] R. Rubinstein and W. Davidson, “The cross-entropy method for com-
binatorial and continuous optimization,” Methodology and Computing
in Applied Probability, vol. 1, pp. 129–190, 1999.

[22] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Uni-
fied Approach to Combinatorial Optimization, Monte-Carlo Simulation
and Machine Learning. Springer, 2004.

[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
IJCNN, vol. 4. IEEE, 1995, pp. 1942–1948.

[24] Y. Shi and R. Eberhart, “A modified particle swarm optimization,” in
IEEE International Conference on Evolutionary Computation. IEEE,
1995, pp. 69–73.

[25] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “PARAM: A
model checker for parametric Markov models,” in CAV, ser. LNCS.
Springer, 2010, pp. 660–664.

[26] M. Z. Kwiatkowska, G. Norman, D. Parker, and M. G. Vigliotti,
“Probabilistic mobile ambients,” TCS, vol. 410, no. 12-13, pp. 1272–
1303, 2009.

[27] A. D. Pierro, C. Hankin, and H. Wiklicky, “Continuous-time probabilis-
tic KLAIM,” ENTCS, vol. 128, no. 5, pp. 27–38, 2005.

[28] R. De Nicola, J.-P. Katoen, D. Latella, and M. Massink, “Towards a
logic for performance and mobility,” ENTCS, vol. 153, no. 2, pp. 161–
175, 2006.

8

