
Symbolic Model Checking of Probabilistic
Processes using MTBDDs and the Kronecker

Representation

Luca de Alfaro1, Marta Kwiatkowska2?, Gethin Norman2?, David Parker2, and
Roberto Segala3??

1 Department of Electrical Engineering and Computing Science, University of
California at Berkeley. dealfaro@eecs.berkeley.edu

2 University of Birmingham, Birmingham B15 2TT, United Kingdom
{M.Z.Kwiatkowska,G.Norman,D.A.Parker}@cs.bham.ac.uk

3 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italy. segala@cs.unibo.it

Abstract. This paper reports on experimental results with symbolic
model checking of probabilistic processes based on Multi-Terminal Bi-
nary Decision Diagrams (MTBDDs). We consider concurrent probabilis-
tic systems as models; these allow nondeterministic choice between prob-
ability distributions and are particularly well suited to modelling dis-
tributed systems with probabilistic behaviour, e.g. randomized consen-
sus algorithms and probabilistic failures. As a specification formalism we
use the probabilistic branching-time temporal logic PBTL which allows
one to express properties such as “under any scheduling of nondeter-
ministic choices, the probability of φ holding until ψ is true is at least
0.78/at most 0.04”. We adapt the Kronecker representation of (Plateau
1985), which yields a very compact MTBDD encoding of the system.
We implement an experimental model checker using the CUDD package
and demonstrate that model construction and reachability-based model
checking is possible in a matter of seconds for certain classes of systems
consisting of up to 1030 states.

1 Introduction

There have been many advances in the BDD technology since BDDs were first
introduced and applied to symbolic model checking [10,25]. There are several
free and commercial BDD packages in existence, as well as a range of alternative
techniques for efficient automatic verification. Model checking tools (to mention
smv, SPIN, fdr2) are extensively used by industrial companies in the process of
developing new designs for e.g. hardware circuits, network protocols, etc. More
recently tremendous progress has been made with tools for the model checking
of real-time systems, e.g. Uppaal [6].
? Supported in part by EPSRC grant GR/M04617.

?? Supported in part by EPSRC grant GR/M13046.

S. Graf and M. Schwartzbach (Eds.), 6th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2000), volume 1785 of LNCS, pages 395–410, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

One area that is lagging behind as far as experimental work is concerned, de-
spite the fact that the fundamental verification algorithms have been known for
over a decade [32,15,28], is model checking of probabilistic systems. This is partic-
ularly unsatisfactory since many systems currently being designed would benefit
from probabilistic analysis performed in addition to the conventional, qualita-
tive checks involving temporal logic formulas or reachability analysis available
in established model checking tools. This includes not only quality of service
properties such as “with probability 0.9 or greater, the system will respond to
the request within time t”, but also steady-state probability (until recently, see
[17,4], separate from temporal logic model checking), which allows the compu-
tation of characteristics such as long-run average, resource utilization, etc.

In order to support efficient verification of probabilistic systems, BDD-based
packages must allow a compact representation for sparse probability matrices.
Such a representation, Multi-Terminal Binary Decision Diagrams (MTBDDs),
was proposed in [14] along with some matrix algorithms. MTBDDs are also
known as Algebraic Decision Diagrams (ADDs) [1] and are implemented in the
Colorado University Decision Diagram (CUDD) package of Fabio Somenzi [31].
Based on [22], an MTBDD-based symbolic model checking procedure for purely
probabilistic processes (state-labelled discrete Markov chains) for the logic PCTL
of [22] (a probabilistic variant of CTL) was first presented in [3], and since ex-
tended to concurrent probabilistic systems in [2] (without implementation). Sim-
ilarly, a symbolic model checking procedure for continuous time Markov chains
is proposed in [4]. An alternative representation for Markov chains called Proba-
bilistic Decision Graphs (PDGs) was introduced in [9], where early experimental
results are also reported.

In this paper we consider concurrent probabilistic systems [5], based on Markov
Decision Processes [7], similar to those of [32,8]. These are state-labelled systems
which admit nondeterministic choice between discrete probability distributions
on the successor states, and are particularly appropriate for the representation
of randomized distributed algorithms, fault-tolerant and self-stabilising systems.
The model checking procedure, first proposed in [15,8] for the case without fair-
ness and extended to incorporate fairness constraints in [5,18], reduces to the
computation of the minimum/maximum reachability probability. We can derive
a set of linear inequalities, and maximize/minimize the sum of the components
of the solution vector subject to the constraints given by the inequalities.

Multi-Terminal Binary Decision Diagrams [14] have the same structure as
BDDs, except that terminals other than 0 and 1 are allowed. The similarity
between the two types of diagrams means that many BDD operations gener-
alise to the MTBDD case. MTBDDs are known to yield a compact and efficient
representation for sparse matrices [14]. They share many positive features with
BDDs: because they exploit regularity and sharing, they allow the representation
of much larger matrices than standard sparse matrix representations. MTBDDs
also combine well with BDDs in a shared environment, thus allowing reacha-
bility analysis via conversion to BDDs (which coincide with 0-1 MTBDDs) and
conventional BDD reachability. However, MTBDDs also inherit negative BDD

features: they are exponential in the worst case, very sensitive to variable order-
ing heuristics, and may be subject to a sudden, unpredictable, increase in size as
the regularity of the structure is lost through performing operations on it. As a
consequence, algorithms that change the structure of the matrix, such as Gaus-
sian elimination for solving linear equations [1] or simplex for solving systems of
linear inequalities [24], are significantly less efficient than state-of-the-art sparse
matrix packages due to the loss of regularity. Iterative methods [21,23], on the
other hand, which rely on matrix-by-vector multiplication without changing the
matrix structure, perform better.

There has been very little work concerning MTBDD-based numerical lin-
ear algebra; a notable exception is the CUDD package [31], a free library of C
routines which supports matrix multiplication in a shared BDD and MTBDD
environment. In contrast, numerical analysis of Markov chains based on sparse
matrices is much more advanced, particularly in the context of Stochastic Petri
Nets. There, with the help of a Kronecker representation originally introduced
by Brigitte Plateau [26], systems with millions of states can be analysed. The
Kronecker representation applies to systems composed of parallel components;
each component is represented as a set of (comparatively small) matrices, with
the matrix of the full system defined as the reachable subspace of a Kronecker-
algebraic expression (usually referred to as the actual, versus the potential, state
space). Then one can avoid having to store the full size matrix by storing the
component matrices instead and reformulating steady-state probability calcula-
tion in terms of the component matrices. Existing implementation work in this
area includes tools such as SMART [11] and PEPS [27].

In this paper we adapt and extend the ideas of [3,2] in order to represent
concurrent probabilistic systems in terms of MTBDDs. The differences with the
corresponding work in numerical analysis of Markov chains are: we allow non-
determinism as well as probability; we work with probability matrices, not gen-
erator matrices of continuous time Markov chains; we generate the matrix in
full, then perform BDD reachability analysis to obtain the actual state space;
and we perform model checking against PBTL through a combination of reach-
ability analysis and numerical approximation instead of steady-state probability
calculation. The main contribution of the paper is threefold: (1) we implement
an experimental symbolic model checker for PBTL [5] using MTBDDs; (2) we
adapt the Kronecker representation of [26] and provide a translation into MTB-
DDs; and (3) we improve the model checking algorithm by incorporating the
probability-1 precomputation step of [19].

2 Concurrent Probabilistic Systems

In this section, we briefly summarise our underlying model for concurrent prob-
abilistic systems; the reader is referred to [5,2] for more details. Our model is
based on “Markov decision processes”, and is similar to “Concurrent Markov
Chains” of [32,16] and “simple deterministic automata” of [29]. Some familiarity
with Markov chains and probability theory is assumed.

Concurrent probabilistic systems generalise ordinary Markov chains in that
they allow a nondeterministic choice between possibly several probability dis-
tributions in a given state. Formally, a concurrent probabilistic system is a pair
S = (S,Steps) where S is a finite set of states and Steps a function which as-
signs to each state s ∈ S a finite, non-empty set Steps(s) of distributions on S.
Elements of Steps(s) are called transitions. Systems S = (S,Steps) such that
Steps(s) is a singleton set for each s ∈ S are called purely probabilistic and
coincide with discrete time Markov chains.

Paths in a concurrent probabilistic system arise by resolving both the non-
deterministic and probabilistic choices. A path of the system S = (S,Steps) is a
non-empty finite or infinite sequence π = s0

p0−→ s1
p1−→ s2

p2−→ · · · where si ∈ S,
pi ∈ Steps(si) with pi(si+1) > 0. We let π(i) denote the ith state of the path π.

The selection of a probability distribution is made by an adversary (also
known as a scheduler), a function mapping every finite path of the system onto
one of the distributions in Steps(s) where s is the last state of the path. Note
we use deterministic adversaries, rather than randomized adversaries as in [8].
For an adversary A of a concurrent probabilistic system S = (S,Steps) we
define PathA

ful to be the set of infinite paths corresponding to the choices of
the adversary. In the standard way, we define the measure Prob over infinite
paths.

Since we allow nondeterministic choice between probability distributions, we
may have to impose fairness constraints to ensure that liveness properties can
be verified. In a distributed environment fairness corresponds to a requirement
for each each concurrent component to progress whenever possible. Without
fairness, certain liveness properties may trivially fail to hold in the presence of
simultaneously enabled transitions of a concurrent component. An adversary is
called fair if any choice of transitions that becomes enabled infinitely often along
a computation path is taken infinitely often. The interested reader is referred to
[5,20] for more information on the subject.

3 The Logic PBTL

In this section, based on [5,8], we recall the syntax and semantics of the proba-
bilistic branching-time temporal logic PBTL. PBTL derives from CTL [13] and
PCTL [22], borrowing the temporal operator U (“until”) and the path quantifier
∃ from CTL, and the probabilistic operator [·]wλ from PCTL.

Let AP denote a finite set of atomic propositions. A PBTL structure is a
tuple (S,AP, L) where S = (S,Steps) is a concurrent probabilistic system and
L : S → 2AP is a labelling function which assigns to each state s ∈ S a set of
atomic propositions. The syntax of PBTL is:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | [φ1 ∃U φ2]wλ

where a is an atomic proposition, λ ∈ [0, 1], and w is either ≥ or >.
The branching time quantifier ∃ involves quantification over adversaries,

meaning “there exists an adversary” of a given type. Note that to simplify this

presentation, we have omitted the “bounded until”, “next state” and “universal
until” operators which can easily be added. The latter is defined similarly to the
“existential until” operator included above. For a PBTL formula φ and set Adv
of adversaries we define the satisfaction relation s |=Adv φ inductively as follows:

s |=Adv true for all s ∈ S
s |=Adv a ⇔ a ∈ L(s)
s |=Adv φ1 ∧ φ2 ⇔ s |=Adv φ1 and s |=Adv φ2

s |=Adv ¬φ ⇔ s 6|=Adv φ

s |=Adv [φ1 ∃ U φ2]wλ ⇔ Prob({π |π ∈ PathA
ful(s) & π |=Adv φ1 U φ2}) w λ

for some adversary A ∈ Adv

π |=Adv φ1 U φ2 ⇔ there exists k ≥ 0 such that π(k) |=Adv φ2

and for all j = 0, 1, . . . , k − 1, π(j) |=Adv φ1

We denote satisfaction for all adversaries by |= and satisfaction for all fair
adversaries by |=fair .

4 PBTL Model Checking

With the exception of “until” formulas and fairness, model checking for PBTL
is straightforward, see [8,5]. It proceeds by induction on the parse tree of the
formula, as in the case of CTL model checking [13].

We only consider existential “until” for reasons of space. To establish whether
s |=Adv [φ ∃U ψ]wλ, we calculate the maximum probability :

pmax
s (φ U ψ) = sup{pA

s (φ U ψ) | A ∈ Adv}

where pA
s (φ U ψ) = Prob({π | π ∈ PathA

ful(s) & π |= φ U ψ}) and compare
the result to the threshold λ, i.e. establish the inequality pmax

s w λ. First we
introduce an operator on sets of states which will be used in the algorithm.

For U0, U1 ⊆ S, define reachE (U0, U1) = µZ[H] as the least fixed point of
the map H : 2S → 2S , where:

H = λx.(((x∈U0) ∧ ∃p∈Steps(x)∃y(p(y) > 0 ∧ y∈Z)) ∨ (x∈U1)).

The algorithm is shown in Figure 1. We use ε = 10−6 as the termination criterion
for the iteration in step 3. Observe that we compute approximations to the
actual (minimum/maximum) probabilities from below to within ε. Alternatively,
the values pmax

s (φ U ψ) can be calculated by reduction to linear optimization
problems [8,5,2].

Fairness assumptions, which are necessary in order to verify liveness prop-
erties of concurrent probabilistic processes, for example “under any scheduling,
process P will eventually enter a successful state with probability at least 0.7”,
can also be handled. This is possible via reduction of the model checking for
|=fair to that for ordinary satisfaction |= using results from [5,2].

1. Compute the sets of states Sat(φ),Sat(ψ) that satisfy φ, ψ.
2. Let (a) Syes := Sat(ψ)

(b) S>0 := reachE(Sat(φ), Syes)
(c) Sno := S \ S>0

(d) S? := S \ (Syes ∪ Sno)
3. Set pmax

s (φ U ψ) = 1 if s ∈ Syes and pmax
s (φ U ψ) = 0 if s ∈ Sno.

For s ∈ S?, calculate pmax
s (φ U ψ) iteratively as the limit, as n

tends to ∞, of the approximations 〈xs,n〉n∈IN, where xs,0 = 0
and for n = 1, 2, . . .

xs,n = max

{ ∑
t∈S?

r(t) · xt,n−1 +
∑

t∈Syes
r(t) | r ∈ Steps(s)

}
.

4. Finally, let Sat([φ ∃U ψ]wλ) := {s ∈ S | pmax
s (φ U ψ) w λ}.

Fig. 1. The Algorithm EU

For purely probabilistic systems, model checking of “until” reduces to a linear
equation system in |S?| unknowns which can be solved either through a direct
method such as Gaussian elimination, or iteratively via e.g. Jacobi or Gauss-
Seidel iteration.

4.1 Probability-1 Precomputation Step

The model checking algorithm for “until” properties given below can be improved
by pre-computing the set of all states from which the formula holds with maximal
probability 1. The algorithm for this precomputation step is based on results of
[15,16] and can be derived from that in [19] for computing the set of states that
can reach a goal with probability 1. We have here adapted it to “until” formulas.

For any Z0, Z1 ⊆ S let Pre(Z0, Z1) be the set of states defined by:

Pre(Z0, Z1) =
{x | ∃p ∈ Steps(x)(∀y(p(y) > 0 → y ∈ Z0) ∧ ∃y(p(y) > 0 ∧ y ∈ Z1))}.

Intuitively, s ∈ Pre(Z0, Z1) if one can go from s to Z1 with positive probability
without leaving Z0.

Theorem 1. Let S = (S,Steps) be a concurrent probabilistic transition system,
U0, U1 ⊆ S subsets of states and prob1E (U0, U1) be the set of states given by the
solution to νZ0µZ1[G] where

G = λx.((x ∈ U1) ∨ ((x ∈ U0) ∧ x ∈ Pre(Z0, Z1))).

Then s∈prob1E (U0, U1) if and only if from s, for some adversary, one reaches
a state in U1 via a path through states in U0 with probability 1.

It follows from this theorem that we can strengthen the assignment to Syes

at step 2(a) of Algorithm EU to: Syes := prob1E (Sat(φ),Sat(ψ)). Hence, in
cases of qualitative properties, i.e. properties which are required to hold with
probability 1, no further computation of the probability vector will be required.
In particular, this avoids potential difficulties with approximations.

4.2 Symbolic Model Checking

A symbolic method is obtained from the above procedure by representing the
system and probability vector as MTBDDs, Sat(φ) as a BDD, and expressing
the probability calculations as MTBDD/BDD operations (for more details see
[3,2]). The operators reachE (·, ·) and prob1E (·, ·) can be expressed in terms of
BDD fixed point computation with respect to the transition relation extracted
from the MTBDD. The iterative calculation of the probability vector requires
matrix-by-vector multiplication and the operation Abstract(max).

5 Representing Probabilistic Processes with MTBDDs

MTBDDs were introduced in [14] as a generalisation of BDDs. Like BDDs, they
take the form of a rooted directed acyclic graph, the nonterminal nodes of which
are labelled with Boolean variables from an ordered set. Unlike BDDs however,
the terminal nodes are labelled with values taken from a finite set D (usually a
subset of the reals), not just 0 and 1. The operations on MTBDDs are derived
from their BDD counter-parts, and include Reduce, Apply and Abstract,
see [1,14]. An MTBDD with n Boolean variables and terminals taken from the
finite set D, can be considered as a map f : {0, 1}n → D.

In [14] it is shown how to represent matrices in terms of MTBDDs. Consider
a square 2m × 2m–matrix A with entries taken from D. Its elements aij can
be viewed as the values of a function fA : {1, . . . , 2m} × {1, . . . , 2m} → D,
where fA(i, j) = aij , mapping the position indices i, j to the matrix element aij .
Using the standard encoding c : {0, 1}m → {1, . . . , 2m} of Boolean sequences
of length m into the integers, this function may be interpreted as a Boolean
function f : {0, 1}2m → D where f(x, y) = fA(c(x), c(y)) for x = (x1, . . . , xm)
and y = (y1, . . . , ym). We require the variables for the rows and columns to
alternate, that is, use the MTBDD obtained from f(x1, y1, x2, y2, . . . , xm, ym).
This convention imposes a recursive structure on the matrix from which efficient
recursive algorithms for all standard matrix operations are derived [1,14].

Probability matrices are sparse, and thus can have a compact MTBDD repre-
sentation. This compactness results from sharing of substructures, and increases
with the regularity of the original matrix. Though in the worst case exponential,
compared to sparse matrix representation and depending on the degree of reg-
ularity of the original matrix, MTBDDs can be much more space-efficient than
sparse matrices. They also combine efficiently with BDDs.

Concurrent probabilistic transition systems with n states that enable at most
l nondeterministic transitions each can be represented as a nl×n matrix, which

can then be stored as an MTBDD. (For simplicity assume that n and l are
powers of 2). Each row of the matrix represents a single nondeterministic choice,
where the element in position (i.k, j) represents the probability of reaching state
j from state i in the kth transition that leaves from i.

Unfortunately, experimental evidence has shown that this simple MTBDD
representation of concurrent probabilistic systems suffers from a disproportion-
ately large number of internal nodes, due to the lack of regularity. Instead, we
will adapt the Kronecker representation originally introduced for space-efficient
storage of Markov processes as Stochastic Automata Networks [26].

5.1 A Modular Description Language for Probabilistic Processes

We propose a modular description language for concurrent probabilistic sys-
tems in an attempt to derive a more efficient MTBDD encoding. The system is
considered as a composition of modules, acting concurrently, more specifically
via the asynchronous parallel composition of probabilistic processes whose local
transitions may be dependent on the global state of the system.

This model bears similarities to the Stochastic Automata Networks (SANs)
of [26]. One difference between the two approaches is that we consider proba-
bilistic, as opposed to stochastic processes. Secondly, SANs permit two types of
process interaction: synchronization between components, and functional transi-
tions, where the rate or probability with which one component makes a transition
may depend on the state of another component. For simplicity, we discuss here
only the latter type of interaction. Most importantly, the motivation is different:
the fundamental idea with SANs is that since the transition matrix for the com-
posed system is formulated as a Kronecker expression, only the small matrices
which make up this expression need to be stored and explicit construction of the
whole (often huge) transition matrix can be avoided. Although our aim is also
to obtain a space efficient method of storage, we construct the whole matrix and
use a Kronecker expression to derive an efficient MTBDD variable ordering.

We consider the system as a composition of n modules M1, . . . ,Mn, each
with a set of local variables Var i. Each variable x ∈ Var i has a finite range of
values, range(x). The local state space Si of module Mi is

∏
x∈Vari

range(x).
The global state space of the combined system is then S =

∏n
i=1 Si.

Each module defines the transitions that it can make, depending on its cur-
rent state and the state of the other modules in the system. The behaviour of
a module Mi is given by a finite non-empty set Li of tuples of the form (c, p),
where c = ∧n

j=1cj is a conjunction of n variable constraints, cj is a formula over
Var j and p is a probability distribution over Si. Intuitively, c represents the
condition under which transitions corresponding to the probability distribution
p can be made. We can associate with a tuple l = (c, p) the set of global states
Sl = {s ∈ S | s |= c} which satisfy the variable contraints. We require, for all
modules Mi, that the sets Sl where l ∈ Li form a disjoint union of S.

We interpret the formal description of the behaviour of the modules as fol-
lows. If the global state of the system is s = (s1, . . . , sn) and s ∈ Sl for a tuple
l = (c, p) ∈ Li then the probability of module Mi moving from its current local

state si to the local state ti is p(ti). Hence, in each global state of the system,
any of the n modules can make a move. The behaviour of each individual module
is essentially that of a Markov chain. It is necessary to decide on some form of
scheduling between the modules to define the behaviour of the composed system.
We consider two possibilities: probabilistic and nondeterministic scheduling. In
the former, each module has an equal probability of being scheduled, giving a
Markov chain. In the latter, we allow a nondeterministic choice between modules,
which gives a concurrent probabilistic system as described in Section 2.

Module M1:

(x = 0) → 1
2

: (x′ = 0) + 1
2

: (x′ = 1)
(x = 1) ∧ (y ≤ 1) → (x′ = 2)
(x = 1) ∧ (y = 2) → (x′ = 1)
(x = 2) → 1

2
: (x′ = 0) + 1

2
: (x′ = 2)

Module M2:

(y = 0) → 1
2

: (y′ = 0) + 1
2

: (y′ = 1)
(y = 1) ∧ (x ≤ 1) → (y′ = 2)
(y = 1) ∧ (x = 2) → (y′ = 1)
(y = 2) → 1

2
: (y′ = 0) + 1

2
: (y′ = 2)

x= 0

x=2

x=1

1
2

1
2

= 2y

= 2y

1
2

1
2

Fig. 2. (i) A system composed of two modules. (ii) Transition system of module
M1

Consider the example shown in Figure 2 of the modules M1,M2, with corre-
sponding variable sets Var1 = {x} and Var2 = {y}, where x and y have range
{0, 1, 2}. Figure 2(i) shows a textual description of the modules. Each line corre-
sponds to a tuple (c, p) where the condition c and the probability distribution p
are separated by a → symbol. For example, in line 1 of module M1, the condition
is (x = 0) and the distribution is 1

2 : (x′ = 0)+ 1
2 : (x′ = 1), where x′ denotes the

value of x in the state after the transition. Note c = (x = 0) is in fact c = c1∧ c2
where c1 = (x = 0) and c2 = true, i.e. there is no constraint on y.

5.2 A Kronecker Expression for the Modular Description

We now derive a Kronecker expression for the transition matrix of the composed
system. As pointed out in [26], the transition matrix for the composition of n
non-interacting stochastic automata can be written as:

Q = ⊕n
i=1Li =

n∑
i=1

Qi where Qi = (⊗i−1
j=1Inj)⊗ Li ⊗ (⊗n

j=i+1Inj
).

In the above, Li is the local transition matrix for component i, In the identity
matrix of size n, and nj the dimension of local matrix Lj . We use the same
basic construction here, but with probability matrices Pi for each module, rather
than Qi. These local matrices are then combined through scheduling rather
than simply summation. We also account for the fact that the behaviour of one
module can depend on the state of another. As with functional transitions in
SANs, this does not affect the overall structure of the Kronecker expression:

some transitions are simply removed by zeroing out the relevant entry in the
component matrix.

For a given module Mi, we want an expression for the corresponding transi-
tion matrix Pi. Since + distributes over ⊗, we can break the expression up into
separate matrices Pi,l, such that Pi =

∑
l∈Li

Pi,l. The restrictions on transi-
tions are handled by zeroing out some entries of the identity matrices. We first
convert the information from the module descriptions to vectors. For module
Mi and line l ∈ Li where l = (c, p) and c = ∧n

j=1cj , we associate with each cj
the column vector cj , indexed over local states Sj , with cj(s) = 1 if s |= cj and
cj(s) = 0 otherwise. Similarly, the probability distribution p is converted to a
row vector p, indexed over local states from Si, with p(s) = p(s). The unwanted
elements of the jth identity matrix are removed by a pointwise multiplication
with the vector cj . Then:

Pi,l = (⊗i−1
j=1cj · Inj

)⊗ (ci ⊗ p)⊗ (⊗n
j=i+1cj · Inj

)

Consider the example given previously. We can write the matrices P1,1 and P2,2

for line 1 of module M1 and line 2 of module M2 respectively, as:

P1,1 =

 1
0
0

⊗
(

1
2

1
2

0
)⊗

 1
1
1

 ·

 1 0 0
0 1 0
0 0 1

 =

 1
2

1
2

0
0 0 0
0 0 0

⊗

 1 0 0
0 1 0
0 0 1



P2,2 =

 1
1
0

 ·

 1 0 0
0 1 0
0 0 1

⊗

 0
1
0

⊗
(
0 0 1

) =

 1 0 0
0 1 0
0 0 0

⊗

 0 0 0
0 0 1
0 0 0



5.3 Module to MTBDD Translation

The construction of the transition matrix, as described above, can be derived
directly from the syntax in Figure 2(i) by means of BDD and MTBDD oper-
ations. First, we encode all the module variables with Boolean variables. For
convenience, we assume that the range of each variable, x, is a power of 2, i.e.
range(x) = {0, . . . , 2k − 1} for some k. Hence, x can be encoded with k Boolean
variables x1, . . . , xk, and x′ with x1

′, . . . , xk
′. This gives a set of MTBDD row

(unprimed) and column (primed) variables for each module variable in the sys-
tem. The ordering of the modules in the textual description and of the module
variables within them gives us an overall ordering for the Boolean variables in our
MTBDDs. In our small example, we get x1 < x′1 < x2 < x′2 < y1 < y′1 < y2 < y′2.

The column vectors cj , row vector p and identity matrices Inj
can then be

represented as MTBDDs, using the appropriate Boolean variables. The Kro-
necker product operation on matrices and vectors represented as MTBDDs can
be performed using the Apply(×) operator. The only precaution which must
be taken is to ensure that the relative order of the MTBDD variables is cor-
rect. If the MTBDDs f and g represent the matrices F and G respectively
and all the variables in f precede all those of g in the overall variable ordering

then Apply(×, f , g) gives the MTBDD for the matrix F ⊗ G which depends
on the variables of both. Because we have ensured that our Boolean variables
are grouped and ordered by module, the Kronecker expression can be com-
puted easily with Apply(×). Since pointwise multiplication is also carried using
Apply(×), the MTBDD expression for Pi,l is as shown below.

Pi,l = Apply(×, c1, In1 , . . . , ci−1, Ini−1 , ci,p, ci+1, Ini+1 , . . . , cn, Inn
).

Since × is commutative and Apply(×, c1, . . . , cn) = c, rearranging:

Pi,l = Apply(×, c,p, In1 , . . . , Ini−1 , Ini+1 , . . . , Inn
).

We then obtain Pi by summing the Pi,l for l ∈ Li using Apply(+). Finally, we
compute the MTBDD P for the whole system. For probabilistic scheduling:

P = Apply(×, 1
n
,Apply(+,P1, . . . ,Pn)).

For nondeterministic scheduling, we add MTBDD variables to encode the sched-
uler’s choice: one variable, si, for each process, where si = 1 iff module Mi is
scheduled. This variable can be inserted in the variable ordering next to the vari-
ables for Mi, to preserve regularity. Returning to our simple example, we would
have the variable ordering s1 < x1 < x′1 < x2 < x′2 < s2 < y1 < y′1 < y2 < y′2.
The computation of P becomes:

P = Apply(+, ITE(s1 = 1,P1, 0), . . . , ITE(sn = 1,Pn, 0)).

where ITE(·, ·, ·) refers to the MTBDD operation IfThenElse(·, ·, ·).
The central observation of the paper is that if we convert each of the compo-

nent matrices into an MTBDD using the Boolean variables and ordering given
above, then this yields a very efficient state-space encoding through increase in
regularity (for example, over the matrix obtained through breadth-first search1)
and sharing. This complies with similar results in [23,30]. Moreover, Kronecker
product and ordinary sum of two matrices are also very efficient as they respec-
tively correspond to the MTBDD operations Apply(×) and Apply(+).

6 Experimental Results

We have implemented an experimental symbolic model checking tool using the
CUDD package [31]. This package provides support for BDDs and MTBDDs,
together with matrix multiplication algorithms from [1,14].

Our tool performs model checking for PBTL, with and without fairness. The
MTBDD for a system of modules is automatically generated from its textual
description using the translation described above. Forward reachability analysis
is then performed to filter out the unreachable states.
1 See www.cs.bham.ac.uk/~dxp/prism/ for Matlab spy plots of matrices obtained

via breadth-first search and Kronecker.

www.cs.bham.ac.uk/~dxp/prism/

To model check qualitative properties (typically ‘with probability 1’), reacha-
bility analysis through fixed point computation suffices. Quantitative properties,
however, require numerical computation. We work with double-precision floating
point arithmetic, which is standard for numerical calculations. Our implementa-
tion relies on the matrix-by-vector multiplication obtained from the matrix-by-
matrix multiplication algorithms supplied with the CUDD package. The model
checking of unbounded “until” properties is through the Algorithm EU. For
purely probabilistic processes we use Jacobi iteration, which has the following
advantages: it is simple and numerically stable, relies only on the matrix-by-
vector multiplication, and can deal with very large matrices (since it does not
change the matrix representing the system). The limiting factor is thus the size
of the probability vector (which can only be represented efficiently in MTBDDs
if it has regularity).

We have tested our tool on several scalable examples from the literature, in
particular the kanban problem [12] known from manufacturing and the random-
ized dining philosophers [28]. For more information see www.cs.bham.ac.uk/
~dxp/prism/. Figures 3–6 show a summary of results for the dining philosophers
model. The concurrent model corresponds to that presented in [28], whereas the
probabilistic model corresponds to the same model with probabilistic scheduling.
The tables give the MTBDD statistics, construction and model checking times
in seconds of the liveness property in [28] (with fairness), performed on an Ultra
10 with 380MB.

The main observations we have made so far are as follows: (1) the variable
ordering induced from the Kronecker representation results in very compact
MTBDDs (see comparison of the number of internal nodes in breadth-first and
Kronecker); (2) because of sharing, MTBDDs allow space-efficiency gains over
conventional sparse matrices for certain systems; (3) the model construction
is very fast, including the computation of the reachable subspace; (4) through
use of probability-1 precomputation step, model checking of qualitative proper-
ties (with and without fairness) is very fast, and results in orders of magnitude
speed-up; (5) performance of numerical calculation with MTBDDs is consider-
ably worse than with sparse matrices, though MTBDDs can potentially handle
larger matrices and vectors (e.g. up to 5 million) depending on their regularity.

7 Conclusion

We have demonstrated the feasibility of symbolic model checking for probabilis-
tic processes using MTBDDs. In particular, the state encoding induced from the
Kronecker representation allows us to verify qualitative properties of systems
containing up to 1030 states in a matter of seconds. Moreover, model creation is
very fast (typically seconds) due to the close correspondence between Kronecker
product and Apply(×), and efficiency of reachability analysis implemented as
the usual BDD fixed point computation. Likewise, model checking of qualitative
properties (expressed as ‘with probability 1’ PBTL formulas) is very fast. Many

www.cs.bham.ac.uk/~dxp/prism/
www.cs.bham.ac.uk/~dxp/prism/

Model: Breadth-first:
States: NNZ: Nodes:

phil 3 770 2, 845 3, 636
phil 4 7, 070 34, 125 30, 358
phil 5 64, 858 384, 621 229, 925

Model: Kronecker: After reachability:
States: NNZ: Nodes: States NNZ: Nodes:

phil 3 1, 331 4, 654 647 770 2, 845 873
phil 4 14, 641 67, 531 1, 329 7, 070 34, 125 2, 159
phil 5 161, 051 919, 656 2, 388 64, 858 384, 621 3, 977
phil 10 2.59× 1010 2.86× 1011 14, 999 4.21× 109 4.72× 1010 26, 269
phil 20 6.73× 1020 1.43× 1022 174, 077 1.77× 1019 3.81× 1020 291, 760
phil 25 1.08× 1026 2.86× 1026 479, 128 1.14× 1024 3.06× 1025 798, 145

Fig. 3. Statistics for probabilistic models and their MTBDD representation.
Model: Breadth-first:

States: NNZ: Nodes:

phil 3 770 2, 910 4, 401
phil 4 7, 070 35, 620 41, 670
phil 5 64, 858 408, 470 354, 902

Model: Kronecker: After reachability
States: NNZ: Nodes: States NNZ: Nodes:

phil 3 1, 331 34, 848 451 770 20, 880 779
phil 4 14, 641 1, 022, 208 669 7, 070 511, 232 1556
phil 5 161, 051 2.81× 107 887 64, 858 1.17× 107 2, 178
phil 10 2.59× 1010 2.90× 1014 1, 977 4.21× 109 4.87× 1013 6, 379
phil 20 6.73× 1020 1.54× 1028 4, 157 1.77× 1019 4.19× 1026 14, 429
phil 30 1.75× 1031 6.13× 1041 6, 337 7.44× 1028 2.71× 1039 22, 479

Fig. 4. Statistics for concurrent models and their MTBDD representation.

quantitative properties, however, are not handled efficiently by our present tool.
This is due to poor efficiency of numerical computation, such as Jacobi iteration
or simplex, compared to the corresponding sparse matrix implementation. The
causes of this are a sudden loss of regularity of the probability vector due to
explosion in the number of distinct values computed in the process of approxi-
mation (in the case of Jacobi) or fill-in of the tableau (in the case of simplex).

Future work will involve further development of the front end for our tool,
comparison with the prototype tools of [4,9,12], and addressing the inefficiency
of numerical calculations with MTBDDs.

Acknowledgements

The authors Kwiatkowska, Norman and Parker are members of the ARC project
1031 Stochastic Modelling and Verification funded by the British Council and
DAAD. We also thank the anonymous referees for their helpful comments.

Model: Construction: Reachability: Model checking:
Time (s): Time (s): Iterations: Time (s): Iterations:

phil3 0.02 0.06 18 0.02 6
phil4 0.04 0.33 24 0.04 6
phil5 0.07 1.08 30 0.06 6
phil10 0.45 28.28 60 0.23 6
phil20 4.45 404.15 120 0.65 6
phil25 10.81 766.03 150 0.99 6

Fig. 5. Times for construction and model checking of probabilistic models

Model: Construction: Reachability: Model checking:
Time (s): Time (s): Iterations: Time (s): Iterations:

phil3 0.02 0.07 18 0.02 6
phil4 0.03 0.35 24 0.04 6
phil5 0.05 1.00 30 0.07 6
phil10 0.24 27.03 60 0.22 6
phil20 1.45 389.56 120 0.49 6
phil30 4.10 5395.00 180 11.40 6

Fig. 6. Times for construction and model checking of concurrent models

References

1. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii, A. Pardo, and F. Somenzi.
Algebraic Decision Diagrams and their Applications. Journal of Formal Methods
in Systems Design, 10(2/3):171–206, 1997.

2. C. Baier. On algorithmic verification methods for probabilistic systems. Habilita-
tion thesis, 1998.

3. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Proceedings, 24th ICALP,
volume 1256 of LNCS, pages 430–440. Springer-Verlag, 1997.

4. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In CONCUR’99, volume 1664 of LNCS, pages
146–161. Springer-Verlag, 1999.

5. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

6. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New
generation of uppaal. In Proceedings of the International Workshop on Software
Tools for Technology Transfer, Aalborg, Denmark, July 1998.

7. D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995.

8. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondetermin-
istic systems. In Proceedings, FST&TCS, volume 1026 of LNCS, pages 499–513.
Springer-Verlag, 1995.

9. M. Bozga and O. Maler. On the representation of probabilities over structured
domains. In Proc. CAV’99, volume 1633 of LNCS, pages 261–273, 1999.

10. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In LICS’90, June 1990.

11. G. Ciardo and A. Miner. SMART: Simulation and markovian analyzer for relia-
bility and timing. In Tools Descriptions from PNPM’97, pages 41–43, 1997.

12. G. Ciardo and A. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In Proc. PNPM’99, 1999.

13. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite state con-
current systems using temporal logic specifications: A practical approach. In Pro-
ceedings, 10th Annual Symp. on Principles of Programming Languages, 1983.

14. E. Clarke, M. Fujita, P. McGeer, J.Yang, and X. Zhao. Multi-Terminal Binary
Decision Diagrams: An Efficient Data Structure for Matrix Representation. In
International Workshop on Logic Synthesis, 1993.

15. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events.
In Proc. ICALP’90, volume 443 of LNCS, pages 336–349. Springer-Verlag, 1990.

16. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

17. L. de Alfaro. How to specify and verify the long-run average behavior of proba-
bilistic systems. In Proc. LICS’98, pages 454–465, 1998.

18. L. de Alfaro. Stochastic transition systems. In Proc. CONCUR’98, volume 1466
of LNCS. Springer-Verlag, 1998.

19. L. de Alfaro. Computing minimum and maximum reachability times in probabilis-
tic systems. In Proc. CONCUR’99, volume 1664 of LNCS, 1999.

20. L. de Alfaro. From fairness to chance. In Proc. PROBMIV’98, volume 21 of
ENTCS. Elsevier, 1999.

21. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large
Finite State Machines. IEEE Transactions on CAD, 15(12):1479–1493, 1996.

22. H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6:512–535, 1994.

23. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary Deci-
sion Diagrams to represent and analyse continuous time Markov chains. In Proc.
NSMC’99, 1999.

24. M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model checking
of concurrent probabilistic systems using MTBDDs and simplex. Technical Report
CSR-99-1, University of Birmingham, 1999.

25. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
26. B. Plateau. On the Stochastic Structure of Parallelism and Synchronisation Models

for Distributed Algorithms. In Proc. 1985 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 147–153, May 1985.

27. B. Plateau, J. M. Fourneau, and K. H. Lee. PEPS: a package for solving com-
plex Markov models of parallel systems. In R. Puigjaner and D. Potier, editors,
Modelling techniques and tools for computer performance evaluation, 1988.

28. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1:53–72, 1986.

29. R. Segala. Modelling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, 1995.

30. M. Siegle. Compact representation of large performability models based on ex-
tended BDDs. In Fourth International Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS4), pages 77–80, 1998.

31. F. Somenzi. CUDD: CU decision diagram package. Public software, Colorado
University, Boulder, 1997.

32. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proceedings, FOCS’85, pages 327–338. IEEE Press, 1987.

	Symbolic Model Checking of Probabilistic Processes using MTBDDs and the Kronecker Representation
	Introduction
	Concurrent Probabilistic Systems
	The Logic PBTL
	PBTL Model Checking
	Probability-1 Precomputation Step
	Symbolic Model Checking

	Representing Probabilistic Processes with MTBDDs
	A Modular Description Language for Probabilistic Processes
	A Kronecker Expression for the Modular Description
	Module to MTBDD Translation

	Experimental Results
	Conclusion

