
Multi-player Equilibria Verification for
Concurrent Stochastic Games

Marta Kwiatkowska1, Gethin Norman2, David Parker3, and Gabriel Santos1

1 Department of Computing Science, University of Oxford, UK
2 School of Computing Science, University of Glasgow, UK

3 School of Computer Science, University of Birmingham, UK

Abstract. Concurrent stochastic games (CSGs) are an ideal formalism
for modelling probabilistic systems that feature multiple players or com-
ponents with distinct objectives making concurrent, rational decisions.
Examples include communication or security protocols and multi-robot
navigation. Verification methods for CSGs exist but are limited to sce-
narios where agents or players are grouped into two coalitions, with those
in the same coalition sharing an identical objective. In this paper, we pro-
pose multi-coalitional verification techniques for CSGs. We use subgame-
perfect social welfare (or social cost) optimal Nash equilibria, which are
strategies where there is no incentive for any coalition to unilaterally
change its strategy in any game state, and where the total combined
objectives are maximised (or minimised). We present an extension of the
temporal logic rPATL (probabilistic alternating-time temporal logic with
rewards) to specify equilibria-based properties for any number of distinct
coalitions, and a corresponding model checking algorithm for a variant
of stopping games. We implement our techniques in the PRISM-games
tool and apply them to several case studies, including a secret sharing
protocol and a public good game.

1 Introduction

Stochastic multi-player games are a modelling formalism that involves a num-
ber of players making sequences of rational decisions, each of which results in
a probabilistic change in state. They are well suited to modelling systems that
feature competitive or collaborative behaviour between multiple components or
agents, operating in uncertain or stochastic environments. Examples include
communication or security protocols, which may employ randomisation or send
messages over unreliable channels, and multi-robot or multi-vehicle navigation,
where sensors and actuators are subject to noise or prone to failure. A game-
theoretic approach to modelling also allows rewards, incentives or resource usage
to be incorporated. For example, mechanism design can be used to create proto-
cols reliant on incentive schemes to improve robustness against selfish behaviour
by participants, as utilised in network routing protocols [34] and auctions [14].

Designing reliable systems that comprise multiple components with differing
objectives is a challenge. This is further complicated by the need to consider

2 Kwiatkowska, Norman, Parker, Santos

stochastic behaviour. Formal verification techniques for stochastic multi-player
games can be a valuable tool for tackling this problem. The probabilistic model
checker PRISM-games [25] has been developed for modelling and analysis of
stochastic games: both the turn-based variant, where one player makes a de-
cision in each state, and the concurrent variant, where players make decisions
concurrently and without knowledge of each other’s actions. PRISM-games also
supports strategy synthesis, which allows automated generation of strategies for
one or more players in the game, which are guaranteed to satisfy quantitative
correctness specifications written in temporal logic.

The temporal logics used in PRISM-games for stochastic games are based on
rPATL (probabilistic alternating-time temporal logic with rewards) [12], which
combines features of the game logic ATL [4] and probabilistic temporal logics.
For example, in a 3-player game, the formula 〈〈rbt1〉〉P>p[F g1] states “robot 1
has a strategy under which the probability of it successfully reaching its goal
is at least p, regardless of the strategies of robots 2 and 3”. Model checking
and strategy synthesis algorithms for rPATL exist for both turn-based [12] and
concurrent stochastic games [22].

rPATL uses ATL’s coalition operator 〈〈·〉〉 to formulate properties. In the
above example, there are two coalitions, one containing robot 1 and the other
robots 2 and 3. The coalitions have distinctly opposing (zero-sum) objectives,
aiming either to maximise or minimise the probability of robot 1 reaching its
goal. A recent extension [23] allows the two coalitions to have distinct objec-
tives, using Nash equilibria. More precisely, it uses subgame-perfect social wel-
fare optimal Nash equilibria, which are strategies for all players where there
is no incentive for either coalition to unilaterally change its strategy in any
state, and where the total combined objectives are maximised. For example,
〈〈rbt1:rbt2, rbt3〉〉max=?(P[F g1] + P[F (g2 ∧ g3)]) asks for such an equilibrium,
where the two coalitions’ objectives are to maximise the probability of reaching
their own (distinct) goals. Model checking rPATL for both the zero-sum [12,22]
and equilibria-based [23] properties has the advantage that it essentially reduces
to the analysis of 2-player stochastic games, for which various algorithms exist
(e.g., [2,3,10]). However, a clear limitation is the assumption that agents can, or
would be willing to, collaborate and form two distinct coalitions.

In this paper, we propose multi-coalitional verification techniques for con-
current stochastic games (CSGs). We extend the temporal logic rPATL to allow
reasoning about any number of distinct coalitions with different quantitative
objectives, expressed using a variety of temporal operators capturing either the
probability of an event occurring or a reward measure. We then give a model
checking algorithm for the logic against CSGs, restricting our attention to a vari-
ant of stopping games [13], which, with probability 1, eventually reach a point
where the outcome of each player’s objective does not change by continuing.
Our algorithm uses a combination of backward induction (for finite-horizon op-
erators) and value iteration (for infinite-horizon operators). A key ingredient of
the computation is finding optimal Nash equilibria for n-player games, which we
perform using support enumeration [33] and a mixture of SMT and non-linear

Multi-player Equilibria Verification for Concurrent Stochastic Games 3

optimisation solvers. We implement our techniques in the PRISM-games tool
and apply them to several case studies, including a secret sharing protocol and
a public good game. This allows us to verify multi-player scenarios that could
not be analysed with existing techniques [23].

Related work. As summarised above, there are various algorithms to solve
CSGs, e.g., [2,3,10], and model checking techniques have been developed for
both zero-sum [22] and equilibria-based [23] versions of rPATL on CSGs, imple-
mented in PRISM-games [25]. However, all of this work assumes or reduces to the
2-player case. Equilibria for n-player CSGs are considered in [8], but only com-
plexity results, not algorithms, are presented. Other tools exist to reason about
equilibria, including PRALINE [7], EAGLE [37], EVE [18], MCMAS-SLK [9]
(via strategy logic) and Gambit [26], but these are all for non-stochastic games.

2 Preliminaries

We let Dist(X) denote the set of probability distributions over set X. For any
vector v we use v(i) to denote the ith entry of the vector.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where: N = {1, . . . , n} is a finite set of players;
A = A1× · · ·×An and Ai is a finite set of actions available to player i ∈ N ;
u=(u1, . . . , un) and ui : A→ R is a utility function for player i ∈ N .

For an NFG N, the players choose actions at the same time, where the choice for
player i ∈ N is over the action set Ai. When each player i chooses ai, the utility
received by player j equals uj(a1, . . . , an). A (mixed) strategy σi for player i is
a distribution over its action set. Let ηai denote the pure strategy that selects
action ai with probability 1 and Σi

N the set of strategies for player i. A strategy
profile σ=(σ1, . . . , σn) is a tuple of strategies for each player and under σ the
expected utility of player i equals:

ui(σ)
def
=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)
.

For strategy σi of a player, the support of σi is the set of actions it chooses with
nonzero probability, i.e., {ai ∈ Ai | σi(ai)>0}. Furthermore, the support of a
profile is the product of the supports of the individual strategies and a profile is
said to have full support if it includes all available action tuples.

We now fix an NFG N=(N,A, u) and introduce the notion of Nash equilib-
rium and the variants we require. For profile σ=(σ1, . . . , σn) and player i strat-

egy σ′i, we define the sequence σ−i
def
= (σ1, . . . , σi−1, σi+1, . . . , σn) and profile

σ−i[σ
′
i]

def
= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

Definition 2 (Best and least response). For player i and strategy sequence
σ−i, a best response for player i to σ−i is a strategy σ?i for player i such that
ui(σ−i[σ

?
i]) > ui(σ−i[σi]) for all σi ∈ Σi

N and a least response for player i to σ−i
is a strategy σ?i for player i such that ui(σ−i[σ

?
i]) 6 ui(σ−i[σi]) for all σi ∈ Σi

N.

4 Kwiatkowska, Norman, Parker, Santos

Definition 3 (Nash equilibrium). A strategy profile σ? is a Nash equilibrium
(NE) if σ?i is a best response to σ?−i for all i ∈ N .

Definition 4 (Social welfare NE). An NE σ? is a social welfare optimal
NE (SWNE) and 〈ui(σ?)〉i∈N are SWNE values if u1(σ?)+ · · · +un(σ?) >
u1(σ)+ · · ·+ un(σ) for all NE σ of N.

Definition 5 (Social cost NE). A profile σ? of N is a social cost optimal NE
(SCNE) and 〈ui(σ?)〉i∈N are SCNE values if σ? is an NE of N− = (N,A,−u)
and u1(σ?)+ · · ·+un(σ?) 6 u1(σ)+ · · ·+un(σ) for all NE σ of N−. Furthermore,
σ? is an SWNE of N− if and only if σ? is an SCNE of N.

The notion of SWNE is standard [29] and applies when utility values represent
profits or rewards. We use the dual notion of SCNE for utilities that represent
losses or costs. Example objectives in this category include minimising the prob-
ability of a fault or the expected time to complete a task. We have chosen to
represent SCNE directly since this is more natural than the alternative of simply
negating utilities, particularly in the case of probabilities.

Example 1. Consider the NFG representing a variant of a public good game [20],
in which three players each receive a fixed amount of capital (10e) and can choose
to invest none, half or all of it in a common stock (represented by the actions
in0
i , in5

i and in10
i respectively). The total invested by the players is multiplied by

a factor f and distributed equally among the players, and the aim of the players
is to maximise their profit. The utility function of player i is therefore given by:

ui(ink11 , in
k2
2 , in

k3
3) = (f/3)·(k1+k2+k3)− ki .

for ki ∈ {0, 5, 10} and 16i63. If f=2, then the profile where each investor chooses
not to invest is an NE and each player’s utility equals 0. More precisely, if a single
player was to deviate from this profile by investing half or all of their capital,
then their utility would decrease to (2/3)·5−5 = −5/3 or (2/3)·10−10 = −10/3,
respectively. Since this is the only NE it is also the only SWNE and (0, 0, 0) are
the only SWNE values. The profile where each player invests all of their capital
is not an NE as, under this profile, a player’s utility equals (2/3)·30−10 = 10
and any player can increase their utility to (2/3)·25−5 = 35/3 by deviating and
investing half of their capital.

On the other hand, if f=3, then there are two NE: when all players invest
either none or invest all of their capital. The sum of utilities of the players under
these profiles are 0+0+0 = 0 and 20+20+20 = 60 respectively, and therefore
the second profile is the only SWNE.

Definition 6 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, S̄, A,∆, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and S̄ ⊆ S is a set of initial states;
– A = (A1∪{⊥})× · · ·×(An∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪ni=1Ai;

Multi-player Equilibria Verification for Concurrent Stochastic Games 5

– ∆ : S → 2∪
n
i=1Ai is an action assignment function;

– δ : S×A→ Dist(S) is a (partial) probabilistic transition function;

– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player

i ∈ N selects an action from its available actions Ai(s)
def
= ∆(s) ∩ Ai if this

set is non-empty, and from {⊥} otherwise. For any state s and action tuple
a = (a1, . . . , an), the partial probabilistic transition function δ is defined for
(s, a) if and only if ai ∈ Ai(s) for all i ∈ N . We augment CSGs with reward
structures, which are tuples of the form r=(rA, rS) where rA : S×A → R and
rS : S → R are action and state reward functions, respectively.

A path is a sequence π = s0
α0−→ s1

α1−→ · · · such that si ∈ S, αi =
(ai1, . . . , a

i
n) ∈ A, aij ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1)>0 for all i>0. Given

a path π, we denote by π(i) the (i+1)th state, π[i] the (i+1)th action, and if π
is finite, last(π) the final state. The sets of finite and infinite paths (starting in
state s) of G are given by FPathsG and IPathsG (FPathsG,s and IPathsG,s).

Strategies are used to resolve the choices of the players. Formally, a strategy
for player i is a function σi : FPathsG → Dist(Ai∪{⊥}) such that, if σi(π)(ai)>0,
then ai ∈ Ai(last(π)). A strategy profile is a tuple σ=(σ1, . . . , σn) of strategies
for all players. The set of strategies for player i and set of profiles are denoted
Σi

G and ΣG. Given a profile σ and state s, let IPathsσG,s denote the infinite paths
with initial state s corresponding to σ. We can then define, using standard
techniques [21], a probability measure ProbσG,s over IPathsσG,s and, for a random
variable X : IPathsG → R, the expected value EσG,s(X) of X in s under σ.

In a CSG, a player’s utility or objective is represented by a random variable
Xi : IPathsG → R. Such variables can encode, for example, the probability of
reaching a target or the expected cumulative reward before reaching a target.
Given an objective for each player, social welfare and social cost NE can be
defined as for NFGs. As in [23], we consider subgame-perfect NE [32], which are
NE in every state of the CSG. In addition, for infinite-horizon objectives, the
existence of NE is an open problem [6] so, for such objectives, we use ε-NE,
which exist for any ε>0. Formally, we have the following definition.

Definition 7 (Subgame-perfect ε-NE). For CSG G and ε>0, a profile σ? is
a subgame-perfect ε-NE for the objectives 〈Xi〉i∈N if and only if: Eσ?G,s(Xi) >

supσi∈Σi E
σ?−i[σi]

G,s (Xi)− ε for all i ∈ N and s ∈ S.

Example 2. We now extend Example 1 to allow the players to invest their
capital (and subsequent profits) over a number of months and assume that, at
the end of each month, the parameter f can either increase or decrease by 0.2
with probability 0.1. This can be modelled as a CSG G whose states are tuples of
the form (m, f, c1, c2, c3), where m is the current month, f the parameter value
and ci is the current capital of player i (the initial capital plus or minus any
profits or losses made in previous months). If f has initial value 2 and the players
start with a capital of 10e, then the initial state of G equals (0, 2, 10, 10, 10). The

6 Kwiatkowska, Norman, Parker, Santos

actions of player i are of the form inkii , which corresponds to i investing ki in the
current month. The probabilistic transition function of the game is such that:

δ((m, f, c1, c2, c3), (ink11 , in
k2
2 , in

k3
3))(m′, f ′, c′1, c

′
2, c
′
3)

=


0.8 if m′=m+1, f ′=f and c′i=ci+pi
0.1 if m′=m+1, f ′=f+0.2 and c′i=ci+pi
0.1 if m′=m+1, f ′=f−0.2 and c′i=ci+pi
0 otherwise

where pi = (f/3)·(k1+k2+k3)− ki for ki ∈ {0, 5, 10} and 16i63.
If we are interested in the profits of the players after k months, then we can

consider a random variable for player i which would return, for a path with
(k+1)th state (k, f, c1, c2, c3), the value ci−10.

3 Extended rPATL with Nash Formulae

We now consider the logic rPATL with Nash formulae [23] and enhance it with
equilibria-based properties that can separate players into more than two coali-
tions.

Definition 8 (Extended rPATL syntax). The syntax of our extended ver-
sion of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr∼x[ρ] | 〈〈C1: · · · :Cm〉〉opt∼x(θ)

θ := P[ψ]+· · ·+P[ψ] | Rr[ρ]+· · ·+Rr[ρ]

ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | F φ

where a is an atomic proposition, C and C1, . . . , Cm are coalitions of players such
that Ci ∩ Cj = ∅ for all 1 6 i 6= j 6 m and ∪mi=1Ci = N , opt ∈ {min,max},
∼∈ {<,6,>, >}, q ∈ Q ∩ [0, 1], x ∈ Q, r is a reward structure and k ∈ N.

Our addition to the logic is Nash formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ),
where the nonzero sum formulae θ comprises a sum of m probability or re-
ward objectives (for full details of the rest of the logic see [22,23]). The formula
〈〈C1:· · ·:Cm〉〉max∼x(P[ψ1]+· · ·+P[ψm]) holds in a state if, when the players form
the coalitions C1, . . . , Cm, there is a subgame-perfect SWNE for which the sum
of the values of the objectives P[ψ1], . . . , P[ψm] for the coalitions C1, . . . , Cm
satisfies ∼x. The case for reward objectives is similar and, for formulae of the
form 〈〈C1:· · ·:Cm〉〉min∼x(θ), we require the existence of an SCNE rather than an
SWNE. We also allow numerical queries of the form 〈〈C1:· · ·:Cm〉〉opt=?(θ), which
return the sum of the SWNE or SCNE values.

In a probabilistic nonzero-sum formula θ=P[ψ1]+· · ·+P[ψm], each objec-
tive ψi can be a next (Xφ), bounded until (φ1 U6k φ2) or until (φ1 U φ2) for-
mula, with the usual equivalences, e.g., F φ ≡ true U φ. For the reward case
θ=Rr1 [ρ1]+· · ·+Rrm [ρm], each ρi refers to a reward formula with respect to

Multi-player Equilibria Verification for Concurrent Stochastic Games 7

reward structure ri and can be bounded instantaneous reward (I=k), bounded
accumulated reward (C6k) or reachability reward (F φ).

Example 3. Recall the public good CSG from Example 2. Examples of nonzero-
sum formulae in our logic include:

– 〈〈p1:p2:p3〉〉max>3(P[F c1>20]+P[F c2>20]+P[F c3>20]) states that the three
players can collaborate such that they each eventually double their capital
with probability 1;

– 〈〈p1:p2:p3〉〉max=?(R
cap1 [I=4]+Rcap2 [I=4]+Rcap3 [I=4]) asks for the sum of

the expected capital of the players at 4 months when they collaborate, where
the state reward function of capi returns the capital of player i.

– 〈〈p1:p2:p3〉〉max>50(Rpro1 [C66]+Rpro2 [C66]+Rpro3 [C66]) states that the sum
of the expected cumulative profit of the players after 6 months when they
collaborate is at least 50, where the action reward function of proi returns
the expected profit of player i from a state for the given action tuple.

In order to give the semantics of the logic, we require an extension of the notion
of coalition games [22] which, given a CSG G and partition C of the players
into m coalitions, reduces G to an m-player coalition game, where each player
corresponds to one of the coalitions in C. Without loss of generality, we assume
C is of the form {{1, . . . , n1}, {n1+1, . . . n2}, . . . , {nm−1+1, . . . nm}} and let jC
denote player j’s position in its coalition.

Definition 9 (Coalition game). For CSG G=(N,S, s̄, A,∆, δ,AP ,L) and par-
tition of the players into m coalitions C = {C1, . . . , Cm}, we define the coalition
game GC=(M,S, s̄, AC , ∆C , δC ,AP ,L) as an m-player CSG where:

– M = {1, . . . ,m};
– AC = (AC1 ∪ {⊥})× · · ·×(ACm ∪ {⊥});
– ACi = (

∏
j∈Ci(Aj ∪ {⊥}) \ {(⊥, . . . ,⊥)}

)
for all i ∈M ;

– for any s ∈ S and i ∈ M : aCi ∈ ∆C(s) if and only if either ∆(s) ∩ Aj = ∅
and aCi (jC) = ⊥ or aCi (jC) ∈ ∆(s) for all j ∈ Ci;

– for any s ∈ S and (aC1 , . . . , a
C
m) ∈ AC : δC(s, (aC1 , . . . , a

C
m)) = δ(s, (a1, . . . , an))

where for i ∈M and j ∈ Ci if aCi =⊥, then aj=⊥ and otherwise aj=a
C
i (jC).

Furthermore, for a reward structure r = (rA, rS), by abuse of notation we use
r = (rCA, r

C
S) for the corresponding reward structure of GC where:

– for any s ∈ S, aCi ∈ ACi : rCAC (s, (a
C
1 , . . . , a

C
m)) = rA(s, (a1, . . . , an)) where

for i ∈M and j ∈ Ci, if aCi = ⊥, then aj=⊥ and otherwise aj=a
C
i (jC);

– for any s ∈ S : rCS(s)=rS(s).

The logic includes infinite-horizon objectives (U, F), for which the existence of
SWNE and SCNE is open [6]. However, ε-SWNE and ε-SCNE do exist for any
ε > 0.

Definition 10 (Extended rPATL semantics). For a CSG G, ε > 0 and a
formula φ, the satisfaction relation |= is defined inductively over the structure

8 Kwiatkowska, Norman, Parker, Santos

of φ. The propositional logic fragment (true, a, ¬, ∧) is defined in the usual way.
The zero-sum formulae 〈〈C〉〉P∼q[ψ] and 〈〈C〉〉Rr∼x[ρ] are defined as in [22,23].
For a Nash formula and state s ∈ S in CSG G, we have:

s |= 〈〈C1: · · · :Cm〉〉opt∼x(θ)⇔ ∃σ? ∈ ΣGC .
(
Eσ

?

GC,s(X
θ
1) + · · ·+ Eσ

?

GC,s(X
θ
m)
)
∼ x

and σ? = (σ?1 , . . . , σ
?
m) is a subgame perfect ε-SWNE if opt = max, and a sub-

game perfect ε-SCNE if opt = min, for the objectives (Xθ
1 , . . . , X

θ
m) in GC where

C = {C1, . . . , Cm} and for 16i6m and π ∈ IPathsσ
?

GC,s :

X
P[ψ1]+···+P[ψm]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ρ1]+···+Rrm [ρm]
i (π) = rew(ri, ρ

i)(π)

π |= Xφ ⇔ π(1) |=φ

π |=φ1 U6k φ2 ⇔ ∃i 6 k. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

π |=φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |=φ2 ∧ ∀j < i. π(j) |=φ1)

rew(r, I=k)(π) = rS(π(k))

rew(r, C6k)(π) =
∑k−1
i=0

(
rA(π(i), π[i]) + rS(π(i))

)
rew(r, F φ)(π) =

{
∞ if ∀j ∈ N. π(j) 6|=φ∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k−1 | π(k) |=φ}.

4 Model Checking CSGs against Nash Formulae

rPATL is a branching-time logic and so the model checking algorithm works
by recursively computing the set Sat(φ) of states satisfying formula φ over the
structure of φ. Therefore, to extend the existing algorithm of [22,23], we need
only consider formulae of the form 〈〈C1:· · ·:Cm〉〉opt∼x(θ). From Definition 10,
this requires the computation of subgame-perfect SWNE or SCNE values of the
objectives (Xθ

1 , . . . , X
θ
m) and a comparison of their sum to the threshold x.

We first explain how we compute SWNE values in NFGs. Next we consider
CSGs, and show how to compute subgame-perfect SWNE and SCNE values for
finite-horizon objectives and approximate values for infinite-horizon objectives.
For the remainder of this section we fix an NFG N and CSG G.

As in [23], to check nonzero-sum properties on CSGs, we have to work with a
restricted class of games. This can be seen as a variant of stopping games [13], as
used for multi-objective turn-based stochastic games. Compared to [13], we use a
weaker, objective-dependent assumption, which ensures that, under all profiles,
with probability 1, eventually the outcome of each player’s objective does not
change by continuing. This can be checked using graph algorithms [1].

Assumption 1. For each subformula P[φi1 U φi2], set Sat(¬φi1 ∨ φi2) is reached
with probability 1 from all states under all profiles. For each subformula Rr[F φi],
the set Sat(φi) is reached with probability 1 from all states under all profiles.

Multi-player Equilibria Verification for Concurrent Stochastic Games 9

Computing SWNE Values of NFGs. Computing NE values for an n-player
game is a complex task when n>2, as it can no longer be reduced to a linear
programming problem. The algorithm for the two-player case presented in [23],
based on labelled polytopes, starts by considering all the regions of the strategy
profile space and then iteratively reduces the search space as positive probabil-
ity assignments are found and added as restrictions on this space. The efficiency
of this approach deteriorates when analysing games with large numbers of ac-
tions and when one or more players are indifferent, as the possible assignments
resulting from action permutations need to be exhausted.

Going in the opposite direction, support enumeration [33] is a method for
computing NE that exhaustively examines all sub-regions, i.e., supports, of the
strategy profile space, one at a time, checking whether that sub-region contains
equilibria. The number of supports is exponential in the number of actions and
equals

∏n
i=1(2|Ai| − 1). Therefore computing SWNE values through support

enumeration will only be efficient for games with a small number of actions.
We now show how, for a given support, using the following lemma, the com-

putation of SWNE profiles can be encoded as a nonlinear programming problem.
The lemma states that a profile is an NE if and only if any player switching to
a single action in the support of the profile yields the same utility for the player
and switching to an action outside the support can only decrease its utility.

Lemma 1 ([33]). The strategy profile σ=(σ1, . . . , σn) of N is an NE if and only
if the following conditions are satisfied:

∀i ∈ N. ∀ai ∈ Ai. σi(ai) > 0→ ui(σ−i[ηai]) = ui(σ) (1)

∀i ∈ N. ∀ai ∈ Ai. σi(ai) = 0→ ui(σ−i[ηai]) 6 ui(σ) . (2)

Given the support B = B1× · · ·×Bn ⊆ A, to construct the problem, we first
choose pivot actions4 bpi ∈ Bi for i ∈ N , then the problem is to minimise:(∑

i∈N maxa∈A ui(a)
)
−
∑
i∈N

(∑
b∈B ui(b) ·

(∏
j∈N pj,bj

))
(3)

subject to:∑
c∈B−i(bpi)

ui(c) ·
(∏

j∈N−i pj,cj

)
−
∑
c∈B−i(bi) ui(c) ·

(∏
j∈N−i pj,cj

)
= 0 (4)∑

c∈B−i(bpi)
ui(c) ·

(∏
j∈N−i pj,cj

)
−
∑
c∈B−i(ai) ui(c) ·

(∏
j∈N−i pj,cj

)
> 0 (5)∑

bi∈Bi pi,bi = 1 and pi,bi > 0 (6)

for all i ∈ N , bi ∈ Bi\{bpi } and ai ∈ Ai\Bi where B−i(ci) = B1× · · ·×Bi−1×{ci}
×Bi+1× · · ·×Bn and N−i = N\{i}. The variables in the above program repre-
sent the probabilities players choose different actions, i.e. pi,bi is the probability
i selects bi. The constraints (6) ensure the probabilities of each player sum to
one and the support of the corresponding profile equals B. The constraints (4)

4 For each i ∈ N this can be any action in Bi.

10 Kwiatkowska, Norman, Parker, Santos

a u1 u2 u3

(c1, c2, c3) 7 7 7

(c1, c2, d3) 3 3 9

a u1 u2 u3

(c1, d2, c3) 3 9 3

(c1, d2, d3) 0 5 5

a u1 u2 u3

(d1, c2, c3) 9 3 3

(d1, c2, d3) 5 0 5

a u1 u2 u3

(d1, d2, c3) 5 5 0

(d1, d2, d3) 1 1 1

Table 1: Utilities for an instance of a three-player prisoner’s dilemma.

and (5) require that the solution corresponds to an NE as these encode the con-
straints (1) and (2), respectively, of Lemma 1 when restricting to pivot actions.
This restriction is sufficient as (1) requires all actions in the support to yield the
same utility. The first term in (3) corresponds to the maximum possible sum of
utilities for the players, i.e. it sums the maximum utility of each player, and the
second sums the individual utilities of the players when they play according to
the profile corresponding to the solution. By minimising the difference between
these two terms, we require the solution to be social welfare optimal.

SMT solvers with nonlinear modules can be used to solve such problems, al-
though they can be inefficient. Alternative approaches include barrier or interior-
point methods [30].

Example 4. Consider the instance of three prisoner’s dilemma with utilities
described in Table 1 where Ai={ci, di} for 16i63. For the full support Bfs the
utility of player i equals:

ui(B
fs) = pi,ci ·ui(B

fs
−i(ci)) + pi,di ·ui(B

fs
−i(di))

where ui(B
fs
−i(ci)) and ui(B

fs
−i(di)) are the utilities of player i when switching to

choosing action ci and di with probability 1 and are given by:

ui(B
fs
−i(ci)) = 7·pj,cj ·pk,ck + 3·pj,cj ·pk,dk + 3·pj,dj ·pk,ck

ui(B
fs
−i(di)) = 9·pj,cj ·pk,ck + 5·pj,cj ·pk,dk + 5·pj,dj ·pk,ck + pj,dj ·pk,dk

for 16i6=j 6=k63. Now, choosing ci as the pivot action for 16i63, we obtain the
nonlinear program of minimising:

27− (u1(Bfs) + u2(Bfs) + u3(Bfs))

subject to: ui(B
fs
−i(ci))−ui(B

fs
−1(di)) = 0, pi,ci+pi,di = 1, pi,ci>0 and pi,di>0 for

16i63. When trying to solving this problem, we find that there is no NE as the
constraints reduce to p3,c3 ·(p2,d2 + 1) = −1, which cannot be satisfied.

For the partial support Bps={(d1, d2, d3)}, di is the only choice of pivot
action for player i and, after a reduction, we obtain the program of minimising:

27− (p2,d2p3,d3 + p1,d1p3,d3 + p1,d1p2,d2)

subject to: pi,di ·pj,dj > 0, pi,di=1 and pi,di>0 for 16i6=j63. Solving this problem
we see it is satisfied, and therefore the profile where each player i chooses di is an
NE. This demonstrates that, as for the two-player prisoner’s dilemma, defection
dominates cooperation for all players, which leads to the only NE.

Computing Values of Nash Formulae. We now show how to compute the
SWNE values of a Nash formula 〈〈C1:· · · : Cm〉〉opt∼x(θ). The case for SCNE

Multi-player Equilibria Verification for Concurrent Stochastic Games 11

values can be computed similarly, where to compute SCNE values of a NFG N,
we use Definition 5, negate the utilities of N, find SWNE values of the resulting
NFG and return the negation of these values as SCNE values of N.

If all the objectives in the nonzero sum formula θ are finite-horizon, backward
induction [35,28] can be applied to compute (precise) subgame-perfect SWNE
values. On the other hand, when all the objectives are infinite-horizon, we extend
the techniques of [23] for two coalitions and use value iteration [11] to approx-
imate subgame-perfect SWNE values. In cases when there is a combination of
finite- and infinite-horizon objectives, we can extend the techniques of [23] and
make all objectives infinite-horizon by modifying the game in a standard manner.

Value computation for each type of objective is described below. The ex-
tension of the two-player case [23] is non-trivial: in that case, when one player
reaches their goal, we can apply MDP verification techniques by making the play-
ers form a coalition to reach the remaining goal. However, in the n-player case,
if one player reaches their goal we cannot reduce the analysis to an (n−1)-player
game, as the choices of the player that has reached its goal can still influence
the outcomes of the remaining players, and making the player form a coalition
with one of the other players will give the other player an advantage. Instead,
we need to keep track of the set of players that have reached their goal (denoted
D) and can no longer reach their goal in the case of until formulae (denoted E),
and define the values at each iteration using these sets.

We use the notation VGC (s, θ) (VGC (s, θ, n)) for the vector of computed values
of the objectives (Xθ

1 , X
θ
2 , . . . , X

θ
m) in state s of GC (at iteration n). We also

use 1m and 0m to denote a vector of size m whose entries all equal to 1 or 0,
respectively. For any set of states S′ and state s we let ηS′(s) equal 1 if s ∈ S′ and
0 otherwise. Furthermore, to simplify the presentation the step bounds appearing
in path and reward formulae can take negative values.

Bounded Probabilistic Until. If θ = P[φ11 U6k1 φ12]+ · · ·+P[φm1 U6km φm2], we
compute SWNE values of the objectives for the nonzero-sum formulae θn =
P[φ11 U6k1−n φ12]+ · · ·+P[φm1 U6km−n φm2] for 06n6k recursively, where k =
max{k1, . . . , kl} and VGC (s, θ) = VGC (s,∅,∅, θ0). For any state s and 06n6k,
D,E ⊆M such that D ∩ E = ∅:

VGC (s,D,E, θn) =


(ηD(1), . . . , ηD(m)) if D ∪ E = M
VGC (s,D ∪D′, E, θn) else if D′ 6= ∅
VGC (s,D,E ∪ E′, θn) else if E′ 6= ∅

val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E′ = {l ∈ M\(D ∪ E) | s ∈
Sat(¬φl1 ∧ ¬φl2)} and val(N) equals SWNE values of the game N = (M,AC , u)
in which for any 16l6m and a ∈ AC :

ul(a) =


1 if l ∈ D
0 else if l ∈ E
0 else if nl−n 6 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

12 Kwiatkowska, Norman, Parker, Santos

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s

′, D,E, θn−1) for all s′ ∈ S.

Instantaneous Rewards. If θ = Rr1 [I=k1] + · · ·+Rrm [I=km], we compute SWNE
values of the objectives for the nonzero-sum formulae θn = Rr1 [I=n1−n] + · · ·+
Rrm [I=nl−n] for 06n6k recursively, where k= max{k1, . . . , kl} and VGC (s, θ) =
VGC (s, θ0). For any state s and 06n6k, VGC (s, θn) equals SWNE values of the
game N = (M,AC , u) in which for any 16l6m and a ∈ AC :

ul(a) =


0 if nl−n < 0∑

s′∈S δ
C(s, a)(s′) · rlS(s′) else if nl−n = 0∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC (s

′, θn+1) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C6k1] + · · ·+ Rrm [C6km], we compute
SWNE values of the objectives for the nonzero-sum formulae θn = Rr1 [C6n1−n]+
· · ·+Rrl [C6nm−n] for 06n6k recursively, where k= max{k1, . . . , kl} and VGC (s, θ)
= VGC (s, θ0). For any state s and 06n6k, VGC (s, θn) equals SWNE values of the
game N = (M,AC , u) in which for any 16l6m and a ∈ AC :

ul(a) =

{
0 if nl−n 6 0

rlS(s) + rlA(s, a) +
∑
s′∈S δ

C(s, a)(s′) · vs
′,l
n+1 otherwise

and (vs
′,1
n+1, . . . , v

s′,m
n+1) = VGC (s

′, θn+1) for all s′ ∈ S.

Probabilistic Until. If θ = P[φ11 U φ12]+ · · ·+P[φm1 U φm2], values can be com-
puted through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where
VGC (s, θ, n) = VGC (s,∅,∅, θ, n) and for any D,E ⊆M such that D ∩ E = ∅:

VGC (s,D,E, θ, n) =


(ηD(1), . . . , ηD(m)) if D ∪ E = M

(ηSat(φ1
2)

(s), . . . , ηSat(φm2)(s)) else if n = 0

VGC (s,D ∪D′, E, θ, n) else if D′ 6= ∅
VGC (s,D,E ∪ E′, θ, n) else if E′ 6= ∅

val(N) otherwise

where D′ = {l ∈ M\(D ∪ E) | s ∈ Sat(φl2)}, E′ = {l ∈ M\(D ∪ E) | s ∈
Sat(¬φl1 ∧ ¬φl2)} and val(N) equals SWNE values of the game N = (M,AC , u)
in which for any 16l6m and a ∈ AC :

ul(a) =


1 if l ∈ D
0 else if l ∈ E∑

s′∈S δ
C(s, a)(s′) · vs

′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s

′, D,E, θ, n−1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1]+ · · ·+Rrm [F φm], values can be com-
puted through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where

Multi-player Equilibria Verification for Concurrent Stochastic Games 13

VGC (s, θ, n) = VGC (s,∅, θ, n) and for any D ⊆M :

VGC (s,D, θ, n) =


0m if D = M
0m else if n = 0

VGC (s,D ∪D′, θ, n) else if D′ 6= ∅
val(N) otherwise

D′ = {l ∈ M\D | s ∈ Sat(φl)} and val(N) equals SWNE values of the game
N = (M,AC , u) in which for any 16l6m and a ∈ AC :

ul(a) =

{
0 if l ∈ D

rlS(s) + rlA(s, a) +
∑
s′∈S δ

C(s, a)(s′) · vs
′,l
n−1 otherwise

and (vs
′,1
n−1, v

s′,2
n−1, . . . , v

s′,m
n−1) = VGC (s

′, D, θ, n−1) for all s′ ∈ S.

Strategy Synthesis. When performing property verification, it is usually bene-
ficial to include strategy synthesis, that is, construct a witness to the satisfaction
of a property. When verifying a Nash formula 〈〈C1: · · · :Cm〉〉opt∼x(θ), we can
also return a subgame-perfect SWNE or SCNE for the objectives (Xθ

1 , . . . , X
θ
m).

This is achieved by keeping track of an SWNE for the NFG solved in each state.
The synthesised strategies require randomisation and memory. Randomisation
is needed for NE of NFGs. Memory is required for finite-horizon properties and
since choices change after a path formula becomes true or a target is reached.
For infinite-horizon properties, only approximate ε-NE profiles are synthesised.

Correctness and Complexity. The proof of correctness of the algorithm
can be found in an extended version of this paper [24]. In the case of finite-
horizon nonzero-sum formulae the correctness of the model checking algorithm
follows from the fact that we use backward induction [35,28]. For infinite-horizon
nonzero-sum formulae the proof is based on showing that the values of the play-
ers computed during value iteration correspond to subgame-perfect SWNE or
SCNE values of finite game trees, and the values of these game trees converge
uniformly to the actual values of GC . The complexity of the algorithm is linear
in the formula size, and finding subgame-perfect NE for reachability objectives
in n-player games is PSPACE [8]. Value iteration requires finding all NE for a
NFG in each state of the model, and computing NE of an NFG with three (or
more) players is PPAD-complete [15].

5 Case Studies and Experimental Results

We have implemented our approach on top of PRISM-games 3.0 [25], extending
the implementation to support multi-coalitional equilibria-based properties. The
files for the case studies and results in this section are available from [41].

Implementation. CSGs are specified using the PRISM-games 3.0 modelling
language, as described in [23,25]. Models are built and stored using the tool’s
Java-based ‘explicit’ engine, which employs sparse matrices. Finding SWNE of

14 Kwiatkowska, Norman, Parker, Santos

Game Players Actions Supports
Supports returned by Z3 Time(s)
unsat sat unknown Ipopt

Majority Voting

3 3,3,3 343 330 12 1 0.309
3 4,4,4 3,375 3,236 110 29 18.89
3 5,5,5 29,791 26,250 155 3,386 336.5
4 2,2,2,2 81 59 22 0 0.184
4 3,3,3,3 2,401 2,212 87 102 6.847
4 4,4,4,4 50,625 41,146 518 8,961 1,158
5 2,2,2,2,2 243 181 62 0 0.591
5 3,3,3,3,3 16,807 14,950 266 1,591 253.3

Covariant game

3 3,3,3 343 304 6 33 7.645
3 4,4,4 3,375 2,488 16 871 203.8
3 5,5,5 29,791 14,271 8 15,512 5,801
4 2,2,2,2 81 76 3 2 0.106
4 3,3,3,3 2,401 1,831 0 570 183.0
5 2,2,2,2,2 243 221 8 14 4.128
5 3,3,3,3,3 16,807 6,600 7 10,200 5,002

Table 2: Finding SWNE in NFGs (timeout of 20ms for Z3).

NFGs, which can be reduced to solving a nonlinear programming problem (see
Section 4), is performed using a combination of the SMT solver Z3 [16] and
the nonlinear optimisation suite Ipopt [39]. Although SMT solvers are able to
find solutions to nonlinear problems, they are not guaranteed to do so and are
only efficient in certain cases. These cases include when there is a small number
of actions per player or finding support assignments for which an equilibrium
is not possible. To mitigate the inefficiencies of the SMT solver, we use Z3 for
filtering out unsatisfiable support assignments with a timeout: given a support
assignment, Z3 returns either unsat, sat or unknown (if the timeout is reached).
If either sat or unknown are returned, then the assignment is passed to Ipopt,
which checks for satisfiability (if required) and computes SWNE values using an
interior-point filter line-search algorithm [40]. To speed up the overall compu-
tation the support assignments are analysed in parallel. We also search for and
filter out dominated strategies as a precomputation step. The NFGs are built on
the fly, as well as the gradient of the objective function (3) and the Jacobian of
the constraints (4)–(6), which are required as an input to Ipopt.

Table 2 presents experimental results for solving various NFGs (generated
with GAMUT [31]) using Z3 (with a timeout of 20ms) and Ipopt. For each
NFG, the table lists the numbers of players, actions of each player and support
assignments. The table also includes the supports of each type returned by Z3
and the solution time of Ipopt. As can be seen, using Z3 significantly reduces
the assignments Ipopt needs to analyse, by orders of magnitude in some cases.
However, as the number of actions grows, the number of assignments that remain
for Ipopt to solve increases rapidly, and therefore so does the solution time.
Furthermore, increasing the number of players only magnifies this issue.

The results show that solving NFGs can be computationally very expensive.
Note that just finding an NE is already a difficult problem, whereas we search for
SWNE, and hence need to find all NE. For example, in [33], using a backtracking
search algorithm or either of the Simplicial Subdivision [38] and the Govindan-
Wilson [17] algorithms for finding a sample NE, there are instances of NFGs
with 6 players and 5 actions that timeout after 30 minutes.

Multi-player Equilibria Verification for Concurrent Stochastic Games 15

Case study & property
Players

Param. CSG statistics Constr. Verif.
[parameters] values States Max. Act. Trans. time(s) time (s)

Secret Sharing

Rmax=?[F d∨r=rmax]

model/[α,rmax ,pfail]

3

raa/0.3,10, 4,279 2,1,1 5,676 0.057 0.565
rba/0.3,10,0.2 7,095 2,1,1 9,900 0.090 0.939
rra/0.3,10, 8,525 2,2,1 11,330 0.250 25.79
rrr/0.3,10, 17,017 2,2,2 22,638 0.250 96.07

Public Good

Rmax=?[I
=kmax]

[f, kmax]

3
2.9,2 758 3,3,3 1,486 0.098 7.782
2.9,3 16,337 3,3,3 36,019 0.799 110.1
2.9,4 279,182 3,3,3 703,918 6.295 1,459

4
2.9,1 83 3,3,3,3 163 0.046 0.370
2.9,2 6,644 3,3,3,3 13,204 0.496 7.111
2.9,3 399,980 3,3,3,3 931,420 11.66 99.86

5
2.9,1 245 3,3,3,3,3 487 0.081 2.427
2.9,2 59,294 3,3,3,3,3 118,342 2.572 2,291

Aloha (deadline)

Pmax=?[F si∧t6D]

[bmax, D]

3

1,8 3,519 2,2,2 5,839 0.168 11.23
2,8 14,230 2,2,2 28,895 0.430 14.05
3,8 72,566 2,2,2 181,438 1.466 18.41
4,8 413,035 2,2,2 1,389,128 7.505 43.23

4
1,8 23,251 2,2,2,2 42,931 0.708 75.59
2,8 159,892 2,2,2,2 388,133 3.439 131.7
3,8 1,472,612 2,2,2,2 4,777,924 28.69 819.2

5 1,8 176,777 2,2,2,2,2 355,209 3.683 466.3

Aloha
Rmin=?[F si]

[bmax]

3

1 1,034 2,2,2 1,777 0.096 40.76
2 5,111 2,2,2 10,100 0.210 29.36
3 22,812 2,2,2 56,693 0.635 51.22
4 107,799 2,2,2 355,734 2.197 150.1

Medium access

Rmax=?[C
6k]

[emax, k]

3
5,10 1,546 2,2,2 17,100 0.324 147.9
10,10 10,591 2,2,2 135,915 1.688 682.7
15,20 33,886 2,2,2 457,680 4.663 6,448

4 5,5 15,936 2,2,2,2 333,314 4.932 3,581

Table 3: Statistics for a representative set of CSG verification instances.

We also comment that care needs to be taken with numerical computations.
The value iteration part of the model checking algorithm is (as usual) imple-
mented using floating point arithmetic, and may therefore exhibit small round-
ing errors. However, the intermediate results are passed to solvers, which may
expect inputs in terms of rational numbers (Z3 in this case). It could be beneficial
to investigate the use of arbitrary precision arithmetic instead.

We now present case studies and experimental results to demonstrate the
applicability and performance of our approach and implementation.

Efficiency and Scalability. Table 3 presents a selection of results demonstrat-
ing the performance of the implementation. The models in the table are discussed
in more detail below. The results were carried out using a 2.10GHz Intel Xeon
Gold with 16GB of JVM memory. The table includes statistics for the models:
number of players, states, (maximum) actions for each player in a state, transi-
tions and the times to both build and verify the models. All models have been
verified in under 2 hours and in most cases much less than this. The largest
model, verified in under 15 minutes, has 4 players, almost 1.5 million states and
5 million transitions. The majority of the time is spent solving NFG games and,
as shown in Table 2, this varies depending on the number of choices and players.

Secret Sharing. The first case study is the secret sharing protocol of [19], which
uses uncertainty to induce cooperation. The protocol is defined for 3 agents and
can be extended to more agents by partitioning the agents into three groups.

16 Kwiatkowska, Norman, Parker, Santos

Since the 3 agents act independently, this protocol could not be analysed with
the two-coalitional variant of rPATL [23]. Each agent has an unfair coin with the
same bias (α). In the first step of the protocol, agents flip their coins, and if their
coins land on heads, they are supposed to send their share of the secret to the
other agents. In the second step, everyone reveals the value of their coin to the
other agents. The game ends if all agents obtain all shares and therefore can all
reconstruct the secret, or an agent cheats, i.e., fails to send their share to another
agent when they are supposed to. If neither of these conditions hold, new shares
are issued to the agents and a new round starts. The protocol assumes that each
agent prefers to learn the secret and that others do not learn. This is expressed
by the utilities u3, u2, u1 and u0 that an agent i gets if all the agents, two agents
(including i), only i and no agent is able to learn the secret, respectively.

A rational agent in this context is one that has the choice of cheating and
ignoring the coin toss in order to maximise their utility. An altruistic agent is one
who strictly follows the protocol and a byzantine agent has a probability (pfail)
of failing and subsequently sending or computing the wrong values. Figure 1
presents the expected utilities when there are two altruistic and one rational
agent and when there is one altruistic, one byzantine and one rational agent
as α varies. The results when there is one altruistic and two rational agents or
three rational agents yield the same graph as Figure 1(a), where the one or two
additional rational agents utilities match those of the altruistic agents. According
to the theoretical results of [19], for a model with one rational and two altruistic
agents, the rational agent only has an incentive to cheat if:

(u1·α2 + u0·(1− α)2)/(α2 + (1− α)2) > u3 . (7)

This result is validated by Figure 1(a) for the given utility values; the rational
agent only cheats when α>0.5 (for α<0.5 all agents receive a utility of 1 corre-
sponding to all agents getting the secret), which corresponds to when (7) holds
for our chosen utility values. Furthermore, Figure 1 also shows that the closer
α is to one then the greater the expected utility of a rational agent. Figure 1(b)
also shows that, with a byzantine agent, the rational agent cheats when α>0.4.

Figure 2 plots the expected utilities of the agents when the protocol stops
after a maximum number of rounds (rmax) when α=0.3 and α=0.8. The utilities
converge more slowly for α=0.3, since, when α is small, there is a higher chance
that an agent flips tails in a round, meaning not all agents will share their secret
in this round and the protocol will move into another round. Again we see that
there are more incentives for a rational agent to cheat as α gets closer to 1.
However, when α=0.3 and there are altruistic agents, the incentive decreases
and eventually disappears as the number of rounds increases.

Public Good Game. We consider a variant of the public good game presented
in Example 2, in which the parameter f is fixed, where each player receives an
initial amount of capital (einit) and, in each of k months, can invest none, half or
all of their current capital. A 2-player version of the game was modelled in [25].

Figure 3 presents results for the 3-player public good game as f varies, plot-
ting the expected utilities when the players act in isolation and, for comparison,

Multi-player Equilibria Verification for Concurrent Stochastic Games 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

α

E
x
p
e
c
te
d

U
ti
li
ti
e
s

u3=1.0, u2=1.5, u1=2.0, u0=0.0

rational

altruistic

altruistic

(a) 2 altruistic and 1 rational

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

α

E
x
p
e
c
te
d

U
ti
li
ti
e
s

u3=1.0, u2=1.5, u1=2.0, u0=0.0

rational

byzantine

altruistic

(b) 1 altruistic, 1 byzantine and 1 rational̊a

Fig. 1: 〈〈usr1:usr2:usr3〉〉max=?(R[F done]+R[F done]+R[F done]) (pfail=0.2).

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

rmax

E
x
p
e
c
te
d

U
ti
li
ti
e
s
(s
u
m
)

u3=1.0, u2=1.5, u1=2.0, u0=0

aaa
raa

rba
rra
rrr

(a) α=0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

rmax

E
x
p
e
c
te
d

U
ti
li
ti
e
s
(s
u
m
)

u3=1.0, u2=1.5, u1=2.0, u0=0

aaa
raa

rba
rra
rrr

(b) α=0.8

Fig. 2: Expected utilities over a bounded number of rounds (pfail=0.2 for rba).

when player 1 acts in isolation and players 2 and 3 form a coalition (indicated
by 〈〈〉〉), which would be required if the two-coalitional variant of rPATL [23] was
used. When the players act in isolation, if f62, then there is no incentive for the
players to invest. As f increases, the players start to invest some of their capital
in some of the months, and when f=3 each player invests all their capital in each
month. On the other hand, when players 2 and 3 act in a coalition, there is in-
centive to invest capital for smaller values of f , as players 2 and 3 can coordinate
their investments to ensure they both profit; however, player 1 also gains from
these investments, and therefore has no incentive to invest in the final month. As
f increases, there is a greater incentive for player 1 to invest and the final capital
for all the players increases. The drop in the capital of player 1, as f increases,
is caused by players 2 and 3 coordinating against player 1 and decreasing their
investments. This forces player 1 to invest to increase its investment which, as
profits are shared, also increases the capital of players 2 and 3.

Aloha. This case study concerns a number of users trying to send packets using
the slotted ALOHA protocol introduced in [23]. In a time slot, if a single user
tries to send a packet, there is a probability q that the packet is sent; if k users
try and send, then the probability decreases to q/k. If sending a packet fails, the
number of slots a user waits before resending is set according to an exponential
backoff scheme. The analysis of the model in [23] consisted of considering three

18 Kwiatkowska, Norman, Parker, Santos

1.5 2 2.5 3
0

25
50
75

100
125
150
175
200
225
250
275

f

E
x
p
e
c
te
d

C
a
p
it
a
l

〈〈p1〉〉
〈〈p2, p3〉〉

p1
p2
p3

(a) Individual rewards.

1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

f

E
x
p
e
c
te
d

C
a
p
it
a
l
(s
u
m
) 〈〈p1〉〉+ 〈〈p2, p3〉〉

p1 + p2 + p3

(b) Sum of rewards.

Fig. 3: 〈〈p1:p2:p3〉〉max=?(R
c1 [I=rmax]+Rc2 [I=rmax]+Rc3 [I=rmax]) (einit=5, k=3).

users with two acting in coalition. We extend the analysis by considering the case
when the three act in isolation and extend the model with a fourth user. The
objectives concern maximising the probability of sending a packet within a dead-
line, e.g. 〈〈usr1: · · · :usrm〉〉max=?(P[F (s1∧t6D)]+· · ·+P[F (sm∧t6D)]), and the
expected time to send a packet. By allowing the users to act independently we
find that the expected time required for all users to send their packets reduces
compared to when two of the players act as a coalition.

Medium Access Control. This case study is based on a deterministic con-
current game model of medium access control [7]. The model consists of two
users that have limited energy and share a wireless channel. The users repeat-
edly choose to transmit or wait and, if both transmit, the transmissions fail due
to interference. We previously extended the model to three users and added the
probability of transmissions failing (which is dependent on the number of users
transmitting) [23]. However, the analysis was restricted to the scenario where
two users were in coalition [23]. We can now remove this restriction and analyse
the case when each user tries to maximise the expected number of messages they
send over a bounded number of steps and extend this analysis to four users.

6 Conclusions

We have presented a logic and algorithm for model checking multi-coalitional
equilibria-based properties of CSGs, focusing on a variant of stopping games.
We have implemented the approach in PRISM-games and demonstrated its ap-
plicability on a range of case studies and properties. The main limitation of the
approach is the time required for solving NFGs during value iteration as the
number of players increases. Efficiency improvements that could be employed
include filtering out conditionally dominated strategies [36]. Future work will
also include investigating correlated equilibria [5] and mechanism design [27].

Acknowledgements. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 834115) and the EPSRC Pro-
gramme Grant on Mobile Autonomy (EP/M019918/1).

Multi-player Equilibria Verification for Concurrent Stochastic Games 19

References

1. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. The-
oretical Computer Science 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. Jour-
nal of Computer and System Sciences 68(2), 374–397 (2004)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

5. Aumann, R.: Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics 1(1), 67–96 (1974)

6. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent games. In:
Proc. FSTTCS’14. LIPICS, vol. 29, pp. 351–363. Leibniz-Zentrum für Informatik
(2014)

7. Brenguier, R.: PRALINE: A tool for computing Nash equilibria in concur-
rent games. In: Proc. CAV’13. LNCS, vol. 8044, pp. 890–895. Springer (2013),
lsv.fr/Software/praline

8. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J.F., van den Bogaard, M.: The
complexity of subgame perfect equilibria in quantitative reachability games. In:
Proc. CONCUR’19. LIPICS, vol. 140, pp. 13:1–13:16. Leibniz-Zentrum für Infor-
matik (2019)

9. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: A model
checker for the verification of strategy logic specifications. In: Proc. CAV’14. LNCS,
vol. 8559, pp. 525–532. Springer (2014)

10. Chatterjee, K., de Alfaro, L., Henzinger, T.: Strategy improvement for concurrent
reachability and turn-based stochastic safety games. Journal of Computer and
System Sciences 79(5), 640–657 (2013)

11. Chatterjee, K., Henzinger, T.: Value iteration. In: 25 Years of Model Checking.
LNCS, vol. 5000, pp. 107–138. Springer (2008)

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Formal Methods in System Design 43(1),
61–92 (2013)

13. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Proc. MFCS’13. LNCS, vol. 8087, pp. 266–277.
Springer (2013)

14. Cramton, P., Shoham, Y., Steinberg, R.: An overview of combinatorial auctions.
SIGecom Exchanges 7, 3–14 (2007)

15. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
Nash equilibrium. Communications of the ACM 52(2), 89–97 (2009)

16. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS’08.
LNCS, vol. 4963, pp. 337–340. Springer (2008), github.com/Z3Prover/z3

17. Govindan, S., Wilson, R.: A global newton method to compute Nash equilibria.
Journal of Economic Theory 110(1), 65–86 (2003)

18. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: A tool for temporal
equilibrium analysis. In: Proc. ATVA’18. LNCS, vol. 11138, pp. 551–557. Springer
(2018), github.com/eve-mas/eve-parity

19. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: Ex-
tended abstract. In: Proc. STOC’04. pp. 623–632. ACM (2004)

http://www.lsv.fr/Software/praline/
https://github.com/Z3Prover/z3
https://github.com/eve-mas/eve-parity

20 Kwiatkowska, Norman, Parker, Santos

20. Hauser, O., Hilbe, C., Chatterjee, K., Nowak, M.: Social dilemmas among unequals.
Nature 572, 524–527 (2019)

21. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
22. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automated verification of

concurrent stochastic games. In: Proc. QEST’18. LNCS, vol. 11024, pp. 223–239.
Springer (2018)

23. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games. In: Proc. FM’19. LNCS, vol.
11800, pp. 298–315. Springer (2019)

24. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Multi-player equilibria ver-
ification for concurrent stochastic games (2020), arXiv:2007.03365

25. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Proc. CAV’20.
LNCS, Springer (2020), to appear, prismmodelchecker.org/games

26. McKelvey, R., McLennan, A., Turocy, T.: Gambit: Software tools for game theory,
version 16.0.1 (2016), gambit-project.org

27. Narahari, Y., Narayanam, R., Garg, D., Prakash, H.: Foundations of mechanism de-
sign. In: Game Theoretic Problems in Network Economics and Mechanism Design
Solutions. pp. 1–131. Advanced Information and Knowledge Processing, Springer
(2009)

28. von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games
and Economic Behavior. Princeton University Press (1944)

29. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
CUP (2007)

30. Nocedal, J., Wächter, A., Waltz, R.: Adaptive barrier update strategies for non-
linear interior methods. SIAM Journal on Optimization 19(4), 1674–1693 (2009)

31. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT:
A comprehensive approach to evaluating game-theoretic algorithms. In: Proc. AA-
MAS’04. pp. 880–887. ACM (2004), gamut.stanford.edu

32. Osborne, M., Rubinstein, A.: An Introduction to Game Theory. OUP (2004)
33. Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash

equilibrium. In: Proc. AAAI’04. pp. 664–669. AAAI Press (2004)
34. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49,

236–259 (2002)
35. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games

and Economic Behavior 34(1), 123–137 (2001)
36. Shimoji, M., Watson, J.: Conditional dominance, rationalizability, and game forms.

Journal of Economic Theory 83, 161–195 (1998)
37. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification

of Nash equilibria in concurrent games. In: Proc. ICTAC’15. LNCS, vol. 9399, pp.
583–594. Springer (2015)

38. Van Der Laan, G., Talman, A., Van Der Heyden, L.: Simplicial variable dimension
algorithms for solving the nonlinear complementarity problem on a product of unit
simplices using a general labelling. Mathematics of Operations Research 12(3),
377–397 (1987)

39. Wächter, A.: Short tutorial: Getting started with ipopt in 90 minutes. In: Com-
binatorial Scientific Computing. No. 09061 in Dagstuhl Seminar Proceedings,
Leibniz-Zentrum für Informatik (2009), github.com/coin-or/Ipopt

40. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Program-
ming 106(1), 25–57 (2006)

http://arxiv.org/abs/2007.03365
https://www.prismmodelchecker.org/games/
http://www.gambit-project.org
http://gamut.stanford.edu
https://github.com/coin-or/Ipopt

Multi-player Equilibria Verification for Concurrent Stochastic Games 21

41. Supporting material, prismmodelchecker.org/files/qest20

http://www.prismmodelchecker.org/files/qest20/

	Multi-player Equilibria Verification for Concurrent Stochastic Games

