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Abstract. Probabilistic model checking provides formal guarantees for
stochastic models relating to a wide range of quantitative properties,
such as runtime, energy consumption or cost. But this is typically with
respect to the expected value of these quantities, which can mask im-
portant aspects of the full probability distribution, such as the possibil-
ity of high-risk, low-probability events or multimodalities. We propose
a distributional extension of probabilistic model checking, for discrete-
time Markov chains (DTMCs) and Markov decision processes (MDPs).
We formulate distributional queries, which can reason about a variety
of distributional measures, such as variance, value-at-risk or conditional
value-at-risk, for the accumulation of reward or cost until a co-safe linear
temporal logic formula is satisfied. For DTMCs, we propose a method
to compute the full distribution to an arbitrary level of precision, based
on a graph analysis and forward analysis of the model. For MDPs, we
approximate the optimal policy using distributional value iteration. We
implement our techniques and investigate their performance and scala-
bility across a range of large benchmark models.

1 Introduction

Computer systems are increasingly being integrated seamlessly with sensing, con-
trol and actuation of the physical world. Many of these systems (e.g., robotics)
exhibit probabilistic and non-deterministic behavior due to inherent uncertainty
(e.g., sensor noise, human interactions), which pose significant challenges for
ensuring their safe, reliable, timely and resource-efficient execution.

Probabilistic model checking offers a collection of techniques for modelling
systems that exhibit probabilistic and non-deterministic behavior. It supports
not only their verification against specifications in temporal logic, but also syn-
thesis of optimal controllers (policies). Commonly used models include discrete-
time Markov chains (DTMCs) and Markov decision processes (MDPs). A range
of verification techniques for these, and other models, are supported by widely
used probabilistic model checkers such as PRISM [22] and Storm [11].

To capture the range of quantitative correctness specifications needed in prac-
tice, it is common to reason about rewards (or, conversely, costs). Examples
include checking the worst-case execution time of a distributed coordination
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algorithm, or synthesizing a controller that guarantees the minimal energy con-
sumption for a robot to complete a sequence of tasks. Typically the expected
value of these quantities is computed, but in some situations it is necessary
to consider the full probability distribution. Notably, in safety-critical applica-
tions, it can be important to synthesize risk-sensitive policies, that avoid high-
cost, low-probability events, which can still arise when minimizing expected cost.
Risk-aware distributional measures such as conditional value-at-risk (CVaR) [25]
address this by minimizing the costs that occur above a specified point in the
tail of the distribution. Within probabilistic model checking, the use of quantiles
has been proposed [32,28,18,16] to reason about cost or reward distributions.

In this paper, we develop a distributional probabilistic model checking ap-
proach, which computes and reasons about the full distribution over the reward
associated with a DTMC or MDP. More precisely, we consider the reward ac-
cumulated until a specification in co-safe LTL is satisfied, the latter providing
an expressive means to specify, for example, a multi-step task to be executed by
a robot [19], or a sequence of events leading to a system failure. We propose a
temporal logic based specification for such distributional queries.

For a DTMC, we perform model checking of these queries by generating a
precise representation of the distribution, up to an arbitrary, pre-specified level of
accuracy (the distribution is discrete, but often has countably infinite support,
so at least some level of truncation is typically required). This is based on a
graph analysis followed by a forward numerical computation. From this, we can
precisely compute a wide range of useful properties, such as the mean, variance,
mode or various risk-based measures.

For an MDP, we instead aim to optimize such properties over all policies. In
this paper, we focus on optimizing the expected value or CVaR, whilst generat-
ing the full reward distribution for each state of the MDP. This is done using
distributional value iteration (DVI) [3], which can be seen as a generalization
of classical value iteration. Rather than computing a single scalar value (e.g.,
representing the optimal expected reward) for each MDP state, DVI associates
a full distribution with each state, replacing the standard Bellman equation with
a distributional Bellman equation.

We consider two types of DVI algorithms, namely risk-neutral DVI for op-
timizing the expected value and risk-sensitive DVI for optimizing CVaR. Risk-
neutral DVI can be shown to converge to a deterministic, memoryless optimal
policy, if a unique one exists [3]. For CVaR, memoryless policies do not suffice
for optimality, but risk-sensitive DVI does converge for a product MDP that
incorporates a (continuous) slack variable representing a cost/reward budget [2].
For computational tractability, we present a risk-sensitive DVI algorithm based
on a discretization of the slack variable, and show that the algorithm converges
to a CVaR optimal policy for increasingly precise discretizations.

For both DVI algorithms, in practice it is necessary to use approximate dis-
tributional representations. We consider the use of categorical and quantile rep-
resentations. This can impact both optimality and the precision of computed dis-
tributions but, for the latter, we can construct the DTMC induced by generated
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MDP policies and use our precise approach to generate the correct distribution.
Finally, we implement our distributional probabilistic model checking framework
as an extension of the PRISM model checker [22] and explore the feasibility and
performance of the techniques on a range of benchmarks.

An extended version of this paper, with proofs, is available as [12].

1.1 Related Work

Distributional properties. Some existing probabilistic model checking meth-
ods consider distributional properties beyond expected values, notably quan-
tiles [32,28,18,16], i.e., optimal reward thresholds which guarantee that the max-
imal or minimal probability of a reward-bounded reachability formula meets a
certain threshold. While [32] and [28] focus on complexity results, [18] and [16]
consider practical implementations to compute quantiles, for single- and multi-
objective variants, respectively, using model unfoldings over “cost epochs”; [16]
also proposes the use of interval iteration to provide error bounds. By con-
trast, our methods derive the full distribution, rather than targeting quantiles
specifically, and our DTMC approach derives error bounds from a forward com-
putation. We also mention [7], which computes probability distributions in a
forwards manner, but for infinite-state probabilistic programs and using gener-
ating functions, and [6], which proposes an algorithm (but not implementation)
to compute policies that trade off expected mean payoff and variance.

Risk-aware objectives. For MDPs, we focus in particular on conditional value-
at-risk (CVaR). There are alternatives, such as mean-variance [31] and value-at-
risk [14] but, as discussed in [25], these are not coherent risk metrics, which
may make them unsuitable for rational decision-making. Other work on the
CVaR objective includes: [20], which studies decision problem complexity, but for
mean-payoff rewards and without implementations; [9], which repeatedly solves
piecewise-linear maximization problems, but has limited scalability, taking over
2 hours to solve an MDP with about 3,000 states; and [26], which proposes both
linear programming and value iteration methods to solve CVaR for MDPs and
DTMCs. Other, not directly applicable, approaches tackle constrained problems
that incorporate the CVaR objective [29,5,8]. Again, our approach differs from all
these in that it computes the full distribution, allowing multiple distributional
properties to be considered. We also work with temporal logic specifications.
Alternative temporal logic based approaches to risk-aware control include [10],
which proposes risk-aware verification of MDPs using cumulative prospect the-
ory, and [17] which proposes chance constrained temporal logic for control of
deterministic dynamical systems.

Distributional reinforcement learning. Our work is based on probabilistic
model checking, which fully explores known models, but our use of DVI is in-
spired by distributional reinforcement learning [3], which can be used to learn
risk-sensitive policies and improve sample efficiency (see [24] for a comparison
of expected and distributional methods). We take a formal verification approach
and use numerical solution, not learning, but adopt existing categorical and
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quantile distributional approximations and our risk-neutral DVI algorithm is a
minimization variant adapted from [3]. Risk-sensitive DVI is also sketched in [3],
based on [2], but only a theoretical analysis of the method is given, without
considering practical implementation aspects, such as how to discretize slack
variables for computational efficiency, and how such approximations would af-
fect the correctness of model checking. We extend risk-sensitive DVI with a
discretized slack variable and show its effects theoretically in Section 4.3 and
empirically via computational experiments in Section 5.

2 Background

We begin with some background on random variables, probability distributions,
and the probabilistic models used in this paper. We let N, R, and Q denote the
sets of naturals, reals and rationals, respectively, and write N∞ = N ∪ {∞}.

2.1 Random Variables and Probability Distributions

Let X : Ω → R be a random variable over a probability space (Ω,F ,Pr). The
cumulative distribution function (CDF) ofX is denoted by FX(x) := Pr(X ≤ x),
and the inverse CDF is F−1

X (τ) := inf{x ∈ R : FX(x) ≥ τ}. Common properties
of interest for X include, e.g., the expected value E(X), the variance Var(X)
which is the square of the standard deviation (s.d.), or the mode.

In this paper, we also consider several risk -related measures. The value-at-
risk of X at level α ∈ (0, 1) is defined by VaRα(X) := F−1

X (α), which measures
risk as the minimum value encountered in the tail of the distribution with respect
to a risk level α. The conditional value-at-risk of X at level α ∈ (0, 1) is given
by CVaRα(X) := 1

1−α
∫ 1

α
VaRν(X)dν, representing the expected loss given that

the loss is greater or equal to VaRα. Figure 1a illustrates an example probability
distribution of a random variable X, annotated with its expected value E(X),
value-at-risk VaR0.9(X) and conditional value-at-risk CVaR0.9(X).

When working with the probability distributions for random variables, we
write distributional equations as X1 :

D
= X2, denoting equality of probability laws

(i.e., the random variable X1 is distributed according to the same law as X2). We
use δθ to denote the Dirac delta distribution that assigns probability 1 to outcome
θ ∈ R. In practice, even when distributions are discrete, we require approximate,
finite representations for them. In this paper, we consider categorical and quantile
distributional representations, both of which provide desirable characteristics
such as tractability and expressiveness [3].

Definition 1 (Categorical representation). A categorical representation pa-
rameterizes the probability of m atoms as a collection of evenly-spaced locations
θ1 < · · · < θm ∈ R. Its distributions are of the form

∑m
i=1 piδθi where pi ≥ 0

and
∑m
i=1 pi = 1. We define the stride between successive atoms as ςm = θm−θ1

m−1 .

Definition 2 (Quantile representation). A quantile representation parame-
terizes the location of m equally-weighted atoms. Its distributions are of the form
1
m

∑m
i=1 δθi for θi ∈ R. Multiple atoms may share the same value.
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(a) True distribution (b) Categorical (m = 11) (c) Quantile (m = 10)

Fig. 1: An example distribution with its categorical and quantile representations.

Figures 1b and 1c show categorical and quantile representations, respectively,
approximating the distribution shown in Figure 1a. When performing operations
on distributions (e.g., during DVI), the intermediate result might not match the
chosen representation parameters. In that case, the result is projected back onto
the chosen representation as described in [3].

2.2 Markov Chains and Markov Decision Processes

In this paper, we work with both discrete-time Markov chains (DTMCs) and
Markov decision processes (MDPs).

Definition 3 (DTMC). A discrete-time Markov chain (DTMC) is a tuple D =
(S, s0, P,AP , L), where S is a set of states, s0 ∈ S is an initial state, P : S×S →
[0, 1] is a probabilistic transition matrix satisfying ∀s ∈ S :

∑
s′∈S P (s, s

′) = 1,
AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A DTMC D evolves between states, starting in s0, and the probability of
taking a transition from s to s′ is P (s, s′). An (infinite) path through D is a
sequence of states s0s1s2 . . . such that si ∈ S and P (si, si+1) > 0 for all i ≥ 0,
and a finite path is a prefix of an infinite path. The sets of all infinite and
finite paths in D are denoted IPathsD and FPathsD, respectively. We define a
probability measure PrD over the set of paths IPathsD.

Definition 4 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0, A, P,AP , L), where states S, initial state s0, atomic propositions AP and
labelling L are as for a DTMC, A is a finite set of actions, and P : S × A ×
S → [0, 1] is a probabilistic transition function satisfying ∀s ∈ S, ∀a ∈ A :∑
s′∈S P (s, a, s

′) ∈ {0, 1}.

In each state s of an MDP M, there are one or more available actions which
can be taken, denoted A(s) = {a ∈ A |P (s, a, s′) > 0 for some s′}. If action a is
taken in s, the probability of taking a transition from s to s′ is P (s, a, s′), also
denoted P (s′|s, a). Paths are defined in similar fashion to DTMCs but are now
alternating sequences of states and actions s0a0s1a1s2 . . . where ai ∈ A(si) and
P (si, ai, si+1) > 0 for all i ≥ 0, and the sets of all infinite and finite paths are
IPathsM and FPathsM, respectively.



6 I. Elsayed-Aly et al.

The choice of actions in each state is resolved by a policy (or strategy),
based on the execution of the MDP so far. Formally, a policy takes the form
π : FPaths → A. We say that π is memoryless if the mapping π(ω) depends
only on last(ω), the final state of ω, and finite-memory if it depends only on
last(ω) and the current memory value, selected from a finite set and updated at
each step of execution. The set of all policies for MDP M is denoted ΣM.

Under a given policy π, the resulting set of (infinite) paths has, as for DTMCs,
an associated probability measure, which we denote PrπM. Furthermore, for both
memoryless and finite-memory policies, we can build a (finite) induced DTMC
which is equivalent to M acting under π.

Definition 5 (Reward structure). A reward structure is, for a DTMC D, a
function r : S → N and, for an MDP M, a function r : S ×A→ N.

For consistency with the literature on probabilistic model checking and tem-
poral logics, we use the terminology rewards although in practice these can (and
often do) represent costs, such as time elapsed or energy consumed. For the
purposes of our algorithms, we assume that rewards are integer-valued, but we
note that these could be defined as rationals, using appropriate scaling. For an
infinite path ω, we also write r(ω, k) for the sum of the reward values over the
first k steps of the path, i.e., r(s0s1s2 . . . , k) =

∑k−1
i=0 r(si) for a DTMC and

r(s0a0s1a1s2 . . . , k) =
∑k−1
i=0 r(si, ai) for an MDP.

To reason about rewards, we define random variables over the executions
(infinite paths) of a model, typically defined as the total reward accumulated
along a path, up until some event occurs. Formally, for a DTMC D, such a
random variable is defined as a function of the form X : IPathsD → R, with
respect to the probability measure PrD over IPathsD. For an MDP M and policy
π ∈ ΣM, a random variable is defined as a function X : IPathsM → R, with
respect to the probability measure PrπM.

3 Distributional Probabilistic Model Checking

We formulate our approach as a distributional extension of probabilistic model
checking, which is a widely used framework for formally specifying and verify-
ing quantitative properties of probabilistic models. In particular, we build upon
existing temporal logics in common use. The core property we consider is the
probability distribution over the amount of reward (or cost) that has been accu-
mulated until some specified sequence of events occurs (which could constitute,
for example, the successful completion of a task by a robot).

To represent events, we use the co-safe fragment [21] of linear temporal logic
(LTL) [27]. LTL formulae are evaluated over infinite paths of a model labelled
with atomic propositions from the set AP but, for use with cumulative reward,
we restrict our attention to the co-safe fragment, containing formulae which are
satisfied in finite time. Formally, this means any satisfying path (ω |=ψ) has a
good prefix, i.e., a finite path prefix ω′ such that ω′ω′′ |=ψ for any suffix ω′′.
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The key ingredient of our temporal logic specifications is a distributional
query, which gives a property (such as the expected value, or variance) of the
distribution over the accumulated reward until an event’s occurrence.

Definition 6 (Distributional query). For a DTMC, a distributional query
takes the form R

f(r)
=? [ψ ], where r is a reward structure, f is a random variable

property (e.g., E,Var, s.d.,mode,VaR,CVaR), and ψ is a formula in co-safe LTL.

Examples of distributional queries for a DTMC are:

– R
Var(renergy)
=? [ F (goal1 ∧ F goal2) ] – the variance in energy consumption until

a robot visits location goal1 followed by location goal2;
– R

mode(rcoll )
=? [ F sent1 ∨ F sent2 ] - the most likely number of packet collisions

before a communication protocol successfully sends one of two messages.

For an MDP, the goal is to optimize a random variable property f over its policies,
which we call distributional optimization queries. In this paper, we focus on two
particular cases, expected value (E) and conditional value-at-risk (CVaR),

Definition 7 (Distributional optimization query). For an MDP, a dis-
tributional optimization query takes the form R

f(r)
opt=?[ψ ], where r is a reward

structure, f ∈ {E,CVaR}, opt ∈ {min,max} and ψ is a formula in co-safe LTL.
For the resulting policy, we can perform policy evaluation on the induced DTMC
using one or more other distributional queries R

f′(r′)
=? [ψ′ ].

An example optimization query is R
CVaR0.9(rtime)
min=? [ F goal ], which minimizes the

conditional value-at-risk with respect to the time for a robot to reach its goal.

Semantics. A distributional query R
f(r)
=? [ψ ] is evaluated on a DTMC D, and a

distributional optimization query R
f(r)
opt=?[ψ ] on an MDP M, in each case via a

random variable for the reward accumulated from its initial state:

R
f(r)
=? [ψ ] = f(Xr,ψ

D )

R
f(r)
min=?[ψ ] = inf

π∈ΣM
f(Xr,ψ

M,π) or R
f(r)
max=?[ψ ] = sup

π∈ΣM

f(Xr,ψ
M,π)

where the random variables Xr,ψ
D : IPathsD → R, Xr,ψ

M,π : IPathsM → R are:

Xr,ψ
D (ω) = Xr,ψ

M,π(ω) = {r(ω, kψ − 1) if ω |=ψ; ∞ otherwise}

and kψ = min{k | (ω, k) |=ψ} is the length of the shortest good prefix for ψ.

Example 1. We illustrate our framework with an example of an autonomous
robot navigating within a risky environment modelled as an MDP (Figure 2).
The robot starts in the leftmost location (blue circle), and may pass through
two types of terrain, mud (orange zigzag) and ground littered with nails (purple
hatching). The default cost of navigation is 1 per step, obstacles (gray) incurring
a cost of 35. In the “nails” terrain, there is a probability of 0.2 incurring a cost of
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Fig. 2: The “mud & nails” example. Left: Map of the terrain to navigate, with
two policies that minimize expected cost and conditional value-at-risk to visit
g1 and then g2. Right: The corresponding distributions over cost.

5; the “mud” terrain is safer but slower: a fixed cost of 3 per step. Consider the
total cost to visit g1 and then g2. Given a reward structure cost encoding the
costs as above, we can aim to minimize either the expected cost or the conditional
value-at-risk, using queries RE(cost)min=? [ F (g1 ∧ F g2) ] or RCVaR0.7(cost)

min=? [ F (g1 ∧ F g2) ].
Figure 2 also shows the resulting policies, plotted on the map in purple and
orange, respectively, and the corresponding probability distributions over cost.
We can analyze each policy with further distributional queries, e.g., Rf(cost)=? [ F g1 ]
for f = {E,Var} to evaluate the mean and variance of the cost to reach g1. ■

4 Distributional Model Checking Algorithms

We now describe algorithms for distributional probabilistic model checking, i.e.,
to evaluate distributional queries of the form R

f(r)
=? [ψ ] for a DTMC or Rf(r)opt=?[ψ ]

for an MDP. Following the semantics given in Section 3, for a DTMC D, this
necessitates generating the probability distribution of the random variable Xr,ψ

D ,
corresponding to reward structure r and LTL formula ψ, on D. The value f(Xr,ψ

D )
can then be evaluated on the distribution for any f. For an MDP M, we aim to
find a policy π∗ which optimizes the value f(Xr,ψ

M,π) over policies π.
For both classes of model, in standard fashion, we reduce the problem to the

simpler case where ψ is a reachability formula by constructing an automaton
product. More precisely, we build a deterministic finite automaton (DFA) Aψ

representing the “good” prefixes of co-safe LTL formula ψ, and then construct a
DTMC-DFA product D ⊗Aψ or MDP-DFA product M⊗Aψ with state space
S × Q, where S is the state space of the original model and Q the states of
the DFA. There is a one-to-one correspondence between paths (and, for MDPs,
policies) in the original model and the product model [1].

Hence, in what follows, we restrict our attention to computing the probability
distributions for random variables defined as the reward to reach a target set of
states T ⊆ S, describing first the case for a DTMC and then the cases for risk-
neutral (f = E) and risk-sensitive (f = CVaR) optimization for an MDP. For the
latter two, for presentational simplicity, we focus on the case of minimization,
but it is straightforward to adapt the algorithms to the maximizing case.
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Algorithm 1: Forward distribution generation for DTMCs
Input : DTMC D = (S, s0, P,AP , L), rewards r, target T ⊆ S, accuracy ε ∈ R>0

Output: The discrete probability distribution µ for Xr,FT
D .

1 S∞ ← {s ∈ S | s ∈ BSCC C ⊆ S with C ∩ T = ∅}; µ× ← δ(s0,0); pT = 1; p∞ = 0
2 while pT − p∞ > ε do
3 µ′

× ← {}; pT ← 0
4 for ((s, i) 7→ ps,i) ∈ µ× do
5 if s ∈ T then
6 µ′

×(s, i)← µ′
×(s, i) + ps,i

7 else
8 for (s′ 7→ ps′) ∈ P (s, ·) do
9 if s′ ̸∈ T then

10 pT ← pT + ps,i · ps′
11 if s′ ̸∈ S∞ then
12 µ′

×(s
′, i+ r(s))← µ′

×(s
′, i+ r(s)) + ps,i · ps′

13 else
14 p∞ ← p∞ + µ×(s, i) · ps′

15 µ× ← µ′
×

16 return {i 7→ pi | pi =
∑

s µ×(s, i)} ∪ {∞ 7→ p∞}

4.1 Forward Distribution Generation for DTMCs

We fix a DTMC D, reward structure r and set of target states T . In this section,
we describe how to compute the probability distribution for the reward r accu-
mulated in D until T is reached, i.e., for the random variable Xr,FT

D . We denote
this distribution by µ. Note that, since individual rewards are integer-valued,
and are summed along paths, µ is a discrete distribution.

We compute the distribution in a forward manner, up to a pre-specified
accuracy ε, using Algorithm 1. First, note that the reward accumulated along
a path that never reaches the target T is defined to be ∞ (see Section 3).
Probabilistic model checking algorithms typically compute the expected reward
to reach a target T from a state s, which is therefore infinite if s has a non-zero
probability of not reaching T . Here, we have to take slightly more care since there
may be states from which there is a non-zero probability of both accumulating
finite and infinite reward. This means that µ is a distribution over N∞.

Algorithm 1 first identifies the states S∞ of D from which the probability of
accumulating infinite reward is 1, which are those in bottom strongly connected
components (BSCCs) of D that do not intersect with T . It then computes a
discrete distribution µ× over S × N∞ where, at the kth iteration, µ×(s, i) is
the probability of being in state s and having accumulated reward i after k
steps. A new version µ′

× is computed at each step. Abusing notation, we write
distributions as lists {x1 7→ p1, . . . } of the elements xj of their support and their
probabilities pj . We also keep track of the probabilities pT and p∞ of, by the
kth iteration, not having reached the target set T and being in S∞, respectively.
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Algorithm 2: Risk-Neutral Distributional Value Iteration
Input : MDP M = (S, s0, A, P,AP , L), rewards r, target T ⊆ S, and ϵ ∈ R>0

Output: optimal policy π∗ for query R
E(r)
min=?[ FT ], distribution µs0 under π∗

1 e =∞; µs ← δ0, ∀s ∈ S
2 while e > ϵ do
3 foreach s ∈ S \ T do
4 foreach a ∈ A(s) do
5 η(s, a) :

D
= proj(r(s, a) +

∑
s′∈S P (s, a, s′) · µs′)

6 π∗(s)← argmina∈A(s) E
(
X|X ∼ η(s, a)

)
; µ′

s ← η(s, π∗(s))

7 e← sups∈S\T d(µs, µ
′
s)

8 µs ← µ′
s, ∀s ∈ S

9 return π∗ and µs0

The distribution µ is finally computed by summing µ×(s, i) values over all states
and can be analyzed with additional distributional properties.

Correctness and convergence. Let µ be the exact distribution for Xr,FT
D and

µ̂ be the one returned by Algorithm 1, using accuracy ε > 0. We have:

µ(i) ≤ µ̂(i) ≤ µ(i)+ε for all i ∈ N∞ (1)

Note that the support of µ may be (countably) infinite, but µ̂ is finite by con-
struction. In this case, the total truncation error is also bounded by ε: if k̂ ∈ N
is the maximum finite value in the support of µ̂, then

∑
k̂<i<∞ µ(i) ≤ ε.

To see the correctness of Equation (1), observe that µ̂(i) is ultimately com-
puted from the sum of the values

∑
s µ×(s, i) in Algorithm 1, the total value of

which is non-decreasing since rewards are non-negative. In any iteration, at most
pT − p∞ will be added to any value µ×(s, i) and, on termination, pT − p∞ ≤ ε.
Convergence is guaranteed for any ε > 0: since we separate the states S∞ in non-
target BSCCs, within k iterations, the combined probability of having reached
T (i.e., 1− pT ) or reaching S∞ (i.e., p∞) tends to 1 as k → ∞.

4.2 Risk-Neutral Distributional Value Iteration for MDPs

In this section, we present a risk-neutral DVI method, for computing value dis-
tributions of states of an MDP M under an optimal policy that minimizes
the expected cumulative reward to reach a target set T ⊆ S, i.e., minimizes
E(Xr,FT

M,π ) for random variables Xr,FT
M,π of MDP policies π. In contrast to the case

for DTMCs, we now assume that there exists an optimal policy with finite ex-
pected reward, i.e., which reaches the target set T with probability 1. This can
be checked efficiently with an analysis of the underlying graph of the MDP [4].

The risk-neutral DVI method is shown in Algorithm 2. For each MDP state
s ∈ S, it initializes its value distribution µs to Dirac distribution δ0. The algo-
rithm loops through lines 2-8 to update value distributions of any non-target
state s ∈ S \ T as follows. For each available action a ∈ A(s) in state s, a value
distribution is obtained via the distributional Bellman equation shown in line
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5 then projected to η(s, a) to match the chosen representation (see Sec. 2.1).
The optimal action π∗(s) in state s is the one that achieves the minimal ex-
pected value of η(s, a). The updated value distribution µ′

s of state s is given
by η(s, π∗(s)). The algorithm terminates when the supremum of distributional
distance d(µs, µ′

s) across all states (the choice of metrics is discussed below) is
less than the convergence threshold ϵ. Unlike the accuracy ε for Algorithm 1,
this threshold ϵ does not provide a guarantee on the precision of the result after
convergence (similar issues occur in classical value iteration for MDPs [15]).

Distributional approximation. To enable a practical implementation of the
algorithm, we need a probability distribution representation with finitely many
parameters to store value distributions in memory. Here, we can adopt the cat-
egorical (see Definition 1) or quantile (see Definition 2) representations. Specifi-
cally, we need to apply the categorical or quantile projection (see [3]) after each
update of the distributional Bellman equation (line 5). We use the supremum
Cramér distance ℓ2 for categorical representations and the supremum Wasser-
stein distance w1 for quantile representations as the distance metric in line 7
(see [3] for distributional distance definitions).

Policy convergence. When there exists a unique risk-neutral optimal pol-
icy, Algorithm 2 is guaranteed to converge to it (following [3, Theorem 7.9]).
However, when there are multiple optimal policies, risk-neutral DVI may fail to
converge (see [3, Section 7.5]). Furthermore, inaccuracies due the use of distribu-
tional approximations could potentially lead to a sub-optimal policy being cho-
sen. To mitigate this, for either categorical or quantile representations, increasing
the number m of atoms used yields tighter approximation error bounds [3].

4.3 Risk-Sensitive Distributional Value Iteration for MDPs

By contrast to risk-neutral policies that seek to minimize the expected re-
ward, risk-sensitive policies make decisions accounting for risk properties. In
this section, we present a risk-sensitive DVI method for minimizing the con-
ditional value-at-risk of reaching a target set in an MDP M, i.e., minimizing
CVaRα(X

r,FT
M,π ) for random variables Xr,FT

M,π of MDP policies π. Our method fol-
lows a key insight from [2,30] that conditional value-at-risk can be represented
as the solution of a convex optimization problem.

Lemma 1 (Dual Representation of CVaR [2,30]). Let [x]+ denote the func-
tion that is 0 if x < 0, and x otherwise. Given a random variable X over the
probability space (Ω,F ,Pr), it holds that:

CVaRα(X) = min
b∈R

{
b+

1

1− α
E
(
[X − b]

+ )}
, (2)

and the minimum-point is given by b∗ = VaRα(X). ⊓⊔

Intuitively, the slack variable b ∈ [Vmin,Vmax] encodes the risk budget and
possible VaRα(X) values. Since VaRα(X) ∈ [Vmin,Vmax], the slack variable is
similarly bounded by the minimum and maximum possible accumulated reward
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Algorithm 3: Risk-Sensitive Distributional Value Iteration
Input : MDP M = (S, s0, A, P,AP , L), reward structure r, target set T ⊆ S,

risk level α, slack variable set B, convergence threshold ϵ ∈ R>0

Output: optimal policy π∗ for query R
CVaRα(r)
min=? [ FT ], distribution µs0 under π∗

1 Construct product MDPMb = (S ×B, {s0} ×B,A, P b,AP , Lb)
2 µ⟨s,b⟩ ← δ0, ∀⟨s, b⟩ ∈ S ×B
3 while e > ϵ do
4 foreach ⟨s, b⟩ ∈ (S \ T )×B do
5 foreach a ∈ A(s) do
6 η(⟨s, b⟩, a) :D= proj(r(s, a) +

∑
⟨s′,b′⟩∈S×B P b(⟨s, b⟩, a, ⟨s′, b′⟩) · µ⟨s′,b′⟩)

7 πb(⟨s, b⟩)← argmina∈A(s) E
(
[X − b]+ |X ∼ η(⟨s, b⟩, a)

)
8 µ′

⟨s,b⟩ ← η(⟨s, b⟩, πb(⟨s, b⟩))
9 e← sup⟨s,b⟩∈(S\T )×B d(µ⟨s,b⟩, µ

′
⟨s,b⟩)

10 µ⟨s,b⟩ ← µ′
⟨s,b⟩, ∀⟨s, b⟩ ∈ (S \ T )×B

11 b̄∗ ← argminb̄∈B CVaRα(X|X ∼ µ⟨s0,b̄⟩), ∀b̄ ∈ B

12 π∗ ← policy πb of the product MDP Mb with initial state fixed to ⟨s0, b̄∗⟩
13 return π∗ and µ⟨s0,b̄∗⟩

within the MDP, respectively. We assume that the reward values are bounded
and the probability of reaching the target states is 1, therefore Vmin and Vmax

are also bounded. To enable efficient computation, we consider a discrete number
of values for b. More precisely, we define a set B with n evenly-spaced atoms
b1 < · · · < bn such that b1 = Vmin, bn = Vmax, and the stride between two
successive atoms is ςn = Vmax−Vmin

n−1 . Based on Lemma 1, determining the optimal
slack variable value b∗ requires computation of VaRα for the distribution, which
cannot be obtained a priori. Thus, we consider all possible risk budgets.

Algorithm 3 illustrates the proposed method. We construct a product MDP
model Mb = (S ×B, {s0} ×B,A, P b,AP , Lb). Unlike the product MDP defined
in Section 3, this MDP has multiple initial states, one state ⟨s0, b̄⟩ for each risk
budget b̄ ∈ B, where s0 is the initial state of the MDP M. For each transition
s

a−→ s′ in M with P (s, a, s′) > 0, there is a corresponding transition ⟨s, b⟩ a−→
⟨s′, b′⟩ in Mb, where b′ is obtained by rounding down the value of b − r(s, a)
to the nearest smaller atom in B and P b(⟨s, b⟩, a, ⟨s′, b′⟩) = P (s, a, s′). The
labelling function is given by Lb(⟨s, b⟩) = L(s). Next, in lines 2-12, Algorithm 3
initializes and updates the value distribution of each augmented state ⟨s, b⟩ ∈
S × B in the product MDP Mb in a similar fashion to the risk-neutral DVI
described in Section 4.2. However, when choosing the optimal action (line 8),
Algorithm 3 adopts a different criterion that minimizes E([X − b]

+
) based on

the dual representation of CVaR (see Equation 2).

Different choices of the initial risk budget b̄ lead to various value distributions.
Once DVI on the product MDP Mb converges, the algorithm selects the optimal
risk budget, denoted by b̄∗, that yields the minimum CVaR of all possible initial
value distributions µ⟨s0,b̄⟩. Finally, the algorithm returns the optimal policy π∗



Distributional Probabilistic Model Checking 13

resulting from the risk-sensitive DVI on the product MDP Mb with initial state
⟨s0, b̄∗⟩, and returns the distribution µ⟨s0,b̄∗⟩.

Correctness and convergence. Following [2, Theorem 3.6], when the slack
variable b is continuous (i.e., B = R), there exists a solution b∗ of Equation 2
and the optimal policy πb of product MDP Mb with initial state fixed to ⟨s0, b∗⟩
is the CVaR optimal policy of MDP M. Algorithm 3, which uses a discretized
slack variable (i.e., the set of atoms B is finite), converges to the same optimal
policy πb as |B| increases, which is formalised below (and a proof can be found
in the extended version of this paper [12]).

Lemma 2. Let π1 denote the optimal policy for minimizing CVaRα(X
r,FT
M,π ),

which is obtained with a continuous slack variable. Let π2 denote the optimal
policy returned by Algorithm 3 where B is a finite set of n evenly-spaced atoms
with stride ςn. It holds that CVaRα(X

r,FT
M,π2

) − CVaRα(X
r,FT
M,π1

) = O(ςn). As ςn
tends to 0 (i.e., |B| increases), π2 converges to the CVaR optimal policy. ⊓⊔

5 Experiments

We built and evaluated a prototype implementation3 of our distributional prob-
abilistic model checking approach based on PRISM [22], extending its Java
explicit-state engine. Our evaluation focuses initially on solving MDPs using
the DVI methods (of Sections 4.2 and 4.3), then on solving the resulting policies
using the DTMC method (of Section 4.1). All experiments were run on a ma-
chine with an AMD Ryzen 7 CPU and 14 GB of RAM allocated to the JVM.
We set Vmin = 0 for all case studies; Vmax varies, as detailed below.

5.1 Case Studies

Betting Game. This case study is taken from [29]. The MDP models an agent
with an amount of money, initially set to 5, which can repeatedly place a bet of
amount 0 ≤ λ ≤ 5. The probability of winning is 0.7, the probability of losing is
0.25, and the probability of hitting a jackpot (winning 10λ) is 0.05. The game
ends after 10 stages. The reward function is given by the maximal allowance (e.g.,
100) minus the final amount of money that the agent owns. We use Vmax = 100.

Deep Sea Treasure. This case study is also taken from [29]. The model repre-
sents a submarine exploring an area to collect one of several treasures. At each
time step, the agent chooses to move to a neighbouring location; it succeeds with
probability 0.6, otherwise moves to another adjacent location with probability
0.2. The agent stops when it finds a treasure or has explored for 15 steps. The
reward function is defined based on the travel cost (5 per step) and opportunity
cost (i.e., maximal treasure minus collected treasure value). We set Vmax = 800.

Obstacle. This case study is inspired by the navigation example in [9]. We
consider an MDP model of an N×N gridworld with a set of scattered obstacles.
3 Code and models are at https://www.prismmodelchecker.org/files/nfm24dpmc.

https://www.prismmodelchecker.org/files/nfm24dpmc
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Table 1: Experimental results: Timing and accuracy of each method.
Model Method MDP Time (s) E CVaRα Timedtmc (s) ∆%

E ∆%
CVaR

Betting
Game

risk-neut. VI 8.9 · 102 < 1 61.9 - < 1 - -
risk-neut. DVI 8.9 · 102 < 1 61.9 98.0 < 1 0.0 0.0
risk-sens. DVI 9.0 · 104 36 85.3 92.2 < 1 0.0 0.0

DS
Treasure

risk-neut. VI 1.2 · 103 < 1 359.3 - < 1 - -
risk-neut. DVI 1.2 · 103 < 1 359.3 474.6 < 1 0.0 0.33
risk-sens. DVI 1.2 · 105 72 370.1 458.6 < 1 0.0 0.32

Obstacle
(N = 150)

risk-neut. VI 2.3 · 104 < 1 402.8 - 1,838 - -
risk-neut. DVI 2.3 · 104 97 402.7 479.2 1,838 0.01 1.95
risk-sens. DVI 2.3 · 106 15,051 402.9 478.4 1,673 0.01 2.00

UAV
risk-neut. VI 1.7 · 104 < 1 124.1 - < 1 - -
risk-neut. DVI 1.7 · 104 4 123.8 168.8 < 1 0.2 0.47
risk-sens. DVI 1.7 · 106 2,366 134.9 169.1 < 1 0.0 0.01

Energy
(N = 15)

risk-neut. VI 2.6 · 104 10 184.3 - 251 - -
risk-neut. DVI 2.6 · 104 108 184.0 382.0 234 0.17 0.47
risk-sens. DVI 1.3 · 106 9,384 184.6 380.9 122 0.16 0.33

The agent’s goal is to navigate to a destination, while avoiding obstacles which
cause a delay. At each time step, the agent moves in a selected direction with
probability 0.9 and an unintended direction with probability 0.1. The reward
function is given by the time spent to reach the destination. We use Vmax = 600.

UAV. This case study is adapted from the MDP model of the interaction be-
tween a human and an unmanned aerial vehicle (UAV) from [13]. A UAV per-
forms road network surveillance missions with the assistance of a human oper-
ator, and is given a mission specified with LTL formula ψ = (F w2) ∧ (F w5) ∧
(F w6), which translates into covering waypoints w2, w5 and w6 in any order. The
reward function is given by the mission completion time. We pick Vmax = 500.

Energy. This case study considers a robot navigating an N × N gridworld
with energy constraints. At each time step, the robot moves to an adjacent grid
location with probability 0.7, or to an unintended adjacent location otherwise. It
starts with a fixed amount of energy and consumes 1 unit per step. The robot can
only recharge its battery in the charging station. When the energy is depleted,
the robot is transported with a delay to the charging station. The robot is asked
to complete a mission specified with LTL formula ψ = (F w1)∧ (F w2)∧ (F w3).
The reward function represents the mission completion time. We use Vmax = 500.

5.2 Results Analysis
Method comparison. Table 1 summarizes our experimental results across
the benchmarks described above. For each MDP, we run both the risk-neutral
and risk-sensitive variants of distributional value iteration (DVI), optimizing ex-
pected value and CVaR, as described in Section 4.2 and Section 4.3, respectively.
For the risk neutral case we also run standard value iteration (VI), as imple-
mented in PRISM. For all three methods, we then evaluate the resulting policy,
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computing the full reward distribution using the forward distribution generation
method described in Section 4.1, allowing us to compute more precise results for
the expected value and CVaR on those policies.

The table shows the time to run each algorithm and the values computed dur-
ing optimization (the value for the objective being optimized is shown in bold).
Additionally, the table shows the time to run the forward distribution method
on the induced DTMC, and the (percentage) relative error when comparing the
VI/DVI results with the forward distribution outcomes.

For each case study, we also report the number of states in the (product) MDP
that is solved. The UAV and Energy benchmarks use non-trivial co-safe LTL
formulae for the mission specification (the others are reachability specifications)
and so the MDP is a MDP-DFA product. For risk-sensitive DVI, the state space
is also augmented with a slack variable resulting in larger product MDPs. We
set the slack variable size to |B| = 51 for the Energy model, and |B| = 101
for the rest. We use the the categorical representation with m = 201 for DVI,
with ϵ = 0.01 for the convergence metric. For policy evaluation, we use precision
ε = 10−3 for the Obstacle and Energy case studies and ε = 10−5 for the others.

Our DVI methods successfully optimize their respective objectives on a range
of large MDPs. Generally, the policy resulting from the risk-neutral method
has a lower expected value, while the policy from the risk-sensitive method has
a lower CVaRα, and the risk-neutral method yields the same optimal policy
as baseline VI. As expected, DVI methods are more expensive than VI, since
they work with distributions, but the DVI methods are successfully applied to
MDPs with several million states. Additionally, the baseline VI method can
only provide expected reward values, while the distribution returned by our
methods can be used to compute additional distributional properties (variance,
VaR, etc.). Comparing the two variants of DVI, the risk-sensitive version takes
considerably longer to run. This is primarily due to the use of a larger product
model, incorporating a slack variable, rather than the computation required for
DVI itself. For the same reason, risk-neutral DVI scales to larger models, but
for clarity Table 1 only includes models that all methods can solve.

The DTMC forward computation also works on all models. It is often very
fast (under a second in 3 cases), but grows expensive on models where the sup-
port of the distribution is large. From its results, we see that both DVI methods
produce approximate distributions that are close to the true distribution.

Note that in the last three case studies, the Vmax value is higher, resulting
in a larger stride and thus more coarse representations for both the value dis-
tributions and the slack variable (for risk-sensitive DVI). This results in more
approximation errors when computing metrics from the value distributions gen-
erated using DVI. This can be seen in the case of the UAV model where the
risk-neutral method underestimates CVaRα (168.8 compared to 169.6 from the
true distribution generated by the DTMC method for the same policy). The
following experiments aim to evaluate how the parameters of the distributional
representation affect the resulting approximate distributions generated by DVI.
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(a) Categorical representation (b) Quantile representation

Fig. 3: Varying the numbers of atoms for distributional representations.

(a) Deep Sea Treasure (b) Obstacle 10 (c) Energy 10

Fig. 4: Results for varying the numbers of atoms in risk-sensitive DVI.

Effects on distributional approximation. Figure 3 plots the effects of vary-
ing the number of atoms used for categorical and quantile representations for
distributions, in terms of the ℓ2 distance between the approximate distribution
resulting from risk-neutral DVI and the ground truth (obtained via applying the
DTMC forward distribution generation method with ε = 10−5 on the resulting
optimal policy). For both representations, the ℓ2 distance approaches 0 as the
number of atoms increases, indicating that the approximate distributions become
very close to the ground truth. We observe similar effects with the risk-sensitive
method and thus omit the resulting plot. Note that the Deep Sea Treasure model
has a larger Vmax and thus the resulting ℓ2 is higher than other models when
using a maximum of 101 atoms in the categorical representation.

A larger number of atoms (m value) leads to a higher computational cost,
thus we consider smaller models for the Obstacle and Energy case studies with
N = 10 for plotting. As an illustration of accuracy/cost trade-off, for Energy 10,
the runtime using categorical representations with 11 atoms (resp. 101 atoms)
is 0.3s (resp. 0.63s), while the runtime when using quantile representations with
10 atoms (resp. 100 atoms) is 0.9s (resp. 5s). The quantile projection is more
expensive than the categorical projection, resulting in higher runtimes.

Effects of slack variable atoms. Figure 4 illustrates the effects of varying the
number of atoms used for the slack variables (|B|) in risk-sensitive DVI. The
results show that increasing |B| generally leads to better policies with smaller
CVaR values. This is in part because the algorithm would check a larger set of
initial risk budgets b̄ ∈ B. But there is a trade-off since the computational cost
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Table 2: Performance comparison for DTMC forward computation
Model Param.s States Transitions Vmax DVI(s) DTMC(s) ∆%

E ∆%
CVaR

EGL N=8,L=3 5.4 · 106 5.5 · 106 40 439 1 0.4 0.5
N=8,L=4 7.5 · 106 7.6 · 106 40 897 1 0.4 0.4
N=8,L=5 9.6 · 106 9.7 · 106 50 4,345 1 0.3 0.4

Leader N=8,K=5 2.7 · 106 3.1 · 106 20 41 2 0.0 0.0
N=10,K=4 9.4 · 106 1.0 · 107 30 577 15 0.3 0.6
N=8,K=6 1.2 · 107 1.3 · 107 20 163 9 0.0 0.1

Herman N=13 8.2 · 103 1.6 · 106 100 4 14 0.6 0.9
N=15 3.3 · 104 1.4 · 107 120 57 190 0.5 0.9
N=17 1.3 · 105 1.3 · 108 140 1,234 2,369 0.8 1.2

grows with an increasing |B|. For example, in the Energy 10 model, the runtime
using the categorical representation with 101 atoms for |B| = 11 (resp. |B| =
101) is 7.8s (resp. 78.6s), whereas the runtime of using the quantile representation
with 1,000 atoms for |B| = 11 (resp. |B| = 101) is 477s (resp. 5,163s).

DTMC forward computation. Finally, we further evaluate the forward com-
putation method for DTMCs from Section 4.1 on a range of common DTMC
benchmarks from the PRISM benchmark suite [23]. In particular, we compare
to an alternative computation using the risk-neutral DVI method method of
Section 4.2, treating DTMCs as a special case of MDPs. Table 2 shows the per-
formance of the two methods. For each model, we indicate the parameters used
for the benchmark and the DTMC size (states and transitions). For the DVI
method, we use the categorical representation with a stride of 1 and a value of
Vmax large enough to represent the distribution (also shown in the table).

In two of the three models, the DTMC computation is much faster. This is
because the DVI method calculates a reward distribution for every state. For
the third model, where Vmax is significantly higher, DVI is actually faster (the
same can be seen for the Obstacle and Energy models in Table 1). The DTMC
method computes distribution to a pre-specified accuracy, but DVI may incur
approximation errors, primarily due to convergence. Table 2 also shows (relative)
errors for the expected value and CVaR metrics for each benchmark.

6 Conclusion

This paper presents a distributional approach to probabilistic model checking,
which supports a rich set of distributional queries for DTMCs and MDPs. Exper-
iments on a range of benchmark case studies demonstrate that our approach can
be successfully applied to check various distributional properties (e.g., CVaR,
VaR, variances) of large MDP and DTMC models. We believe that this work
paves the way for applying distributional probabilistic model checking in many
safety-critical and risk-averse domains. For future work, we will explore distri-
butional queries with multiple objectives and under multi-agent environments.
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