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Abstract. Ubiquitous computing, where computers ‘disappear’ and in-
stead sensor-enabled and software-controlled devices assist us in every-
day tasks, has become an established trend. To ensure the safety and
reliability of software embedded in these devices, rigorous model-based
design methodologies are called for. Quantitative verification, a powerful
technique for analysing system models against quantitative properties
such as “the probability of a data packet being delivered within 1ms to a
nearby Bluetooth device is at least 0.98”, has proved useful by detecting
and correcting flaws in a number of ubiquitous computing applications.
In this paper, we focus on three key aspects of ubiquitous computing: au-
tonomous behaviour, constrained resources and adaptiveness. We sum-
marise recent advances of quantitative verification in relation to these
aspects, illustrating each with a case study analysed using the proba-
bilistic model checker PRISM. The paper concludes with an outline of
future challenges that remain in this area.

1 Introduction

Ubiquitous computing, also known as pervasive computing, was envisaged by
Mark Weiser in [47], where he predicted that computers will “weave themselves
into the fabric of everyday life until they are indistinguishable from it”. To-
day, powered by advances in microelectronics, mobile phone technology and
cloud computing, we are witnessing a tremendous growth in device technologies
for software-controlled ‘smart’ devices that support our daily activities and au-
tonomously make decisions on our behalf. They can sense what is around them,
remember the context and adapt to new situations. They can communicate wire-
lessly with other devices and humans, and are Internet-enabled. Applications
are endless, from environmental and health monitoring, through home appliance
networks, to self-driving cars. A related vision is the ‘Internet of Things’, where
everyday objects (called ‘everyware’ by Adam Greenfield) are enhanced with
information processing capabilities.

The growing dependence of society on ubiquitous computing calls for rigor-
ous device design methodologies, which is particularly important for their em-
bedded software that controls the device actions and whose failure can lead to
costly recalls. Model-based design methodologies have the potential to improve
the reliability of devices and reduce the development effort through code gener-
ation and software reuse via product lines. In particular, automated verification



via model checking provides the means to systematically verify software against
correctness requirements such as “the smartphone will never reveal private data
to unauthorised contacts”. These techniques have been successfully applied to
TinyOS sensor network software [5] with respect to safety assertions. However,
when modelling ubiquitous computing devices we often need to include quanti-
tative aspects such as probability, time delays and resource usage in the models.
Probability is needed because of inherent unreliability of wireless communica-
tion technologies such as Bluetooth and ZigBee, which use randomised back off
schemes to minimise collisions; also, embedded devices are frequently powered by
battery and components may be prone to failure. Quantitative verification [31]
techniques are well suited to this case, where systems are modelled as variants
of Markov chains, annotated with real-time and quantitative costs/rewards. The
aim is to automatically establish quantitative properties, such as “the probability
of a monitoring device failing to issue alarm when a dangerous rise in pollutant
level is detected”, “the worst-case expected time for a Bluetooth device to dis-
cover another device in vicinity”, or “the minimum expected power consumption
of the smartphone while looking up directions with GPS”. Quantitative, prob-
abilistic verification has been implemented in the probabilistic model checker
PRISM [34], which has been applied to a wide range of case studies from the
ubiquitous computing domain, resulting in automatic detection and diagnosis of
software flaws and unexpected trends.

In this paper, we provide a brief overview of quantitative verification tech-
niques, including typical features of the models and property specification nota-
tions. We then describe a selection of recent advances, highlighting the following
three key aspects of ubiquitous computing devices:

1. autonomous behaviour : increasingly, we are relying on ubiquitous computing
devices to act autonomously on our behalf, including safety-critical applica-
tions such as self-driving cars, or robotic search and rescue missions;

2. constrained resources: the embedded processors have limited memory and
CPU speed, are often battery powered, and employ unreliable communica-
tion technologies, and yet they are expected to reliably and timely perform
critical functions such as financial transactions;

3. adaptiveness: ubiquitous computing devices are typically enabled and man-
aged by cloud services, which dynamically adapt behaviours to changing
requirements and environmental context, necessitating continuous monitor-
ing and runtime verification to provide dependability assurance.

We illustrate each of the above with a typical case study, drawn from the ubiq-
uitous computing domain, that used PRISM, describing the modelling approach
taken and lessons learnt. The case studies involve sensor-enabled mobile devices
such as autonomous robots, smartphones and healthcare monitoring. The re-
quirements that we wish to ensure include:“the robot will successfully arrive
at the exit with probability greater than 0.99, without hitting any obstacles”
(autonomous behaviour); “the email protocol will ensure that the total energy
cost of sending a message does not exceed a specified bound, even if the bit error
rate is high (constrained resources); and “the device will maintain 0.97 minimum
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probability of delivering sensor readings to the beacon within 5ms, even if the
bandwidth drops from time to time” (adaptiveness). We conclude by outlining
future research challenges in quantitative verification for ubiquitous computing.

The paper is organised as follows. In Section 2 we give an overview of quan-
titative verification techniques, focusing on Markov chain and Markov decision
process models, and the corresponding temporal logics, PCTL and CSL. Sec-
tion 3 demonstrates recent advances of quantitative verification by highlight-
ing a number of case studies from ubiquitous computing, all analysed with the
PRISM model checker [34]. Section 4 concludes the paper by summarising future
research challenges.

2 Quantitative Verification Basics

We give a brief overview of a selection of probabilistic models and specification
formalisms used in automated quantitative verification. The models have been
chosen according to case studies presented in the next section. We note that all
models and specification notations discussed are supported by PRISM [34].

2.1 Markov Decision Processes

In ubiquitous computing devices probabilistic behaviour typically coexists with
nondeterminism. Probability is the result of a random event, for example an
electronic coin toss, sensor failure or stochastic delay, and nondeterminism is used
to model concurrent execution or action-based control. Both nondeterminism
and (discrete) probability are present in the classical model of Markov decision
processes (MDPs).

Let S be a finite set; we denote the set of probability distributions over S by
Dist(S).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s̄,Act ,P,AP , L), where

– S is a finite set of states and s̄ ∈ S is the initial state;
– Act is a finite set of actions;
– P : S×Act×S ∈ [0, 1] is a transition probability matrix where

∑
s′∈S P(s, a, s′) ∈

{0, 1} for any s ∈ S and a ∈ Act;
– AP is a set of atomic propositions;
– L : S → 2AP is a labelling of states with atomic propositions.

We let δ(s) ⊆ Act denote the set of actions enabled in s, i.e. a ∈ δ(s) if∑
s′∈S P(s, a, s′) = 1. The MDP executes as follows: in each state s the successor

state is chosen by, first, nondeterministically selecting an enabled action a ∈ δ(s),
and, second, choosing the successor according to the probability distribution
P(s, a). A path of M is of the form π = s0a0s1a1s2 · · · where ai ∈ δ(si) and
P(si, ai, si+1) > 0 for each i ≥ 0.
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To reason formally about the behaviour of MDPs, we use the notion of strate-
gies (also called adversaries or policies), which resolve all the nondeterministic
choices in a model. Formally, a strategy is a function σ that maps a finite path
ending in s to an action in δ(s) based on the history of choices made so far. Un-
der a particular strategy, the behaviour of an MDP is fully probabilistic and we
can define a probability space over the possible paths through the model using
standard construction [30].

A discrete-time Markov chain (DTMC ) is an MDPM = (S, s̄,Act ,P,AP , L)
with |Act | = 1, where

∑
s′∈S P(s, a, s′) = 1 for all s ∈ S. Thus, a DTMC can be

viewed as a single transition probability matrix P : S × S ∈ [0, 1], with all rows
summing up to 1. We omit Act from the tuple.

MDP properties are typically expressed in temporal logics. The logic PCTL
(Probabilistic Computation Tree Logic) [29], a probabilistic extension of the
temporal logic CTL is defined below.

Definition 2. The syntax of PCTL is given by:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ ∣∣ Φ ∨ Φ ∣∣ P∼p[ψ ]

ψ ::= XΦ
∣∣ ΦU≤k Φ

∣∣ ΦUΦ

where a is an atomic proposition, ∼∈{<,≤,≥, >}, p ∈ [0, 1] and k ∈ IN.

PCTL formulae Φ are interpreted over the states of an MDP. As path formulae
we allow XΦ (“Φ is satisfied in the next step”) Φ1 U≤k Φ2 (“Φ2 is satisfied within
k steps and Φ1 is true until that point”) and Φ1 UΦ2 (“Φ2 is eventually satisfied
and Φ1 is true until then”). The usual derived variants FΦ, GΦ are also per-
mitted. We say that a state s ∈ S satisfies a PCTL formula Φ, denoted s |= Φ,
if it is true for s, which means that the probability of a path formula ψ being
true in a state satisfies the bound ∼ p for all strategies. We can also use PCTL
in quantitative form, e.g. Pmin=? [ ψ ], which returns the minimum/maximum
probability of satisfying ψ. Examples of PCTL properties are:

– Pmax=? [ F lost ] - “the maximum probability, over all possible strategies, of
the protocol losing a message”;

– Pmin=? [ F≤10 deliver ] - “the minimum probability, over all possible strate-
gies, of the protocol delivering a message within 10 time steps”;

– P≥1 [ near supplies U exit ] - “under all possible strategies, with probability
1, the robot always remains near supplies until exiting”.

Model checking PTCL over MDPs requires a combination of graph-based al-
gorithms and numerical solution techniques. Typically, we are interested in the
best- or worst-case behaviour and compute the minimum or maximum proba-
bility that some event occurs, quantifying over all possible strategies. The mini-
mum and maximum probabilities can be computed by solving linear optimisation
problems, which is often implemented using dynamic programming.We can also
synthesise the strategy that achieves the minimum/maximum probability. For
the case of DTMCs, it suffices to solve linear equation systems. More expressive
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logics such as LTL or PCTL* can also be defined, albeit their model checking
becomes more expensive. The usual approach is to convert the LTL formula to
a deterministic Rabin automaton and perform verification on the product of this
automaton and the original MDP; see e.g. [2,22].

2.2 Continuous-Time Markov Chains

In MDPs, the progress of time is modelled by discrete time steps, one for each
transition of the model. For many applications, it is preferable to use a continuous
model of time, where the delays between transitions can be arbitrary real values.
A natural extension of MDPs with real-time (not discussed here) is probabilistic
timed automata [37]. We focus on the simpler, classical model of continuous-time
Markov chains (CTMCs), which have no nondeterminism, and extend DTMCs
with real-time by modelling transition delays with exponential distributions.

Definition 3. A continuous-time Markov chain (CTMC) is C = (S, s̄,P, E,AP , L)
where:

– (S, s̄,P,AP , L) is a DTMC;
– E : S → IR≥0 is the exit rate.

In a CTMC C, the residence time of a state s ∈ S is a random variable governed
by an exponential distribution with parameter E(s). Therefore, the probability

to exit state s in t time units is given by
∫ t
0
E(s)·e−E(s)τdτ . To take the transition

from s to another state s′ in t time units, the probability equals P(s, s′)·
∫ t
0
E(s)·

e−E(s)τdτ .
Intuitively, the CTMC executes as follows: in each state s, it stays in this

state for time t, drawn from exponential distribution with parameter E(s), and
then moves to state s′ with probability P(s, s′). A timed path of C is a finite or
infinite sequence s0t0s1t1s2 · · · tn−1sn . . ., where ti ∈ IR>0 for each i ≥ 0. As for
DTMCs, a probability space over the paths through a CTMC can be defined [3],
where events correspond to certain sets of paths.

To specify quantitative properties of CTMCs, the logic CSL [3] has been
proposed, which is syntactically similar to PCTL, except that it now includes
continuous versions of the step-bounded path operators, that is, Φ1 U[t,t′] Φ2,
where t, t′ ∈ IR≥0, is true for a path if Φ1 is satisfied until Φ2 becomes true at a
time point belonging to the interval [t, t′]. Then, for example, P=? [ F[0,t] Φ ] de-
notes the transient probability of satisfying Φ by time t. A steady state operator
S is also added, which can express the long-run probability of residing in a state
satisfying some state formula. Examples of CSL properties are:

– P=? [ F[5,5] ¬empty ] - “the probability of the robot’s battery not being de-
pleted at time 5 mins”;

– P=? [ near supplies U[0,5.5] exit ] - “the probability of the robot remaining
near supplies before exiting safely within 5.5 mins”;

– S≥0.99 [¬fail ] - “the long-run probability of the robot being operational is
at least 0.99”.
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Model checking for CSL over CTMCs proceeds by discretisation into a DTMC.
The steady-state operator is computed by solving a linear equation system,
whereas the probabilistic operator reduces to transient probability calculation,
and is typically implemented using uniformisation, an efficient iterative numer-
ical method. For more information see e.g. [32]. More expressive, durational
properties for CTMCs can also be defined and automatically verified [14].

2.3 Adding Costs & Rewards

The above probabilistic models can be augmented with reward information (also
referred to as cost), which enables the computation of expected reward values.
For simplicity, we only show the extension for DTMCs. For D = (S, s̄,P,AP , L),
we define a reward structure (ρ, ι), where: ρ : S → IR≥0 assigns rewards to states,
and ι : S × S → IR≥0 assigns rewards to transitions. The state reward vector
ρ(s) is the reward acquired in state s per time step, and the transition reward
ι(s, s′) is acquired each time a transition between states s and s′ occurs.

Reward structures can be used to represent a variety of different aspects of
a system model, for example “number of packets dropped by the protocol” or
“the expected energy consumed in the start-up phase”. To express reward-based
properties for DTMCs, the logic PCTL can be extended [32] with additional
operators:

R∼r[ C≤k ]
∣∣ R∼r[ I=k ]

∣∣ R∼r[ FΦ ]

where ∼∈{<,≤,≥, >}, r ∈ IR≥0, k ∈ IN and Φ is a PCTL formula. The formula
R∼r[ψ ] is satisfied in a state s if, from s, the expected value of reward ψ meets
the bound ∼r. The formula ψ can take the form: C≤k, which refers to the reward
cumulated over k time steps; I=k, the state reward at time instant k (i.e. after
exactly k time steps); and FΦ, the reward cumulated before a state satisfying Φ
is reached. Similarly to the P operator, we also use the quantitative form R=?[ψ ],
meaning the value of the expected reward. The following are examples of reward
properties assuming appropriate reward structures have been defined:

– R=?[C
≤10] - “the expected power consumption within the first 10 time steps

of operation”;
– R=?[I

=100] - “the expected number of regions visited by the robot after 100
time steps have passed”;

– R≥5[F exit ] - “the expected number of regions visited by the robot until
exiting is at least 5”.

Model checking for the reward operators for DTMCs reduces to a combi-
nation of graph algorithms and solution of linear equations; see e.g. [32] for
more information. An extension of CSL with the reward operator was formu-
lated in [32]. Similarly, cumulative and instantaneous reward operators can be
added to PCTL for MDPs [22], where minimum/maximum expected rewards,
denoted by Rmax=?[·] in quantitative form, are computed over all strategies.
Steady-state rewards, respectively long-run average in the case of MDPs, can
also be defined [32,22].
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(a) Model and strategy exploration (b) Experiments and graph plotting

Fig. 1. Screenshots of the PRISM graphical user interface

2.4 Quantitative Verification with PRISM

Quantitative verification techniques been implemented within PRISM [34,1], a
probabilistic model checker developed at the Universities of Birmingham and Ox-
ford. PRISM provides direct support for DTMCs, MDPs and CTMCs, as well as
two additional models not discussed here, probabilistic timed automata (PTAs)
and stochastic multi-player games (SMGs), the latter via the tool PRISM-
games [11]. The models are specified using a high-level modelling language based
on guarded command notation. Quantitative properties can be specified in the
temporal logics PCTL, LTL, PCTL* and CSL, which include both probabilistic
and reward operators.

PRISM is primarily a symbolic model checker (based on variants of Binary
Decision Diagrams (BDDs)), but it also makes extensive use of explicit storage
schemes such as sparse matrices and arrays, and implements multiple engines
for efficiency and scalability. The verification algorithms can provide either ex-
act, numerical solutions to the induced linear equation systems or linear pro-
gramming problems, typically computed iteratively, or approximate the prob-
ability/expectation by sampling executions using Monte Carlo techniques and
performing statistical inference to estimate the probability of satisfying the prop-
erty (also known as statistical model checking). Parametric models are now sup-
ported [15]. It is also possible to simulate the model and synthesise the strategy
that minimises/maximises the probability or reward [1].

PRISM’s graphical user interface, shown in Figure 1, provides a model editor,
a simulator for model debugging and strategy exploration, and graph-plotting
functionality. Models and properties can be specified using parameters, and ex-
periments facilitate the search for flaws or unusual trends, by plotting the values
of quantitative queries as the parameters in the model or property are varied.

PRISM is free and open-source (released under the GPL license), runs on
most major operating systems, and has been applied to several application do-
mains, including distributed algorithms, security protocols, dependability, plan-
ning, workflows, and biology; see [1] for more information.
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3 Quantitative Verification for Ubiquitous Computing

Quantitative verification is a powerful and widely applicable method, which has
been successfully applied in the context of ubiquitous computing. We mention,
for example, the modelling and analysis of performance and energy consumption
of the Bluetooth device discovery protocol [16], which established for the first
time that the worst-case time to hear one message is unusually long, about 2.5s. A
similar analysis has been performed for the ZigBee sensor network protocol [26],
recently extended with analysis of the impact of key update strategies on network
performance. Further studies concerning mobile devices include performability
of several dynamic power management schemes [43].

The ultimate challenge is to apply these techniques to real-world ubiquitous
computing scenarios, which are expanding rapidly. In this paper, we survey some
of the recent advances by focusing on three key aspects of ubiquitous comput-
ing devices: autonomous behaviour, constrained resources and adaptivity. Each
aspect will be illustrated by means of case studies that use PRISM.

3.1 Autonomous Behaviour

A growing number of ubiquitous computing applications involves designing au-
tonomous robotic missions, such as those used in planetary exploration, for ex-
ample Mars Rover, or disaster search and rescue. A key challenge for the design-
ers is to construct a mission so that it satisfies some high-level goals, and executes
in a timely manner and without fault. In addition, technological progress towards
self-parking and self-driving cars calls for software tools to support the design
of safe autonomous vehicle control.

In this section, we highlight the research aimed at automated generation
of control strategies for robotic vehicles in dynamic environments as reported
in [41]. The approach is based on the observation that temporal logic such as
CTL can be used to specify the mission goals, for example, “the robot will re-
main in safe regions until exiting successfully”. Under the assumption that the
environment is static and can be partitioned into a finite-state transition sys-
tem, conventional model checking tools can be applied to analyse and generate
strategies in this case. However, one has to consider noise on sensors induced
from measurement errors; similarly, control actions can exhibit uncertainty due
to actuator error, in the sense that the robot can move to an adjacent region
or remain in the current region, and this choice is probabilistic, with proba-
bilities that can be estimated. Natural models for such scenarios are therefore
Markov decision processes (as overviewed in Section 2.1), which are partitioned
into finitely many regions. If RFID tags are placed in regions, the robot can
uniquely determine the region it is in; we can thus assume full observability,
thus avoiding the need to consider partially-observable MDPs. Consequently, we
can now employ temporal PCTL to specify mission goals, and the above goal
now becomes: “what is the probability that the robot will remain in safe regions
until exiting successfully?”.
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The problem can be stated as follows. Consider a robot moving in a parti-
tioned environment with static obstacles modelled as a Markov decision process
M. Given a PCTL formula Φ that specifies the mission goal, determine a con-
trol strategy that optimises the probability of satisfying Φ. Clearly, this problem
can be solved by applying quantitative verification as described in Section 2.1,
namely, computing the minimum/maximum probability or expectation, and then
synthesising the optimal strategy.

In previous work, the authors considered safe vehicle control in city environ-
ments, and developed a tool for synthesising control strategies from PCTL based
on PRISM. Later, they extended the synthesis algorithms to include expected
reward specifications to incorporate aspects such as time and energy cost, as
well as Boolean combinations of PCTL formulae [41]. They also validated their
approach using an experimental testbed that employs iRobot Create1, the pop-
ular programmable robot. The following are examples of actual mission goal
specifications from [41]:

– Pmax=?[ (S ∨ (R ∧M1)) U D1 ] - “reach Destination 1 by driving through
either only Safe regions or through Relatively Safe regions only if Medical
Supply 1 is available at such regions”;

– Pmax=?[( P≤0.5[XR] ∧ ¬U)UD1 ] - “reach Destination 1 by going through
the regions from which the probability of converging to a Relatively safe
region is less than 0.5 and always avoiding Unsafe regions”.

The results reported are encouraging, with the tool able to synthesise control
strategies for MDPs with 1000 states, though the construction of the MDP using
Monte Carlo simulation can be expensive.

Strategy synthesis from LTL specifications has been formulated, e.g., in [48].
Probabilistic verification of coordinated foraging-and-reacting multi-robotic mis-
sions is considered in [8], where compositionality is employed to improve scala-
bility. We remark that more complex mission goals may require multi-objective
specifications, where the simultaneous satisfaction of more than one property,
e.g. maximise the probability of reaching target and minimise travelling time, is
needed. Automated verification and synthesis for multi-objective specifications
for MDPs have been developed [24] and applied to synthesis of strategise for
the team formation protocol. In recent work, we have developed synthesis algo-
rithms for autonomous driving for conjunctive multi-objective specifications for
stochastic game models, based on actual map data [12].

3.2 Constrained Resources

Ubiquitous computing devices are frequently wearable, for example, low-cost
RFID tags and wireless body sensors, and consequently have limited memory
and computational capacity. At the same time, they may need to execute com-
putationally intensive tasks, such as authentication and communication in un-
reliable wireless media. Typically battery-powered, where it is either difficult or

1 http://verifiablerobotics.com/CreateMATLABsimulator/createsimulator.

html
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inconvenient to access energy renewal sources, the need for high-quality resource
management protocols for such devices is paramount. Quantitative verification
has previously been applied to analyse dynamic power management schemes for
mobile devices [43] and energy harvesters [46]. Here, we highlight a recent case
study that applied quantitative verification with PRISM to analyse the compu-
tational and transmission cost of an electronic email protocol [4], with the view
to provide tool-assisted systematic analysis of the protocol for a variety of mobile
environments.

The Certified E-mail Message Delivery (CEMD) protocol studied in [4] is
used on mobile devices such as smartphones and PDAs, including low-cost hard-
ware, frequently operating in noisy environments with high bit error rate. The
CEMD protocol provides a number of security features, such as fairness (neither
sender nor recipient should gain advantage upon interruption), timeliness (all
participants should be able to exit the protocol in a given finite time), and con-
fidentiality (only the intended participant should learn the contents of an email
message, implemented using RSA encryption). In view of the computational cost
of RSA operations, it is important for the designers to understand the impact of
executing the email service on CPU performance and energy consumption. To
this end, a CTMC model (see Section 2.2) of the protocol is developed in PRISM,
and parameterised based on the popular Texas Instruments TMS320C55x pro-
cessor which performs at the low frequency end of 200MHz, hence maintaning
the ability to provide services in low power modes. Then a detailed analysis is
performed using the derived parameters, also taking into account the number
of parallel sessions and realistic bit error rates of typical mobile communication
technologies, both of which affect the performance.

The quantitative analysis is focused on computational and transmission costs
of the CEMD protocol, respectively defined as a function of the CPU cycles
needed to perform RSA operations, and a function of the negative acknowledge-
ment rate and bit error rate of the wireless medium. The properties are expressed
as CSL formulae, and analysed for different values of the parameters, assuming
suitable reward structures:

– R=?[C
≤T ] - “the expected computational cost of completing all protocol’s

sessions in finite time T”;
– P=?[F

[0,T ] finish] - “the probability of completing all protocol’s sessions in
finite time T”.

The analysis has revealed that the CEMD protocol is highly dependent on the
specific characteristics of the environment that it runs on, with widely different
behaviour, and may lead to instabilities. The derived model of the protocol
provides a sound foundation for a methodology to analyse further quantitative
aspects of the protocol, for example energy consumption.

Resource efficiency, particularly in relation to energy, is a major design is-
sue for ubiquitous computing devices. Quantitative analysis of low-cost RFID
authentication protocol was performed in [45]. The effect of mobility and trans-
mission range on energy consumption was considered for mobile process cal-
culi frameworks in [27]. The quantitative analysis of a smartgrid protocol using
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PRISM-games [10,11], a PRISM extension for stochastic games, revealed a flaw,
which was fixed by introducing incentives to prevent selfishness.

3.3 Adaptiveness

Many ubiquitous computing applications continuously monitor the environment
by means of sensors and must adapt to new scenarios. Ubiquitous computing
systems such as home networks are enabled by service-based systems, typi-
cally based on cloud computing [17], which dynamically adapt behaviours to
the changing requirements and contexts. It has been argued [6] that the need
to continuously provide reliability, dependability and performance guarantees
for adaptive systems calls for quantitative runtime verification. This is different
from offline quantitative verification performed at the design stage, as described
in Section 2, where a model is developed and analysed pre-deployment in order
to improve the design. Runtime verification, in contrast, is invoked as the system
is being executed, intercepting and steering its execution to ensure that given
requirements are continuously satisfied in spite of adaptation.

In [7], we have developed an extensive framework called QoSMOS which can
be used to dynamically manage and optimise the performance of service-based
systems. The framework has been demonstrated a typical ubiquitous computing
healthcare scenario, called TeleAssistance, where patients are remotely moni-
tored, with data being sent to a medical lab for analysis, and there is a require-
ment to guarantee a certain QoS level of delivering a specific service, for example
to change the dosage of a drug. The system is built as a workflow of web services,
and may suffer from component failures. The framework proceeds autonomically,
repeatedly invoking the monitoring, analysis, planning and execution stages (so
called MAPE loop) as follows:

– monitor the reliability, workload and response time of services, to derive an
operational model;

– analyse performance and QoS requirements, utilising the values of parame-
ters obtained from the monitoring phase;

– plan adaptation of the system based on the results of analysis, which may
involve changing the resource allocation or selection of optimal service;

– execute the adaptation of the system.

The models used for the TeleAssistance application are DTMCs and CTMCs,
and the following are example requirements:

– P≤0.13[ F failedAlarm ] - “the probability that at an alarm failure ever occurs
during the lifetime of the system is less than 0.13” (PCTL property);

– R≤0.05[ F[0,86400] dropped ] - “the probability of a changeDrug request being
dropped due to the request queue being full during a day of operation is less
than 0.05” (CSL property).

The QoSMOS framework implements the analysis stage using quantitative ver-
ification with PRISM. This involves executing PRISM verification tasks at run-
time, which works well when the number of services is small, but may become
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impractical when the size of the model or the number of tasks increases. To
improve efficiency, one can employ parametric approaches, e.g. [21], and specif-
ically parameter synthesis [28]. We consider parametric probabilistic models,
where probabilities are specified in terms of expressions over parameters, rather
than concrete values. Then, the parameter synthesis problem aims to determine
the valuations for parameters which guarantee the satisfaction of a given prop-
erty, and can be solved by means of constraint solving. In recent work, we have
applied sampling-based and swarm intelligence techniques to heuristically search
for a good valuation of parameters for parametric models [15] (parametric MDPs
and DTMCs/CTMCs). We note that this approach only finds one such valua-
tion, rather than all the valuations for parameters. However, it may results in
performance improvement by orders of magnitude, and is therefore particularly
well suited to runtime verification scenarios.

The parameter synthesis methods, both those based on constraint solving
as well as heuristic search, have recently been implemented within PRISM [15].
Alternative approaches to improve efficiency of quantitative runtime verification
include incremental model construction and incremental verification [25], which
avoid the need to rerun a verification task by reusing results from previous
verifications.

3.4 Further Advances

We briefly summarise further developments in quantitative verification that have
shown promise.

Compositional probabilistic verification. The size and complexity of
ubiquitous computing communities demand improvements in the capacity of
quantitative verification tools. Compositional assume-guarantee techniques have
the potential to improve the scalability of model checking by subdividing the ver-
ification into separate tasks for each component of the system being analysed.
For example, to verify property G on a two-component system M1‖M2 we (i)
check that, under the assumption that some property A holds, M2 is guaranteed
to satisfy G; and (ii) check that M1 always satisfies the assumption A under any
context. In recent work [35,23], compositional assume-guarantee techniques have
been developed for MDPs, for both quantitative safety and liveness properties.
Several proof rules have been developed to support compositional probabilistic
model checking of MDPs, and implementation in terms of multi-objective proba-
bilistic model checking [18] has been provided as an extension of PRISM, which
yields substantial improvement over monolithic methods. The process can be
fully automated for safety properties by applying automata learning techniques
[19,20] to generate assumptions.

Cooperative and competitive behaviour. Ubiquitous computing involves
communities of self-interested agents, who may need to cooperate to achieve cer-
tain goals. Traditionally, cooperative behaviour has been analysed using game
theory. Building upon this, we develop quantitative verification methods for
multi-player stochastic games, which model communities of agents that can ex-
hibit probabilistic behaviour, for examples as a result of random choices. Prop-
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erty specifications are stated in terms of a probabilistic and reward extension of
the well-known logic ATL, called rPATL [10], which can express properties such
as: “does the coalition have a strategy to meet a quantitative goal, irrespective
of the strategies of the other players?”. The framework has been applied to the
analysis of a smartgrid protocol, collective decision making for sensor networks
and user-centric networks, where we discovered and corrected flaws in exist-
ing protocols [10,39]. The techniques have been implemented as an extension of
PRISM [11], and include both verification, as well as strategy synthesis.

Probabilistic real-time protocols. Many ubiquitous computing applica-
tions require consideration of probability and continuous real-time, in conjunc-
tion with nondeterminism that is used to model distributed computation. The
model of probabilistic timed automata (PTAs) [37] can be viewed as a Markov
decision process extended with real-valued clocks or, alternatively, an exten-
sion of the well-known timed automata formalism with discrete probabilistic
choice. PTAs naturally model distributed randomised algorithms with timing,
for example the ZeroConf protocol, as well as the medium access protocols for
wireless networks, including WiFi, Bluetooth and ZigBee; all have been analysed
with PRISM [1]. A number of techniques have been developed for quantitative
verification of PTAs, including the digital clocks [36] approach; forwards [37]
and backwards reachability [38] based on zones; and game-based quantitative
abstraction-refinement [33]. Strategy synthesis is also possible [44]. PRISM pro-
vides native support for PTAs, via the techniques of [33] and [36].

Medical devices. Embedded software is increasingly often used in medical
devices, which monitor and control physical processes such as electrical signal in
the heart or dosage of insulin. For example, an implantable cardiac pacemaker
device reads electrical signals from sensors placed on the heart muscle, moni-
tors the timing between heart beats, and, if any are missed, generates signals to
stimulate the heart, maintaining the rate of 60-100 beats per minute. Quantita-
tive verification can provide automated means to verify safety properties of the
pacemaker, but the models must incorporate continuous dynamics, necessary to
model the electrical signal in the heart, in addition to timing and probabilities. A
further difficulty is the need to verify the properties against realistic heart mod-
els. Recently, we developed two physiologically relevant heart models, one based
on ECG signals [9] and the other on a network of cardiac cells [13]. We have
composed the heart models with timed automata models of pacemaker software,
and subjected the composed system to quantitative verification. We are able to
verify basic safety properties, for example whether the pacemaker corrects the
slow beat of the heart, as well as more complex properties, such as providing a
detailed analysis of energy consumption.

A specific challenge of medical devices is that they need to interface to bio-
logical systems. Quantitative modelling and verification technology has already
been applied to DNA computing devices [42], where it was able to automatically
discover and diagnose a design error. These methods are applicable to molecular
sensing devices at the nanoscale.
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4 Challenges and Future Directions

Ubiquitous computing was conceived over 20 years ago by Marc Weiser [47]
and has been unstoppable since. Smartphones have far outstripped the sales of
desktop PCs. Enhanced with a multitude of sensors, smartphones and tablets
are being used for a variety of tasks, from email, through looking up restaurants
nearby, to monitoring of the heart rate and air pollution.

The emergence of ubiquitous computing has posed new challenges for soft-
ware and device designers. Ubiquitous computing was recognised in the UK as
a Grand Challenge [40], subdivided into: the engineering of ubiquitous comput-
ing devices, their scientific understanding, and human interaction mechanisms.
The research on quantitative verification reported in this paper contributes to
the scientific understanding of ubiquitous computing led by Robin Milner, and
is related to the Verified Software initiative of Tony Hoare. Quantitative verifi-
cation research is very much inspired by their vision. It naturally complements
the core activities of the two initiatives, focusing on practical, algorithmic solu-
tions, that have the potential to drive the development of industrially-relevant
methodologies and software tools to support the design of ubiquitous computing
devices.

Much progress has been made in quantitative verification for ubiquitous com-
puting, as reported here and elsewhere, and supported by effective software tools.
Successes include synthesising safe strategies for autonomous vehicles; analysing
quantitative trends of low-level network protocols; finding and correcting flaws
in smartgrid energy distribution protocols; development of methodologies for the
verification of medical devices; and adaptive service-based frameworks which can
continuously guarantee the satisfaction of given QoS properties. Key limitations
of current techniques are poor scalability of quantitative verification; lack of
effective methods for integrating discrete, continuous and stochastic dynamics;
and poor efficiency of quantitative runtime verification. The scale and complex-
ity of the ubiquitous computing scenarios are so great that the challenges that
remain seem prohibitive. We anticipate that following topics will be particu-
larly difficult: scalability of quantitative verification; compositional quantitative
frameworks; effective runtime steering; quality assurance for embedded software;
efficiency of strategy synthesis for autonomous control in dynamic scenarios; and
quantitative verification for stochastic hybrid systems.
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