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Abstract

In this paper, we describe some practical applications ofprob-
abilistic model checking, a technique for the formal analysis
of systems which exhibit stochastic behaviour. We give an
overview of a selection of case studies carried out using the
probabilistic model checking tool PRISM, demonstrating the
wide range of application domains to which these methods
are applicable. We also illustrate several benefits of using for-
mal verification techniques to analyse probabilistic systems,
including: (i) that they allow a wide range of numerical prop-
erties to be computed accurately; and (ii) that they perform
a complete and exhaustive analysis enabling, for example, a
study of best- and worst-case scenarios.

1 Introduction

Probabilistic model checking is a formal verification tech-
nique for the analysis of systems which exhibit stochastic be-
haviour. As with traditional formal verification techniques,
it involves the construction of a precise mathematical model
of a real-life system to be analysed, formal specification of
one or more properties of this system, and then analysis of
these properties based on an exhaustive exploration of the
constructed model.

The use of probabilistic model checking is motivated by the
fact that there are many instances of real-life systems whose
behaviour can only be accurately modelled by considering
their stochastic characteristics. One example is algorithms
which make random choices based on coin tosses to give sim-
ple, elegant solutions to many distributed coordination prob-
lems, e.g., leader election. These algorithms can nowadays
be found in real-world protocols in domains such as network
communication and security. Other real-life systems can be
inherently stochastic in nature because they include compo-
nents which are known to be unreliable, e.g., fault-tolerant
architectures, or because the exact timing of inputs to system
remain unpredictable, e.g., computer networks, manufactur-
ing systems or biological processes.

The three types of models most commonly employed in prob-
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abilistic model checking are discrete-time Markov chains
(DTMCs), continuous-time Markov chains (CTMCs) and
Markov decision processes (MDPs). The model used will
depend on the nature of the system being studied. DTMCs
provide a comparatively simple model for systems where the
exact probability of different behaviours at each discrete time-
step is known. MDPs extend DTMCs with nondeterminism,
which can be used to model concurrency between processes
operating in parallel or for underspecification, where exact
values for some system parameters are unknown. CTMCs, on
the other hand, permit specification of events which happen in
real-time, by modelling delays as exponential distributions.

Properties to be analysed by probabilistic model checking are
typically specified using temporal logics such as PCTL or
CSL, probabilistic extensions of the classical temporal logic
CTL. These properties relate not just to the functional correct-
ness of a system, as is the case with non-probabilistic formal
verification techniques, but also to quantitative measures such
as performance and reliability, for example: “the probability
that a message will be delivered within 30ms is at least 0.75”;
or “the probability of shutdown occurring is at most 0.01”.

Furthermore, instead of following the approach used in tra-
ditional verification of expressing properties to which the an-
swer is “yes” or “no”, it is usually more beneficial to anal-
yse, for example: “the probability that an error has occurred
within T seconds” for a range of values ofT. Additionally,
by augmenting probabilistic models with information about
the costs that are incurred during the execution of the system,
we can analyse for example: “the expected time forN pro-
cesses to successfully elect a leader”; or “the expected power
consumption when the arrival rate of jobs isλ”. As we will
see later, analysing such properties for a range of parameter
values (e.g., forT, N andλ above) is often key to identifying
interesting or anomalous behaviour.

There are now a number of tools available for probabilistic
model checking, e.g., PRISM [12, 1],E T MC2 [9], and Rap-
ture [10]. In this paper we use PRISM, which offers support
for all the types of models and properties discussed above and
which features sophisticated data structures designed to re-
duce the time and space requirements of verification.

PRISM has a high-level description language which is used
to describe models to be analysed. Unlike simulation tech-



niques, which are another very common analysis method for
stochastic systems, the first step a probabilistic model checker
such as PRISM performs is to construct, from a description in
this language, the entire probabilistic model, based on an ex-
haustive search of its state space. Based on this model, prop-
erty analysis is then carried out via a combination of numeri-
cal computation methods, such as solving linear equation sys-
tems or linear optimisation problems, and graph-based algo-
rithms, such as reachable state exploration. Although this will
inevitably have an effect on the size of models which can be
studied, such exhaustive analysis is one of the true strengths
of formal verification. Firstly, the measures computed will be
exact, rather than approximations based on a large number of
simulations. Secondly, it is feasible to assert more complete,
exhaustive conclusions, e.g., computing the best-/worst-case
performance for all possible initial configurations of a system,
all possible values of some model parameter, or all possible
scheduling of parallel components.

In the remaining sections of this paper, we describe six case
studies which illustrate the strengths of probabilistic model
checking. Through these examples, we aim to demonstrate
that this technique and, in particular, the tool PRISM:

• are applicable, and indeed useful, in a wide range of
application domains,

• are expressive enough to analyse properties of genuine
interest to system designers,

• have successfully identified interesting and anomalous
behaviour in several real-life systems.

For a more detailed introduction to the field of probabilistic
model checking see, for example, [27, 2]. For further infor-
mation about all the examples described in this paper, see the
case studies section of the PRISM website [1].

2 Self-stabilisation algorithms

A randomised algorithmis an algorithm whose execution can
depend on the result of random choices, for example based
on electronic coin tosses. Randomised algorithms can pro-
vide simple, elegant and fast solutions to a wide range of dis-
tributed coordination problems. In some cases, randomised
algorithms not only outperform their deterministic counter-
parts, but also provide a solution where no corresponding de-
terministic algorithm exists.

Randomised distributed algorithms, i.e., those which operate
on a number of asynchronous parallel processes, are often
particularly difficult to analyse because of non-trivial inter-
actions between the probabilistic behaviour of each process
and the nondeterminism arising from concurrency between
them. This makes automated formal analysis techniques an
attractive option. Probabilistic model checking has been ap-
plied, for example, to randomised distributed algorithms for
the problems of consensus [14], Byzantine agreement [11],
mutual exclusion [1] and leader election [6, 1].

Here, we show an example from a class of algorithms called
self-stabilisation algorithms, whose aim is to transform a sys-
tem from anunstablestate to astablestate in a finite number
of steps. Our example is the algorithm of Herman [8] for a set
of processes which are arranged in a ring and can each pos-
sess a token. Tokens can be passed unidirectionally around
the ring, and when two tokens meet they are both eliminated.
A stable state is one in which there is only a single token. At
every step of the algorithm, each process with a token decides
whether to keep it or pass it on based on the outcome of a
random coin toss; processes without a token do nothing.

Since the processes operate synchronously, a PRISM model
of the algorithm is constructed as a DTMC. This can first
be used to verify the property “a leader is always eventually
elected with probability 1”. Secondly, by assigning a cost of
one unit to each step of the algorithm, PRISM can be used
to compute “the expected time (number of steps) for self-
stabilisation to complete”. Furthermore, PRISM can calculate
the worst-case performance for different classes of initial to-
ken configurations (more specifically, all configurations with
K tokens, for different values ofK). Figure 1 shows these
worst-case expected times for a range of numbers of processes
(N) and a range of values ofK.
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Figure 1: Worst-case expected completion times for Herman’s self-
stabilisation algorithm with a ring ofN processes and an
initial configuration ofK tokens.

To give an idea of scale, the total number of possible initial
configurations for the caseN = 19 is 528,288. While PRISM
constructs these cases as a single DTMC with multiple initial
states and executes a single analysis of it, simulation, for ex-
ample, would have to be performed separately for each initial
state (i.e., half a million times) to obtain comparable results.
Interestingly, for this case study, PRISM helps illustrate an
unproven conjecture from [20] that the worst case execution
time for this algorithm always results from the case where
there are initially three tokens.

3 Root contention in IEEE 1394 FireWire

Another application domain where probabilistic model check-
ing has proved extremely useful is that of probabilistic com-



munication protocols. Thanks to the ever-growing number
of both wired and wireless communication and multimedia
devices in today’s society, research into the performance of
these protocols is attracting increasing interest. An analysis
of their performance, however, is particularly challenging be-
cause it must incorporate aspects relating to probability (the
protocols often incorporate randomisation), concurrency (the
protocols are distributed between devices) and time (the pro-
tocols often have precise real-time requirements). Examples
of the use of probabilistic model checking to analyse com-
munication protocols include Bluetooth device discovery [4],
IPv4 Zeroconf [13], IEEE 802.11 wireless LANs [15] and
IEEE 802.3 CSMA/CD [17, 3].

Here, we discuss the example of the IEEE 1394 FireWire pro-
tocol, a standard for a high performance serial bus, aimed at
connecting networks of multimedia devices. The protocol is
designed to facilitate the addition and removal of devices from
the network at any time. When this occurs, in order for the
devices to arrange themselves into a tree, a leader election
process is executed which selects aroot device. This is done
by propagating messages between neighbouring nodes, start-
ing at leaf nodes of the network. It is possible for a situation
to arise where two nodes contend to be the root node. The
algorithm executed to resolve this is known as theroot con-
tention protocol. In short, this works by the introduction of
delays between message transmissions, the lengths of which
are determined randomly. More specifically, each time a node
sends a message, it tosses a coin to choose between waiting
for a ‘short’ or a ‘long’ delay before doing so.
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Figure 2: Performance (expected completion time) of the FireWire
root contention protocol for a range of coin biases.

A PRISM model of FireWire root contention was constructed
in [16] as an MDP. Probability in the model arises from the
use of coin tosses to choose between time delays. Nonde-
terminism in the model results from multiple sources: firstly,
from concurrency between contending nodes; and secondly,
from underspecification in the official documentation regard-
ing delay times (only lower and upper bounds are provided).
PRISM has been used to analyse “the probability of a elect-
ing a leader within a given time bound” and “the expected
time for leader election to complete”. In fact, it computes the
minimumprobability ormaximumexpected time for all possi-

ble resolutions of nondeterminism (i.e., for all schedulings of
parallel components and for all possible delay lengths which
meet the IEEE specification). In this way, PRISM has been
used to investigate an existing conjecture [29] that the perfor-
mance of the protocol could be improved by using a biased
coin. Figure 2 shows “the maximum expected time for leader
election” for a range of values of the probability of choosing
a ‘short’ delay. We see that the best performance is obtained
indeed not from a fair coin, but one which selects a ‘short’
delay with probability approximately 0.56.

4 Probabilistic contract signing

Probabilistic protocols have also proved useful in the field
of security. Non-probabilistic formal verification has been
used with great success in the past to ascertain the correctness
(and to identify flaws) of security protocols. More recently,
probabilistic model checking has been used to examine prob-
abilistic security protocols, including those for anonymity
(Crowds) [28], non-repudiation [18], contract signing [24, 25]
and fair exchange [25, 1].

Here, we discuss the probabilistic contract signing protocol
of Even, Goldreich and Lempel [5]. This protocol is designed
to allow two parties, A and B, to exchange commitments to a
contract. In an asynchronous setting, it is difficult to perform
this task in a way that is fair to both parties, i.e., such that if B
has obtained A’s commitment, then A will always be able to
obtain B’s. In the Even, Goldreich and Lempel (EGL) proto-
col, the parties A and B each generate a set of pairs of secrets
which are then revealed to the other party in a probabilistic
fashion. A is committed to the contract once B knows both
parts of one of A’s pairs (and vice versa).

PRISM was used to identify a weakness of the protocol
[25, 1], showing that, by quitting the protocol early, one of
the two parties (the one which did not initiate the protocol)
can be at an advantage by being in possession of a complete
pair of secrets while the other party knows no complete pairs.
Various modifications to the basic EGL protocol were pro-
posed [25, 1] and PRISM was used to quantify the fairness
of each, i.e., “the probability of the protocol reaching a state
where one party knows a complete pair of secrets but the other
knows no complete pairs”.

Figure 3 shows plots of these values for both the basic proto-
col (EGL) and three modifications (EGL2, EGL3 and EGL4).
The solid lines and dashed lines represent the values for par-
ties A and B, respectively (where process B initiated the pro-
tocol). The data is computed for a range of values ofN, the
number of pairs of secrets which each party generates. It can
be seen that, for the original protocol (EGL), the probabil-
ity of party A being unfairly advantaged is 1 for all values of
N, whereas for the most successful modification (EGL4), the
protocol performs equally fairly for each party.

PRISM can further be used to analyse more precisely the de-
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Figure 3: Probability of reaching a state where one party knows
a complete pair of secrets but the other does not for the
EGL protocol and three modified versions: solid lines for
party A; dashed lines for party B.

gree to which a ‘disadvantaged’ party suffers, e.g., by com-
puting “the expected number of messages that must be sent to
get from a state where only one party knows a complete pair
of secrets to one in which both parties do”.

5 NAND multiplexing

This case study is an example of applying PRISM to the
evaluation of reliability and redundancy properties of fault-
tolerant systems in the field of computer-aided design. In
particular, this concernsmultiplexing, a technique due to von
Neumann [30] for performing reliable computations with un-
reliable devices. Originally motivated by the use of unreliable
valve-based computers, such techniques are again becoming
relevant in the field of nanotechnology, where the small scales
involved mean that components are inherently unreliable.

Taking the example of a NAND gate, amultiplexedNAND
gate is constructed by duplicatingN copies of each pair of in-
puts to the original NAND gate and permuting these randomly
amongstN NAND gates operating in parallel. The result of
the multiplexed gate is based on a consensus of theN indi-
vidual gates. In this way, redundancy between the devices is
used to minimise the effect of errors in the individual devices.
Performance can be further improved by addingrestorative
stages, essentially replicating this process several times in at-
tempt to reduce errors further.

Figure 4 shows a plot from [21] of the effectiveness of NAND
multiplexing (N = 60), measured as “the probability that less
than 10% of the outputs are erroneous”, for varying numbers
of restorative stages. Plots are given for four different values
of λ, the failure rate of each individual gate. Through the con-
struction of a formal model specification, as required in the
probabilistic model checking approach, a flaw was detected
in the analytical approach of [7] (dashed lines in Figure 4).
The results show that this flaw can lead to both an under- and
over-approximation of the reliability of the system.
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6 Dynamic voltage scaling

Next, we consider the area ofpower management. This has
become extremely relevant due to the increasing prevalence
of battery-powered computing devices. In this domain, bat-
tery life and hence power efficiency are of utmost importance.
Here, we consider a technique calleddynamic voltage scaling,
used in real-time embedded systems to achieve a compromise
between battery life and performance. The technique is used
to schedule a number of tasks which must be executed peri-
odically. Each task has an associated period and a worst-case
execution time. The voltage of the system can also be varied
during scheduling, which has the effect of reducing the power
consumption of the system. This will, however, slow down
the execution of the current task. The aim is to schedule tasks
and voltage changes in such a way that power consumption is
minimised whilst ensuring that all tasks are executed within
their deadlines.

PRISM has been used to model and analyse the performance
of several scheduling schemes from [26]. The model used is
an MDP. This incorporates probabilistic information because
the actual execution time of each task is random (only a worst-
case figure is known) and nondeterminism, which represents
the fact that it is sometimes unspecified which task a schedul-
ing scheme will pick. We can hence examine the worst-case
behaviour of any implementation of each algorithm.

Figure 5 shows a comparison of “the maximum expected en-
ergy consumed by a given time bound” for four scheduling
schemes (see [1] for more details). The actual cost measured
is the square of the system’s voltage, which is proportional to
the energy consumed. The comparisons match those observed
in [26], obtained through simulation.

Another probabilistic model checking case study in this area
can be found in [22, 23], which studies stochastic dynamic
power management strategies. Here, a wide range of prop-
erties can be analysed, e.g.: “the expected number of jobs
awaiting service at timeT”, “the probability that 50 job re-
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Figure 5: Expected energy consumption for four different dynamic
voltage scaling scheduling schemes over time.

quests have been lost by timeT” and “the expected long-run
power consumption”.

7 Biological process modelling

Lastly, we introduce an example from an application domain
in which formal probabilistic analysis techniques are now be-
ginning to be adopted: biological process modelling. Un-
derstanding the low-level interactions in complex biological
processes is crucial to the development of many areas of bio-
logical and medical research. By constructing and analysing
mathematical models of these systems, biologists can explore
theories about how these complex reactions function.

In this example, we show results from a probabilistic model of
cell cycle control in eukaryotes, a very commonly occurring
class of single-celled or multi-cellular organisms. The results
are taken from a PRISM model, based on the formal specifi-
cation given in [19], which studies the relative concentration
of a number of types of proteins, partaking concurrently in
several complex chemical reactions. Since the timing charac-
teristics of these reactions are accurately represented by ex-
ponential probability distributions, this system is modelled as
a CTMC. The resulting plot, showing the amount of three of
these proteins over time, is given in Figure 6. These plots
complement similar results from [19] obtained by simulation.

It is also possible to analyse properties of the following type
in PRISM: “the probability that the concentration of protein
X drops below levelK by time T” and “the probability that
it takes longer than timeT for the amount of proteinY to
reach levelL”. Furthermore, PRISM can accurately compute
properties of the system as it reaches equilibrium, e.g., “the
long-run concentration of protein X”.

8 Conclusion

In this paper, we have shown that probabilistic model check-
ing and, in particular, the PRISM tool have been successfully
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Figure 6: Reactant quantities over time for cell cycle control in
eukaryotes.

applied to case studies from a very wide range of applica-
tion domains. We have also illustrated the variety of proper-
ties which can be analysed using this approach and the fact
that this allows identification of flaws and anomalies both in
the systems being studied and in existing analyses of these
systems. Furthermore, we have demonstrated one of the key
strengths of the probabilistic formal verification approach: the
ability to compute best- and worst-case performance and reli-
ability measures, via exhaustive model analysis.
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