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Abstract
In this paper we present a novel abstraction technique for Markov decision processes
(MDPs), which are widely used for modelling systems that exhibit both probabilistic and
nondeterministic behaviour. In the field of model checking, abstraction has proved an
extremely successful tool to combat the state-space explosion problem. In the probabilis-
tic setting, however, little practical progress has been made in this area. We propose
an abstraction method for MDPs based on stochastic two-player games. The key idea
behind this approach is to maintain a separation between nondeterminism present in the
original MDP and nondeterminism introduced through abstraction, each type being rep-
resented by a different player in the game. Crucially, this allows us to obtain distinct lower
and upper bounds for both the best and worst-case performance (minimum or maximum
probabilities) of the MDP. We have implemented our techniques and illustrate their prac-
tical utility by applying them to a quantitative analysis of the Zeroconf dynamic network
configuration protocol.

1 Introduction

Markov decision processes (MDPs) are a natural and widely used model for systems which ex-
hibit both nondeterminism, due for example to concurrency, and probability , representing for
example randomisation or unpredictability. Automatic verification of MDPs using probabilis-
tic model checking has proved successful for analysing real-life systems from a wide range of
application domains including communication protocols, security protocols, and randomised
distributed algorithms. Despite improvements in implementations and tool support in this
area, the state-space explosion problem remains a major hurdle for the practical application
of these methods.

In this paper, we consider abstraction techniques, which have been established as one of
the most effective ways of reducing the state-space explosion problem for non-probabilistic
model checking (see e.g. [CGP99]). The basic idea of such methods is to construct an
abstract model, typically much smaller than the original (concrete) model, in which details
not relevant to a particular property of interest have been removed. Such an abstraction is
said to be conservative if satisfaction of a property in the abstract model implies that the
property is also satisfied in the concrete model. For properties not satisfied in the abstract
model, this is not the case, but information obtained during the verification process, such as
a counterexample, maybe be used to refine the abstraction [CGJ+00].
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In the probabilistic setting, it is typically necessary to consider quantitative properties, in
which case the actual probability of some behaviour being observed must be determined, e.g.
“the probability of reaching an error state within T time units”. Therefore in this setting a dif-
ferent notion of property preservation is required. A suitable alternative, for example, would
be the case where quantitative results computed from the abstraction constitute conservative
bounds on the actual values for the concrete model.

In fact, due to the presence of nondeterminism in an MDP there is not necessarily a
single value corresponding to a given quantitative measure. Instead, best-case and worst-case
scenarios must be considered. More specifically, model checking of MDPs typically reduces
to computation of probabilistic reachability and expected reachability properties, namely the
minimum or maximum probability of reaching a set of states, and the minimum or maximum
expected reward cumulated in doing so.

When constructing an abstraction of an MDP, the resulting model will invariably exhibit a
greater degree of nondeterminism since we are introducing additional uncertainty with regards
to the precise behaviour of the system. The key idea in our abstraction approach is to maintain
a distinction between the nondeterminism from the original MDP and the nondeterminism
introduced during the abstraction process. To achieve this, we model abstractions as simple
stochastic two-player games [Con92], where the two players correspond to the two different
forms of nondeterminism. We can then analyse these models using techniques developed for
such games [Con93, dAHK98, CdAH04].

Our analysis of these abstract models results in a separate lower and an upper bound for
both the minimum and maximum probabilities (or expected reward) of reaching a set of states.
This approach is particularly appealing since it also provides a quantitative measure of the
utility of the abstraction. If the difference between the lower and upper bounds is too great,
the abstraction can be refined and the process repeated. By comparison, if no discrimination
between the two forms of nondeterminism is made, a single lower and upper bound would
be obtained. In the (common) situation where the minimum and maximum probabilities
(or expected rewards) are notably different, it is difficult to interpret the usefulness of the
abstraction. Consider, for example, the extreme case where the two-player game approach
reveals that the minimum probability of reaching some set of states is in the interval [0, ε1]
and the maximum probability is in the interval [1− ε2, 1]. In this case, a single pair of
bounds could at best establish that both the minimum and maximum probability lie within
the interval [0, 1], effectively yielding no information.

Related Work. Below, we summarise work on abstraction methods for quantitative analy-
sis of Markov decision processes and Markov chains. General issues relating to abstraction in
the field of probabilistic model checking are discussed in [Hut04, Nor04]. Progress has been
made in the area of qualitative probabilistic verification, see for example [ZPK02], and games
have also been applied in the field of non-probabilistic model checking, for example [SG03].
Another approach to improving the efficiency of model checking for large Markov decision
processes is through the use of partial order techniques [CGC04, DN04].

D’Argenio et al. [DJJL01] introduce an approach for verifying quantitative reachability
properties of MDPs based on probabilistic simulation [Seg95]. Properties are analysed on
abstractions obtained through successive refinements, starting from an initial coarse partition
derived from the property under study. This approach only produces a lower bound for
the minimum reachability probability and an upper bound for the maximum reachability
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probability and hence appears more suited to analysing Markov chains (models with discrete
probabilities and no nondeterminism) since the minimum and maximum probabilities coincide
in this case.

Huth [Hut05] considers an abstraction approach for infinite state Markov chains where
the abstract models (finite state approximations) contain probabilistic transitions labelled
with intervals, rather than exact values. Conservative model checking of such models is
achieved through a three-valued semantics of probabilistic computation tree logic (PCTL)
[HJ94]. Huth also proves the ‘optimality’ of the abstraction technique: for any finite set of
until-freeformulae, there always exists an abstraction in which satisfaction of each formula
agrees with the concrete model. Fecher et al. [FLW06] also consider an abstraction technique
for Markov chains where probabilistic transitions are labelled with intervals and the logic
PCTL has a three-valued interpretation. It is shown that model checking in this setting has
the same complexity as that for standard Markov chains against PCTL.

In [DGJP03] a method for approximating continuous state (and hence infinite state)
Markov processes by a family of finite state Markov chains is presented. It is shown that, for
simple quantitative modal logic, if the continuous Markov process satisfies a formula, then
one of the approximations also satisfies the formula. Monniaux [Mon05] also considers infinite
state systems, demonstrating that the framework of abstract interpretation can be applied to
Markov decision processes with infinite state spaces.

Finally, McIver and Morgan have developed a framework for the refinement and abstrac-
tion of probabilistic programs using expectation transformers [MM04]. The proof techniques
developed in this work have been implemented in the HOL theorem-proving environment
[HMM05].

Outline of the Paper. In the next section we present background material required for
the remainder of the paper. In particular, we summarise results relating to Markov decision
processes and to simple stochastic two player games. In Section 3 we describe our abstrac-
tion technique and show the correctness of the approach, then in Section 4 we illustrate its
applicability through a case study concerning the Zeroconf dynamic network configuration
protocol. Section 5 concludes the paper.

2 Background

Let R≥0 denote the set of non-negative reals. For a finite set Q, we denote by Dist(Q) the set
of discrete probability distributions over Q, i.e. the set of functions µ : Q → [0, 1] such that∑

q∈Q µ(q) = 1.

2.1 Markov Decision Processes

Markov decision processes (MDPs) are a natural representation for the modelling and analysis
of systems with both probabilistic and nondeterministic behaviour.

Definition 1 A Markov decision process is a tuple M = (S, sinit ,Steps, rew), where

• S is a set of states;

• sinit ∈ S is the initial state;
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• Steps : S → 2Dist(S) is the probability transition function;

• rew : S × Dist(S) → R≥0 is the reward function.

A probabilistic transition s
µ−→ s′ is made from a state s by first nondeterministically selecting

a distribution µ ∈ Steps(s) and then making a probabilistic choice of target state s′ according
to the distribution µ. The reward function associates the non-negative real-value rew(s, µ)
with performing the transition µ from the state s.

A path of an MDP represents a particular resolution of both nondeterminism and proba-
bility. Formally, a path of an MDP is a non-empty finite or infinite sequence of probabilistic
transitions:

π = s0
µ0−→ s1

µ1−→ s2
µ2−→ . . .

such that µi(si+1)>0 for all i.We denote by π(i) the (i+1)th state of π, last(π) the last state
of π if π is finite and step(π, i) the distribution associated with the (i+1)-th transition (that
is, step(π, i) = µi). For any infinite path π and set of states F , the total reward accumulated
until a state in F is reached along π, denoted r(F, π), equals:∑min{j |π(j)∈F}

i=1 rew(π(i−1), step(π, i−1))

if there exists j ∈ N such that π(j) ∈ F , and equals ∞ otherwise. For simplicity, we have
defined the reward of a path which does not reach F to be ∞, even though the total reward
of the path may not be infinite. Essentially, this means that the expected reward of reaching
F from s is finite if and only if a state in F is reached from s with probability 1.

In contrast to a path, an adversary (sometimes also known as a scheduler or policy)
represents a particular resolution of nondeterminism only. More precisely, an adversary is a
function mapping every finite path π of M to a distribution µ ∈ Steps(last(π)). For any state
s ∈ S and adversary A, let PathA

fin(s) and PathA(s) denote the sets of finite and infinite paths
starting in s that correspond to A. Furthermore, let Adv denote the set of all adversaries.

Definition 2 An adversary A is called simple (or memoryless) if for any finite paths π and
π′ for which last(π) = last(π′) we have A(π) = A(π′).

The behaviour under a given adversary A is purely probabilistic and we can define a prob-
ability measure ProbA

s over the set of paths PathA(s) [KSK66]. Below, we introduce two
quantitative measures for MDPs which together form the basis for probabilistic model check-
ing of MDPs [dA97, BK98].

2.1.1 Probabilistic Reachability

The first measure is probabilistic reachability, namely the minimum and maximum probability
of reaching, from some state s, a set F ⊆ S of target states. For a given adversary A, the
probability of reaching F from s is given by:

pA
s (F ) def= ProbA

s {π ∈ PathA(s) | ∃i ∈ N . π(i) ∈ F} .

Definition 3 For an MDP M = (S, sinit ,Steps, rew), the minimum and maximum reacha-
bility probabilities of reaching the set of target states F ⊆ S from a state s ∈ S are defined
as follows:

pmin
s (F ) = inf

A∈Adv
pA

s (F ) and pmax
s (F ) = sup

A∈Adv
pA

s (F ) .
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2.1.2 Expected Reachability

The second measure we consider is expected reachability, which refers to the expected reward
accumulated, starting in state s, before reaching a set F ⊆ S of target states. For an adversary
A ∈ Adv , let eA

s (F ) denote the usual expectation of the function r(F, ·):

eA
s (F ) def=

∫
π∈PathA(s)

r(F, π) dProbA
s

Definition 4 For an MDP M = (S, sinit ,Steps, rew), the minimum and maximum expected
rewards of reaching a set of target states F ⊆ S from the state s ∈ S are defined as follows:

emin
s (F ) = inf

A∈Adv
eA
s (F ) and emax

s (F ) = sup
A∈Adv

eA
s (F ) .

Computing values for expected reachability (and probability) reduces to the stochastic shortest
path problem for Markov decision processes; see for example [BT91, dA99]. A key result in
this respect is that optimality with respect to probabilistic and expected reachability can
always be achieved with simple adversaries (see Definition 2). A consequence of this is that
these quantities can be computed through an iterative processes known as value iteration,
the basis of which is given in the lemma below.

Lemma 5 Consider an MDP M = (S, sinit ,Steps, rew) and set of target states F . Let F0 be
the set of states from which F cannot be reached. The following sequence of vectors converges
to the minimum probability of reaching the target set F . Let (pn)n∈N be the sequence of
vectors over S such that for any state s ∈ S, if s ∈ F or s ∈ F0 then pn(s) = 1 and pn(s) = 0
respectively for all n ∈ N, and otherwise p0(s) = 0 and for any n ∈ N:

pn+1(s) = min
µ∈steps(s)

∑
s′∈S

µ(s′) · pn(s′)

The maximum probability and the minimum or maximum expected reward of reaching the
target set F can be defined in a similar fashion [BT91, dA99].

2.2 Simple Stochastic Games

In this section we review simple stochastic games [Con92], which are turn-based games in-
volving two players and chance.

Definition 6 A turn-based stochastic game is a tuple G = ((V,E), vinit , (V1, V2, V©), δ, rew)
where:

• (V,E) is a finite directed graph;

• vinit ∈ V is the initial vertex;

• (V1, V2, V©) is a partition of V ;

• δ : V© → Dist(V ) is the probabilistic transition function;

• rew : E → R≥0 is the reward function over edges.

5



Vertices in V1, V2 and V© are called ‘player 1’, ‘player 2’ and ‘probabilistic’ vertices, respec-
tively.

The game operates as follows. Initially, a token is placed on the starting vertex vinit . At
each step of the game, the token moves from its current vertex v to a neighbouring vertex
v′ in the game graph. The choice of v′ depends on the type of the vertex v. If v ∈ V1 then
player 1 chooses v′, if v ∈ V2 then player 2 makes the choice, and if v ∈ V© then v′ is selected
randomly according to the distribution δ(v).

A Markov decision process can be thought of as a turn-based stochastic game in which
there are no player 2 vertices and where there is a strict alternation between player 1 and
probabilistic vertices.

A play in the game G is a sequence ω = 〈v0v1v2 . . . 〉 such that (vi, vi+1) ∈ E for all i ∈ N.
We denote by ω(i) the ith vertex in the play and by last(ω) the last vertex of ω if ω is finite.
For any infinite play ω and set of vertices F , the total reward accumulated until a vertex in
F is reached, denoted r(F, ω), equals:∑min{j |ω(j)∈F}

i=1 rew(ω(i−1), ω(i))

if there exists j ∈ N such that ω(j) ∈ F , and equals ∞ otherwise.
A strategy for player 1 is a function σ1 : V ∗V1 → Dist(V ) such that for any ω ∈ V ∗V1

and v ∈ V , if σ1(ω)(v)>0, then (last(ω), v) ∈ E. Strategies for player 2, denoted by σ2,
are defined analogously. For a fixed pair of strategies σ1, σ2 we denote by Playσ1,σ2

fin (v) and
Playσ1,σ2(v) the set of finite and infinite plays starting in vertex v that correspond to these
strategies. For a fixed strategy pair, the behaviour of the game is completely random and, for
any vertex v, we can construct a probability measure Probσ1,σ2

v over the set of infinite plays
Playσ1,σ2(v). This construction proceeds similarly to MDPs [KSK66].

2.2.1 Reachability Objectives

A reachability objective is a set of vertices F which a player attempts to reach. For fixed
strategies σ1 and σ2 and vertex v ∈ V we define both the probability and expected reward
corresponding to the reachability objective F as:

pσ1,σ2
v (F ) def= Probσ1,σ2

v {ω | ∃i ∈ N ∧ ω(i) ∈ F}

eσ1,σ2
v (F ) def=

∫
ω∈Playσ1,σ2 (v)

r(F, ω) dProbσ1,σ2
v .

The optimal probabilities of the game for player 1 and player 2, with respect to the reachability
objective F , are defined as follows:

supσ1
infσ2 pσ1,σ2

v (F ) and supσ2
infσ1 pσ1,σ2

v (F )

and the optimal expected rewards are:

supσ1
infσ2 eσ1,σ2

v (F ) and supσ2
infσ1 eσ1,σ2

v (F ) .

A player 1 strategy σ1 is optimal from vertex v with respect to the probability of the objective
if:

inf
σ2

pσ1,σ2
v (F ) = supσ1

infσ2 pσ1,σ2
v (F ) .

The optimal strategies for player 2 and for expected rewards can be defined analogously.
We now summarise results from [CdAH04, Con92, Con93].
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Definition 7 A strategy σi is pure if it does not use randomisation, that is, for any finite
play ω such that last(ω) ∈ Vi, there exists v′ ∈ V such that σi(ω)(v′) = 1. A strategy σi is
memoryless if its choice depends only on the current vertex, that is, σi(ω) = σi(ω′) for any
finite plays ω and ω′ such that last(ω) = last(ω′).

Proposition 8 Let G be any simple stochastic game and F a set of target vertices. The family
of pure memoryless strategies suffices for optimality with respect to reachability objectives.

Lemma 9 Consider a turn based stochastic game G = ((V,E), vinit , (V1, V2, V©), δ, rew) and
set of target vertices F . Let F0 be the set of vertices from which F cannot be reached. The
following sequence of vectors converges to the vector of optimal probabilities for player 1 with
respect to the reachability objective F . Let (pn)n∈N be the sequence of vectors over V such
that for any vertex v ∈ V , if v ∈ F or v ∈ F0 then pn(v) = 1 and pn(v) = 0 respectively for
all n ∈ N, and otherwise p0(v) = 0 and for any n ∈ N:

• pi+1(v) = max(v,v′)∈E pi(v′) if v ∈ V1;

• pi+1(v) = min(v,v′)∈E pi(v′) if v ∈ V2;

• pi+1(v) =
∑

v′∈V δ(v)(v′) · pi(v′) if v ∈ V©.

Lemma 9 forms the basis of an iterative method to compute the vector of optimal values for
a game. Note that although this concerns only the optimal probability for player 1, similar
results hold for player 2 and for expected rewards. Observe the similarity between this and
the value iteration method for MDP solution described in Section 2.1.

3 Abstraction for MDPs

We now present our notion of abstraction for MDPs. As described in Section 1, the abstract
version of a concrete MDP takes the form of a two-player stochastic game where the choices
made by one player (player 2) correspond to the nondeterminism in the original MDP and
the choices made by the other (player 1) correspond to the nondeterminism introduced by
the abstraction process. The abstract MDP is defined by a partition PS = {S1, S2, . . . , Sn}
of the state space S, which we assume to be provided by the user. In practice, this might
for example be derived, as in predicate abstraction, via the definition of a set of predicates
on the variables of the concrete state space. In this paper, we do not consider the issue of
finding an appropriate partition.

In the following, for any distribution µ over S, we denote by µ the probability distribution
over PS lifted from µ, i.e. µ(Si) =

∑
s∈Si

µ(s) for all Si ∈ PS .

Definition 10 Given an MDP M = (S, sinit ,Steps, rew) and a partition of the state space
PS we define the corresponding abstract MDP as the turn-based stochastic game

GM,PS
= ((V,E), vinit , (V1, V2, V©), δ, rew)

in which:

• V1 = PS;
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Figure 1: Abstraction of a simple MDP

• V2 ⊆ 2Dist(Ps) where v ∈ V2 if and only if there exists s ∈ S such that v = {µ |µ ∈
Steps(s)};

• V© = {µ |µ ∈ Steps(s) for some s ∈ S};

• vinit = Si where sinit ∈ Si;

• (v, v′) ∈ E if and only if one of the following conditions holds:

– v ∈ V1, v′ ∈ V2 and v′ = {µ |µ ∈ Steps(s)} for some s ∈ v;

– v ∈ V2, v′ ∈ V© and v′ ∈ v;

– v ∈ V©, v′ ∈ V1 and v(v′)>0;

• δ : V© → Dist(V ) is the identity function;

• rew(v, v′) equals rew(s, µ) if (v, v′) ∈ V2 × V© and there exists s ∈ S and µ ∈ Steps(s)
such that v = {µ |µ ∈ Steps(s)} and v′ = µ, and equals 0 otherwise.

Note that for the reward function rew to be well defined we require that for any s, s′ ∈ S,
if {µ |µ ∈ Steps(s)} = {µ |µ ∈ Steps(s′)}, then rew(s, µ) = rew(s′, µ′) for all µ, µ′ ∈ Dist(S)
such that µ = µ′. We can consider this restriction as saying that the abstraction can only be
applied if the reward function rew is compatible with the state partition PS .

Example 11 We illustrate the abstraction process on a simple example, shown in Figure 1(a),
where the state partition of the MDP is indicated by the different shadings of the states. The
abstract MDP is given in Figure 1(b): the large, shaded shapes are player 1 vertices (V1),
player 2 vertices (V2) are denoted by small black circles, and probabilistic vertices (V©) by
small white circles.

Intuitively, the roles of the vertices and players in the abstract MDP can be understood as
follows. A V1 vertex corresponds to an ‘abstract’ state: an element of the partition of the
states from the original MDP. Player 1 chooses a ‘concrete’ state from this set and then player
2 chooses a probability distribution from those available in the ‘concrete’ state (which is now
a distribution over ‘abstract’ states rather than ‘concrete’ states).

This description, and Example 11 (see Figure 1), perhaps give the impression that the
abstraction does not reduce the size of the model. In fact this is generally not the case. Firstly,
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note that vertices in V2 are actually sets of probability distributions, not ‘concrete’ states.
Hence, all states with the same outgoing distributions are collapsed onto one. In fact there is
a greater reduction since it is those states with the same outgoing distributions defined over
the abstract states that are collapsed. Furthermore, in practice there is no need to store the
entire vertex set V of the abstract MDP. Since we have a strict alternation between V1, V2

and V© vertices, we need only store the vertices in V1, the outgoing transitions comprising
each probability distribution from V1, and how these transitions are grouped (into elements
of V2 and into individual probability distributions). Later, in Section 4 we will show how, on
a complex case study, the abstraction process brings a significant reduction in model size.

3.1 Analysis of the Abstract MDP

We now describe how, from the abstract MDP GM,PS
for an MDP M and state partition

PS , we derive lower and upper bounds for probabilistic reachability and expected reachability
properties, namely bounds for the values pmin

s (F ), pmax
s (F ), emin

s (F ) and emax
s (F ) for a set of

target states F ⊆ S. We assume, without loss of generality, that the set F is an element of
PS . We assume also that the state partition preserves the value of the reward function of M
as described in Section 3.

Theorem 12 Let M = (S, sinit ,Steps, rew) be an MDP and PS = {S1, . . . , Sn} a partition
of the state space S. For a set of target states F ∈ PS, consider the simple stochastic game
GM,PS

= ((V,E), vinit , (V1, V2, V©), δ, rew) constructed according to Definition 10. Then, for
any state s ∈ S:

inf
σ1,σ2

pσ1,σ2
v (F ) ≤ pmin

s (F ) ≤ sup
σ1

inf
σ2

pσ1,σ2
v (F )

sup
σ2

inf
σ1

pσ1,σ2
v (F ) ≤ pmax

s (F ) ≤ sup
σ1,σ2

pσ1,σ2
v (F )

and
inf

σ1,σ2

eσ1,σ2
v (F ) ≤ emin

s (F ) ≤ sup
σ1

inf
σ2

eσ1,σ2
v (F )

sup
σ2

inf
σ1

eσ1,σ2
v (F ) ≤ emax

s (F ) ≤ sup
σ1,σ2

eσ1,σ2
v (F )

where v is the unique vertex of V1 such that s ∈ v.

Proof Outline. The proof relies on Proposition 8 and constructing, for any adversary A of
the MDP and state s, strategies σ1 and σ2 for player 1 and player 2, respectively, such that
pσ1,σ2

v (F ) = pA
s (F ) and eσ1,σ2

v (F ) = eA
s (F ). The full proof can be found in Appendix A. ut

We can iteratively compute values for the bounds in the above theorem that correspond to
the optimal values for either player 1 or player 2 (see Lemma 9). The remaining bounds,
although not usually considered in the context of two player games (because the two players
cooperate) can be computed by considering the game as an MDP and applying conventional
value iteration (see Lemma 5).

Example 13 Let us return to the previous example (see Example 11 and Figure 1). Suppose
that we are interested in the probability in the original MDP of, starting from the leftmost
state, reaching the darkly shaded states on the right hand side. The minimum and maxi-
mum reachability probabilities can be computed as 15/19 (0.789473) and 18/19 (0.947368)
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respectively. From the abstraction shown in Figure 1(b) and the results of Theorem 12, we
can establish that the minimum and maximum probabilities lie within the intervals [7/10, 8/9]
([0.7, 0.888889]) and [8/9, 1] ([0.888889, 1]) respectively.

On the other hand, if the abstract model had instead been constructed as an MDP, i.e.
with no discrimination between the two forms of nondeterminism, we would only have been
able to determine that the minimum and maximum reachability probabilities both lay in the
interval [0.7, 1].

4 Case Study

We now demonstrate the applicability of our approach to a case study: the Zeroconf protocol
[CAG] for dynamic self-configuration of local IP addresses within a local network. Zeroconf
provides a distributed, ‘plug and play’ approach to IP address configuration, managed by the
individual devices of the network.

The protocol functions as follows. A new device, or host , wishing to join such a network
randomly selects an IP address from a set of 65,024 addresses allocated for this purpose.
It then broadcasts several messages, called probes, to the other hosts in the network in an
attempt to determine if this address is already in use. The probes operate as requests to use
the address and contain the IP address selected by the host. Hosts in the network already
operating with IP addresses different to that chosen by the new host ignore these probes.
If, however, a host receives a probe containing the IP address that it is currently using, it
responds with an ARP packet, asserting its claim to the address. If the new host receives a
reply (an ARP packet) to a probe it has sent, then it reconfigures (randomly selects an IP
address and starts sending probes with this new address). If after sending four such probes
no reply is received within a certain time bound, the host begins to use the address.

The Zeroconf protocol specifies precisely the timing of the various messages, for example,
that the four probes are to be sent at two second intervals. Clearly, though, the precise
latency of these messages over the network is unknown. Furthermore, it assumed that there
is a certain probability that messages can be lost during transmission. Hence, it is possible
that the new device will end up using an IP address that is already in use.

4.1 The Model

We use a slightly simplified version of the model of Zeroconf from [KNPS03] (see Appendix B).
We model the situation where a new device joins a network of N existing hosts, in which there
are a total of M IP addresses available. We assume that the communication medium between
the new host and each existing host in the network is such that messages arrive in the order
in which they are sent. We suppose that there are a variety of message propagation delays
between the new host and the existing hosts (for example the propagation delay for one host
is between 0.1 and 0.2 seconds while for another it is between 0.6 and 0.9) and that message
loss probabilities are proportional to these delays.

The concrete (full) model contains 2N+1 components: the new host and N pairs of
channels for the two-way communication between the new host and each of the configured
hosts. Since the other hosts do nothing except ignore or reply to messages, they are not
modelled explicitly. The state of the new host comprises its program counter, the IP address
it has currently selected, a count of how many probes it has sent and a clock to measure
time between probes. The state of each of the 2N channels comprises its status (whether it
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N M=32 M=64 abstraction
4 26,121 (50,624) 50,377 (98,080) 737 (1,594)
5 58,497 (139,104) 113,217 (270,272) 785 (1,678)
6 145,801 (432,944) 282,185 (839,824) 833 (1,762)
7 220,513 (614,976) 426,529 (1,189,792) 857 (1,806)
8 432,185 (1,254,480) 838,905 (2,439,600) 881 (1,850)

Table 1: Model statistics: states (transitions)

is empty, has a message to send or is sending a message), the IP address (if any) which is
currently being transmitted and a clock measuring the time elapsed since the message was
sent.

The partition of the state space of the concrete model, which defines the abstract model,
is in this case given by a mapping to a reduced set of variables. For the new host, we replace
the IP addresses (range 1, . . . ,M) with two values 1 and 2 (in both models the value 0 is also
used to indicate that the host currently has no IP address selected), where 1 represents the
set of fresh IP addresses and 2 denotes those already in use (the IP addresses of the other
hosts).

For the channels, we partition the local states according to which of the following condition
is satisfied:

• no messages are being sent;

• a broadcast initiated by the new host is in progress, x time units have elapsed since
the broadcast began, n messages have still not arrived and the type of IP address in
the message, ip, is 1 or 2 (a fresh IP address or an IP address of one of the configured
hosts);

• a configured host is sending an ARP packet to the new host, x time units have elapsed,
and the type of the IP address in the packet is ip (as in the previous case).

We implemented a prototype Java implementation of the MDP abstraction process described
in Section 3 and then applied it to a range of concrete models of the Zeroconf protocol
constructed with PRISM [HKNP06, Pri]. The sizes of the resulting models (number of states
and transitions) can be seen in Table 1 (recall that N denotes the number of hosts with
configured IP address and M denotes the number of available IP addresses). As the results
demonstrate, the abstraction provides a very significant reduction in model size, both in terms
of states and transitions.

Observe also that the size of the abstract model increases linearly, rather than exponen-
tially, in N and is independent of M . This fact can be understood from the description of
the abstraction process above: in the abstract model we only keep track of the number of
configured hosts that have yet to receive a broadcast from the abstract host and store only
2 “abstract” IP addresses (representing the set of fresh IP addresses and the set of addresses
already in use).

We note that the current limitation in the size of models we have considered (values of
M and N) is due to fact that we have chosen to present results for both the concrete and
abstract models. However, as Table 1 indicates, in the case of the abstract model it will be
possible to verify the models generated for much larger values of both M and N .
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M N lower bound actual value upper bound
4 0.99993760 0.99997866 0.99999984
5 0.99991920 0.99997575 0.99999976

32 6 0.99989917 0.99997248 0.99999971
7 0.99987739 0.99997097 0.99999967
8 0.99985420 0.99996896 0.99999949
4 0.99997099 0.99999023 0.99999993
5 0.99996310 0.99998894 0.99999991

64 6 0.99995489 0.99998776 0.99999990
7 0.99994652 0.99998751 0.99999987
8 0.99993776 0.99998722 0.99999984

Table 2: Minimum probability that the new host eventually succeeds in selecting a fresh IP
address

4.2 Experimental Results

To validate the abstracted model we studied three properties of the Zeroconf model:

• the probability that the new host eventually succeeds in configuring an IP address not
already in use;

• the probability that the new host succeeds in configuring an IP address not already in
use within a fixed time bound;

• the expected time for the new host to complete the protocol (start using an IP address).

For each, we consider the best- and worst-case (i.e. minimum or maximum values). To allow
for the computation of the expected time properties we have defined the reward function of
the concrete model such that the reward of transitions corresponding to letting time pass
equals the time that elapses when this transition is performed and all other transitions have
reward 0.

We apply model checking both to the concrete models (to establish the exact minimum
and maximum values) and to the abstract models (to compute lower and upper bounds on
these values). The former is done in conventional manner with PRISM; the latter is done
with our prototype implementation of the algorithm described in Section 3.

Table 2 shows the minimum probability of eventually selecting an unused IP address
(the maximum probability is the same in this case). Figure 2 and Figure 3 presents results
concerning the minimum and maximum probability that the new host succeeds in configuring
an IP address not already in use within a fixed time bound T . We have used the same vertical
scale in Figure 2 and Figure 3 in order to allow a comparison of the results obtained for the
different values of M and N and when considering either minimum or maximum probabilities.
Finally, in Table 3 we give results obtained for the minimum and maximum expected time
for a host to complete the protocol (start using an IP address).

In fact, the minimum and maximum probability that the new host eventually successfully
selects a fresh IP address actually coincide. These probabilities are the same because the only
nondeterminism in the original system relates to the timing characteristics of the protocol.
For the remaining properties, the similarity between the minimum and maximum cases (as
shown in Figures 2 and 3 and Table 3) is due to the fact that there is actually only a small
probability of a situation arising where the new host picks an IP address that is in use by

12
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Figure 2: Minimum probability that the new host configures successfully by time T
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Figure 3: Maximum probability that the new host configures successfully by time T

one of the other hosts, and hence that the remaining hosts have any effect on the behaviour
of the configuring host. Another interesting characteristics of the graphs in Figures 2 and 3
is that the plots are not smooth. This is a consequence of the discrete nature of the protocol:
the new host waits for 2 seconds between sending probes and sends 4 probes before it starts
using an IP address.

As stated previously, an advantage of our approach is the ability to quantify the utility
of the abstraction, based on the difference between the lower and upper bounds obtained. In
the case of the plots in Figure 2 and Figure 3, for a particular time bound T this difference
is indicated by the vertical distance between the curves for the lower and upper bounds at
the point T on the horizontal axis. Examining these differences between bounds for the
results presented in this section, it can be seen that our abstraction approach results in tight
approximations for the performance characteristics of the protocol while at the same time
producing a significant reduction in the state space.

Comparing the results for the different values of N and M , we find that for all three
properties of the model that we have considered, the differences in bounds obtained become
smaller with either an increase in M or a decrease in N . This is due to the fact that either
incrementing M or decrementing N increases the probability of the new host choosing a
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M N minimum expected time maximum expected time
lower bound actual value upper bound lower bound actual value upper bound

4 8.108767 8.157220 8.219029 8.123052 8.246489 8.304700
5 8.140993 8.203499 8.283920 8.159511 8.318295 8.394968

32 6 8.175700 8.253337 8.353800 8.198776 8.395620 8.492185
7 8.213181 8.293923 8.429265 8.241181 8.457891 8.597169
8 8.253788 8.337890 8.511020 8.287120 8.525360 8.710893
4 8.050758 8.073371 8.102218 8.057425 8.115030 8.142199
5 8.064523 8.093128 8.129936 8.072997 8.145661 8.180759

64 6 8.078762 8.113567 8.158610 8.089107 8.177352 8.220647
7 8.093501 8.128917 8.188289 8.105781 8.200838 8.261937
8 8.108767 8.144815 8.219029 8.123052 8.225162 8.304701

Table 3: Minimum and maximum expected time for completion of the protocol

fresh IP address, and therefore reduces the probability of the remaining hosts influencing its
behaviour.

5 Conclusions

We have presented a novel approach for applying abstraction to the probabilistic verification
of Markov decision processes. Our technique is based on the translation of an MDP into a
(usually significantly smaller) stochastic two-player game in which one player corresponds to
nondeterministic choices from the MDP and the other corresponds to the nondeterminism
introduced through abstraction. Using existing results and algorithms from the stochastic
games literature, we are able to compute both lower and upper bounds on the minimum and
maximum probability or expected reward of reaching a set of states. This provides valuable
quantitative results with respect to both the behaviour of the original MDP and the utility
of the abstraction applied. Our prototype implementation has allowed us to demonstrate the
potential of this approach on a complex case study.

We hope to extend this work in a number of directions. Firstly, we are aiming to adapt
the abstraction process so that it can be applied at the level of the modelling formalism used
(in this case the PRISM language). This would allow us to bypass the construction of the full
MDP which could otherwise be a problem when considering very large models. In addition,
performing the abstraction at the language level introduces the possibility of applying our
technique to infinite state MDPs. We anticipate that, due to the similarity of the numerical
methods (Lemma 5 and Lemma 9), the symbolic methods developed in PRISM [KNP04] can
be extended to solving simple stochastic games constructed in the abstraction process. We
also intend to look at ways of automatically or semi-automatically generating partitions based
on the predicates appearing in both the specification of the model and those appearing in the
properties of interest.
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A Proof of Theorem 12

For the remainder of this section we fix an MDP M = (S, sinit ,Steps, rew), both an associated
partition of the state space PS = {S1, . . . , Sn} and set of target states F ∈ PS , and suppose
that the simple stochastic game G = ((V,E), vinit , (V1, V2, V©), δ, rew) is that constructed
according to Definition 10. As described in Section 3, we require that for any s, s′ ∈ S, if
{µ |µ ∈ Steps(s)} = {µ |µ ∈ Steps(s′)}, then rew(s, µ) = rew(s′, µ′) for all µ, µ′ ∈ Dist(S)
such that µ = µ′.

Theorem 12 states that for any state s ∈ S, if v is the unique vertex of V1 such that s ∈ v,
then the following holds:

inf
σ1,σ2

pσ1,σ2
v (F ) ≤ pmin

s (F ) ≤ sup
σ1

inf
σ2

pσ1,σ2
v (F )

sup
σ2

inf
σ1

pσ1,σ2
v (F ) ≤ pmax

s (F ) ≤ sup
σ1,σ2

pσ1,σ2
v (F )

and
inf

σ1,σ2

eσ1,σ2
v (F ) ≤ emin

s (F ) ≤ sup
σ1

inf
σ2

eσ1,σ2
v (F )

sup
σ2

inf
σ1

eσ1,σ2
v (F ) ≤ emax

s (F ) ≤ sup
σ1,σ2

eσ1,σ2
v (F ) .

Recall that plays in G take the form, 〈v1v2v© . . . 〉 where v1 ∈ V1 is a set of states from PS ,
v2 ∈ V2 is a set of distributions over PS , and v© ∈ V© is a single distribution over PS . We
use A and s to range of the adversaries and states of M and σ = (σ1, σ2) and v to range over
the strategy pairs and vertices of the game G.

Before we give the proof of Theorem 12 we require the following notation, for any finite
path π ∈ PathA

fin(s) and finite play ω ∈ Playσ
fin(v), we define the cylinder sets used to
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construct the probability measures ProbA
s and Probσ

v (see [KSK66]) as follows:

CylA(π) def= {π′ ∈ PathA(s) |π is a prefix of π′}
Cylσ(ω) def= {ω′ ∈ Pathσ(v) |ω is a prefix of ω′}

and to simplify notation let:

ProbA
s (π) = ProbA

s (CylA(π)) and Probσ
v (ω) = Probσ

v ((Cylσ(ω)) .

We next establish a mapping from infinite paths in the MDP M to infinite plays in the game
G, which requires the following two mappings, [·]1 and [·]2, from the states S of M to the sets
of vertices V1 and V2 of G, respectively. For s ∈ S:

• [s]1 equals the unique v ∈ V1 such that s ∈ v;

• [s]2 = {µ |µ ∈ Steps(s′) for some s′ ∈ [s]1}.

Definition 14 For any infinite path π = s0
µ0−→ s1

µ1−→ · · · si
µi−→ · · · of M we set:

[π] def= [s0]1[s0]2µ0[s1]1[s1]2µ1 . . . [si]1[si]2µi . . .

For an infinite play ω of G we denote by [ω]−1 the inverse mapping from ω to a set of infinite
paths in M. Using cylinder sets we can extend this inverse to finite paths in the following
manner, for any finite play ω of the game G:

[ω]−1 def= {π | [Cyl(π)]−1 ⊆ Cyl(ω) ∧ Cyl(π|π|−1) 6⊆ Cyl(ω)}

where |π| denotes the length of the path π and πi denotes the prefix of π of length i.
Using the above definitions it is straightforward to show that the following lemmas hold.

Lemma 15 For any infinite path π of M: r(π, F ) = r([π], F ).

Lemma 16 For any finite play ω of G:

• if ω comprises the single vertex v, then [ω]−1 = {s | [s]1 = v};

• if ω is of the form ω′v′, then:

[ω]−1 =


{π |π ∈ [ω′]−1 ∧ [last(π)]2 = v′} if last(ω′) ∈ V1

{π µ−→ s′ |π ∈ [ω′]−1 ∧ µ = v′ ∧ µ(s′)>0} if last(ω′) ∈ V2

{π |π ∈ [ω′]−1 ∧ [last(π)]1 = v′} if last(ω′) ∈ V© .

Lemma 17 For any finite play ω of G: Cyl([ω]−1) = [Cyl(ω)]−1.

We now describe how to construct, for an adversary A of the MDP M, a pair of strategies
σA = (σA

1 , σA
2 ) for players 1 and 2 in the game G. The strategy σA

i (for i = 1, 2) gives, for
each finite path ω in G with last(ω) ∈ Vi the probability of selecting each state v ∈ V after ω
has been performed, which we define as:

σA
i (ω)(v) def=

ProbA
s ([ωv]−1)

ProbA
s ([ω]−1)

.
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Proposition 18 For the pair of strategies σA = (σA
1 , σA

2 ) described above and state s ∈ S of
the MDP M, if v = [s]1 and Ω is any measurable set of plays in the σ-algebra generated by
σA over PlayσA(v), then ProbσA

v (Ω) = ProbA
s ([Ω]−1) where v = [s]1.

Proof. From the cylinder construction (see [KSK66]) and Lemma 17, it follows that it is
sufficient to show that for any finite play ω ∈ PlayσA

fin (v):

ProbσA
v (ω) = ProbA

s ([ω]−1) (1)

which we now prove by induction on the length of ω. If |ω| = 0, then ω comprises the single
vertex v and since v = [s]1 it follows that ProbσA

v (ω) = 1 = ProbA
s ([ω]−1

1 ) as required.
Next, suppose by induction that (1) holds for all plays of length n. Consider any path ω

of length n+1. By definition ω is of form ω′v′ for some play ω′ of length n and vertex v ∈ V
of the game G. If last(ω′) ∈ Vi (for i = 1, 2), we have:

ProbσA
v (ω) = ProbσA

v (ω′) · σA
i (ω′)(v′)

= ProbA
s ([ω′]−1) · σi(ω′)(v′) by induction

= ProbA
s ([ω′]−1) · ProbA

s ([ω′v′]−1)
ProbA

s ([ω′]−1)
by definition of σi

= ProbA
s ([ω′v′]−1) rearranging

= ProbA
s ([ω]−1) by construction of ω.

By definition the only other case to consider is when last(ω′) = V©, and in this case ω′ is of
the form ω′′v© for some v© ∈ V©. Therefore, by construction of Probσ

v :

ProbσA
v (ω) = ProbσA

v (ω′) · δ(v©)(v′)

= ProbA
s ([ω′]−1) · δ(v©)(v′) by induction

= ProbA
s ([ω′′v©]−1) · δ(v©)(v′) by construction of ω′

= ProbA
s {π′′

µ−→ s′ |π′′ ∈ [ω′′]−1 ∧ µ = v© ∧ µ(s′)>0} · δ(v©)(v′) by Lemma 16

=
∑

π∈[ω′′]−1

∑
µ=v©

ProbA
s {π′′

µ−→ s′ |µ(s′)>0} · δ(v©)(v′) rearranging

=
∑

π∈[ω′′]−1

∑
µ=v©

ProbA
s {π′′

µ−→ s′ |µ(s′)>0} ·

(∑
s′∈v′

µ(s′)

)
by Definition 10

=
∑

π∈[ω′′]−1

∑
µ=v©

∑
s′∈v′

ProbA
s {π′′

µ−→ s′ |µ(s′)>0} · µ(s′) rearranging

=
∑

π∈[ω′′]−1

∑
µ=v©

ProbA
s {π′′

µ−→ s′ | s′ ∈ v′} by definition of ProbA
s

= ProbA
s {π′′

µ−→ s′ |π ∈ [ω′′]−1 ∧ µ = v© ∧ s′ ∈ v′} rearranging

= ProbA
s ([ω]−1) by Lemma 16

and hence the (1) holds by induction. ut

Finally before we give the proof of Theorem 12 we require the following lemma and classical
result from measure theory.
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Lemma 19 The mapping [·] : PathA(s) → PlayσA(v) is a measurable function with respect
to the measure spaces corresponding to the measures ProbA

s and ProbσA
v .

Theorem 20 ([Bil79]) Let (Ω,F) and (Ω′,F ′) be measurable spaces, and suppose that P is
a measure on (Ω,F) and the function T : Ω → Ω′ is measurable. If f is a real non-negative
measurable function on (Ω′,F ′), then:∫

ω∈Ω
f(Tω) dP =

∫
ω′∈Ω′

f(ω′) dPT−1 .

Proof of Theorem 12. The proof of Theorem 12 follows from Proposition 8 after showing
that for any adversary A and state s of M:

pσA
v (F ) = pA

s (F ) and eσA
v (F ) = eA

s (F )

where σA = (σA
1 , σA

2 ) is the pair of strategies constructed above and v = [s]1. The first
equality follows from Proposition 18 while for the second equality, we have by definition:

eA
s (F ) =

∫
π∈PathA(s)

r(F, π) dProbA
s

=
∫

π∈PathA(s)
r(F, [π]) dProbA

s by Lemma 15

=
∫

ω∈PathσA (v)
r(F, [π]) dProbA

s ([·]−1) by Theorem 20 and Lemma 19

=
∫

ω∈PathσA (v)
r(F, [π]) dProbσA by Proposition 18

= eσA
v (F )

as required. ut
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B PRISM Code for the Zeroconf Case Study

// model of Zeroconf protocol (using digital clocks)
// dxp/gxn 21/01/06

nondeterministic

// CONSTANTS (1 time unit is 0.1 seconds)
// note probability of message loss related to the time that the message is on the channel

const int probe time = 20; // time to send a probe (2 seconds)
const int M = 32; // number of available ip addresses
const int K = 4; // number of probes to send
const int N = 4; // number of existing hosts

// host 1
const int ip1 = 1; // ip address
const int min send1 = 2; // minimum time to send/receive to/from configuring host
const int max send1 = 8; // maximum time to send/receive to/from configuring host
const double loss1 = 0.01∗(min send1+max send1 )/2; // probability message lost/garbled

// host 2
const int ip2 = 2; // ip address
const int min send2 = 3; // minimum time to send/receive to/from configuring host
const int max send2 = 6; // maximum time to send/receive to/from configuring host
const double loss2 = 0.01∗(min send2+max send2 )/2; // probability message lost/garbled

// host 3
const int ip3 = 3; // ip address
const int min send3 = 1; // minimum time to send/receive to/from configuring host
const int max send3 = 2; // maximum time to send/receive to/from configuring host
const double loss3 = 0.01∗(min send3+max send3 )/2; // probability message lost/garbled

// host 4
const int ip4 = 4; // ip address
const int min send4 = 6; // minimum time to send/receive to/from configuring host
const int max send4 = 9; // maximum time to send/receive to/from configuring host
const double loss4 = 0.01∗(min send4+max send4 )/2; // probability message lost/garbled

// formula true when the channel is free
formula channel free = s01=0 & s02=0 & s03=0 & s04=0 & s10<2 & s20<2 & s30<2 & s40<2;

//----------------------------------------------------------------------------------------------------------------------------
// host which is trying to configure its ip address
module host0

s0 : [0..4];
// 0 make random choice
// 1 send first probe (to buffer)
// 2 send remaining probes
// 3 wait before using
// 4 using

ip0 : [0..M ]; // current chosen ip address
x0 : [0..probe time]; // local clock
probes : [0..K ]; // number of probes sent

// randomly pick an ip address
[] s0=0 → 1/M : (ip0 ′=1) & (s0 ′=1) + 1/M : (ip0 ′=2) & (s0 ′=1) + · · · + 1/M : (ip0 ′=32) & (s0 ′=1);
// send first probe
[broadcast ] s0=1 & probes=0 → (s0 ′=2) & (probes′=probes+1);
// let time pass before sending next probe
[time] s0=2 & x0<probe time → (x0 ′=x0+1);
// send a probe (and not last probe)
[broadcast ] s0=2 & x0=probe time & probes<K−1 → (s0 ′=2) & (probes′=probes+1) & (x0 ′=0);
// send last probe
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[broadcast ] s0=2 & x0=probe time & probes=K−1 → (s0 ′=3) & (probes′=0) & (x0 ′=0);
// wait before start using the ip address
[time] s0=3 & x0<probe time → (x0 ′=x0+1);
// finished waiting
[done] s0=3 & x0=probe time → (s0 ′=4) & (x0 ′=0);
// use ip address (loop in this state to prevent deadlocks in the system)
[] s0=4 → true;

// receive an ARP and reconfigure (same IP address)
[rec10 ] s0>0 & s0<4 & ip0=m10 → (s0 ′=0) & (probes′=0) & (ip0 ′=0) & (x0 ′=0);
[rec20 ] s0>0 & s0<4 & ip0=m20 → (s0 ′=0) & (probes′=0) & (ip0 ′=0) & (x0 ′=0);
[rec30 ] s0>0 & s0<4 & ip0=m30 → (s0 ′=0) & (probes′=0) & (ip0 ′=0) & (x0 ′=0);
[rec40 ] s0>0 & s0<4 & ip0=m40 → (s0 ′=0) & (probes′=0) & (ip0 ′=0) & (x0 ′=0);
// receive an ARP and do nothing (different IP address)
[rec10 ] s0=0 | (s0>0 & s0<4 & !ip0=m10 ) → true;
[rec20 ] s0=0 | (s0>0 & s0<4 & !ip0=m20 ) → true;
[rec30 ] s0=0 | (s0>0 & s0<4 & !ip0=m30 ) → true;
[rec40 ] s0=0 | (s0>0 & s0<4 & !ip0=m40 ) → true;

endmodule

//----------------------------------------------------------------------------------------------------------------------------
// probes to host 1
module sender01

s01 : [0..1]; // 0 - no message, 1 - message being sent
x01 : [0..max send1 ]; // local clock
m01 : [0..M ]; // ip address in message

// let time pass if nothing being sent
[time] s01=0 → true;
// receive a probe to be sent
[broadcast ] s01=0 → 1−loss1 : (s01 ′=1) & (m01 ′=ip0 ) // probe sent correctly

+ loss1 : (s01 ′=1) & (m01 ′=0); // probe garbled or lost
// probe not arrived yet
[time] s01=1 & x01<max send1 → (x01 ′=x01+1);
// probe arrives
[rec01 ] s01=1 & x01≥min send1 → (s01 ′=0) & (x01 ′=0) & (m01 ′=0);

endmodule

// probes to host 2,3 and 4 constructed through renaming
module sender02 = sender01 [ s01=s02 , s02=s03 , s03=s04 , s04=s01 , ip1=ip2 , m01=m02 ,

x01=x02 , rec01=rec02 , min send1=min send2 , max send1=max send2 , loss1=loss2 ]
endmodule

module sender03 = sender01 [ s01=s03 , s02=s04 , s03=s01 , s04=s02 , ip1=ip3 , m01=m03 ,
x01=x03 , rec01=rec03 , min send1=min send3 , max send1=max send3 , loss1=loss3 ]

endmodule

module sender04 = sender01 [ s01=s04 , s02=s01 , s03=s02 , s04=s03 , ip1=ip4 , m01=m04 ,
x01=x04 , rec01=rec04 , min send1=min send4 , max send1=max send4 , loss1=loss4 ]

endmodule

//----------------------------------------------------------------------------------------------------------------------------
// ARPs from host 1
module sender10

s10 : [0..2]; // 0 - nothing to do, 1 - ARP to be sent, 2 - sending ARP
x10 : [0..max send1 ]; // local clock
m10 : [0..M ]; // ip address in ARP

// nothing to do so let time pass
[time] s10=0 → true;
// receive a probe and no reply necessary
[rec01 ] !m01=ip1 → true;
// receive a message and get ready to reply with ARP
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[rec01 ] m01=ip1 → (s10 ′=1) & (m10 ′=m01 );
// cannot reply yet (channel busy)
[time] s10=1 & !channel free → true;
// send ARP
[send10 ] s10=1 & channel free → 1−loss1 : (s10 ′=2) & (x10 ′=0) // ARP sent correctly

+ loss1 : (s10 ′=2) & (x10 ′=0) & (m10 ′=0); // ARP garbled or lost
// ARP not arrived yet
[time] s10=2 & x10<max send1 → (x10 ′=x10+1);
// ARP arrives
[rec10 ] s10=2 & x10≥min send1 → (s10 ′=0) & (m10 ′=0) & (x10 ′=0);

endmodule

// ARPs from host 2,3 and 4 constructed through renaming
module sender20 = sender10 [ s10=s20 , s20=s30 , s30=s40 , s40=s10 , m10=m20 , m01=m02 , x10=x20 ,
rec01=rec02 , send10=send20 , rec10=rec20 , ip1=ip2 , min send1=min send2 , max send1=max send2 , loss1=loss2 ]

endmodule

module sender30 = sender10 [ s10=s30 , s20=s40 , s30=s10 , s40=s20 , m10=m30 , m01=m03 , x10=x30 ,
rec01=rec03 , send10=send30 , rec10=rec30 , ip1=ip3 , min send1=min send3 , max send1=max send3 , loss1=loss3 ]

endmodule

module sender40 = sender10 [ s10=s40 , s20=s10 , s30=s20 , s40=s30 , m10=m40 , m01=m04 , x10=x40 ,
rec01=rec04 , send10=send40 , rec10=rec40 , ip1=ip4 , min send1=min send4 , max send1=max send4 , loss1=loss4 ]

endmodule
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