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Abstract. We consider the problem of synthesising rate parameters for
stochastic biochemical networks so that a given time-bounded CSL prop-
erty is guaranteed to hold, or, in the case of quantitative properties, the
probability of satisfying the property is maximised/minimised. We de-
velop algorithms based on the computation of lower and upper bounds
of the probability, in conjunction with refinement and sampling, which
yield answers that are precise to within an arbitrarily small tolerance
value. Our methods are e�cient and improve on existing approximate
techniques that employ discretisation and refinement. We evaluate the
usefulness of the methods by synthesising rates for two biologically mo-
tivated case studies, including the reliability analysis of a DNA walker.

1 Introduction

Biochemical reaction networks are a convenient formalism for modelling a mul-
titude of biological systems, including molecular signalling pathways, logic gates
built from DNA and DNA walker circuits. For low molecule counts, and under
the well-mixed and fixed volume assumption, the prevailing approach is to model
such networks using continuous-time Markov chains (CTMCs) [12]. Stochastic
model checking [18], e.g. using PRISM [19], can then be employed to analyse
the behaviour of the models against temporal logic properties expressed in CSL
(Continuous Stochastic Logic) [2]. For example, one can establish the reliability
and performance of DNA walker circuits by means of properties such as “what
is the probability that the walker reaches the correct final anchorage within 10
min?”. Since DNA circuits can implement biosensors and diagnostic systems,
ensuring appropriate levels of reliability is crucial to guarantee the safety of
deploying molecular devices in healthcare applications.

Stochastic model checking, however, assumes that the model is fully spec-
ified, including the kinetic rates. In view of experimental measurement error,
these are rarely given precisely, but rather intervals of values. The parameter

synthesis problem, studied for CTMCs in [14], assumes a formula and a model
whose rates are given as functions of model parameters, and aims to compute
the parameter valuations that guarantee the satisfaction of the formula. This
allows one, for example, to determine the ranges of parameter values for a given
level of reliability and performance, which can provide important feedback to
the designers of biosensors and similar molecular devices, and thus significantly
extends the power of stochastic model checking.
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In [14], the parameter synthesis problem was solved for CTMCs approxi-
mately, and only for probabilistic time-bounded reachability. In this paper, we
address the parameter synthesis problem for stochastic biochemical reaction net-
works for the full time-bounded fragment of the (branching-time) logic CSL [2].
We formulate two variants: threshold synthesis, which inputs a CSL formula and
a probability threshold and identifies the parameter valuations which meet the
threshold, and max synthesis, where the maximum probability of satisfying the
property and the maximizing set of parameter valuations are returned.

We develop e�cient synthesis algorithms that yield answers with arbitrary
precision. The algorithms exploit the recently published parameter exploration
technique that computes safe approximations to the lower and upper bounds for
the probability to satisfy a CSL property over a fixed parameter space [7]. In
contrast to the exploration technique our algorithms automatically derive the
satisfying parameter regions through iterative decomposition of the parameter
space based on refining the preliminary answer with additional decompositions
up to a given problem-specific tolerance value. We also show that significant
computational speed-up is achieved by enhancing the max synthesis algorithm
by sampling the property at specific points in the parameter space. We demon-
strate the usefulness of the method through two case studies: the SIR epidemic
model [17], where we synthesize infection and recovery rates that maximize the
probability of disease extinction, and the DNA walker circuit [10], where we
derive the rates that ensure a predefined level of reliability.

Related work. The parameter synthesis problems have been studied for dis-
crete-time Markovian models in [13, 8]. The approach applies to unbounded tem-
poral properties and is based on constructing a rational function by performing
state elimination [13]. For CTMCs and bounded reachability specifications, the
problem can be reduced to the analysis of the polynomial function describing
the reachability probability of a given target state [14]. The main limitation here
is the high degree of the polynomials, which is determined by the number of uni-
formization steps. Therefore, in contrast to our method, only an approximate
solution is obtained using discretization of parameter ranges. When considering
linear-time specifications, specific restrictions can be placed on the rate function
to result in a smooth satisfaction function (i.e. having derivatives of all orders).
In that case the function can be approximated using statistical methods which
leverage the smoothness [6]. A concept similar to smoothness, uniform continu-
ity, can be used to obtain an unbiased statistical estimator for the satisfaction
function [15]. Both methods approximate parameter synthesis using confidence
intervals. Inference of parameter values in probabilistic models from time-series
measurements is a well studied area of research [1, 5], but di↵erent from the
problem we consider. Interval CTMCs, where transition rates are given as inter-
vals, have been employed to obtain a three-valued abstraction for CTMCs [16].
In contrast to parametric models we work with, the transition rates in inter-
val CTMCs are chosen nondeterministically and schedulers are introduced to
compute lower and upper probability bounds.
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2 Background

We state preliminary definitions relevant to the study of Parametric Continuous
Time Markov Chains [14, 7] that permit formal analysis of probabilistic models
with uncertain parameters [22].

A Continuous Time Markov Chain (CTMC) is a tuple C = (S,⇡0,R) where
S is a finite set of states, ⇡0 : S ! R�0 is the initial distribution and R : S⇥S !
R�0 is the rate matrix. A transition between states s, s0 2 S can occur only if
R(s, s0) > 0 and in that case the probability of triggering the transition within
t time units equals 1� e�tR(s,s0). The time spent in s, before a reaction occurs,
is exponentially distributed with rate E(s) =

P
s02S R(s, s0), and when the

transition occurs the probability of moving to state s0 is given by R(s,s0)
E(s) . Let E

be a S⇥S diagonal matrix such that E(si, si) = E(si), and define the generating
matrix by setting Q = R � E. Then a vector ⇡t : S ! R�0 of the transient
probabilities at time t is given by d⇡t

dt = ⇡tQ such that ⇡t = ⇡0eQt. Using
standard uniformisation the transient probability at time t is obtained as a sum
of state distributions after i discrete-stochastic steps, weighted by the probability
of observing i steps in a Poisson process. Let P = I + 1

qQ be the uniformised

matrix, where q � max{E(s) � R(s, s) | s 2 S} is called the uniformisation

rate. The transient probabilities ⇡t are computed as ⇡t = ⇡0
Pk✏

i=0 �i,qtP
i where

�i,qt = e�qt (qt)
i

i! denotes the i-th Poisson probability for a process with rate

qt, and k✏ satisfies the convergence bound
Pk✏

0 �i,qt � 1 � ✏ for some ✏ > 0.
The Poisson terms and summation bound can be e�ciently computed using an
algorithm due to Fox and Glynn [11].

We assume a set K of model parameters. The domain of each parameter
k 2 K is given by a closed real interval describing the range of possible values,
i.e, [k?, k>]. The parameter space P induced by K is defined as the Cartesian
product of the individual intervals: P =⇥k2K [k?, k>]. Therefore, P is a hyper-
rectangular space. A parameter point p 2 P is a valuation of each parameter
k. Subsets of the parameter space are also referred to as parameter regions or
subspaces. R[K] denotes the set of polynomials over the reals R with variables
k 2 K.

Parametric Continuous Time Markov Chains (pCTMCs) [14] extend the no-
tion of CTMCs by allowing transition rates to depend on model parameters.
Formally, a pCTMC over a set K of parameters is a triple C = (S,⇡0,R) where
s and ⇡0 are as above, and in this case R : S⇥S ! R[K] is the parametric rate
matrix. Given a pCTMC C and a parameter space P, we denote with CP the
(possibly uncountable) set {Cp | p 2 P} where Cp = (S,⇡,Rp) is the instantiated
CTMC obtained by replacing the parameters in R with their evaluation in p.

We consider the time-bounded fragment of CSL [2] to specify behavioural
properties, with the following syntax. A state formula � is given as � ::= true |
a | ¬� | � ^ � | P⇠r[�] | P=?[�], where � is a path formula given as � ::= X � |
� U

I �, a is an atomic proposition, ⇠ 2 {<,,�, >}, r 2 [0, 1] is a probability
threshold and I is a bounded interval. Using P=?[�] we specify properties which
evaluate to the probability that � is satisfied. The synthesis methods presented



4 Milan Češka et al.

in this paper can be directly adapted to the time-bounded fragment of CSL
with the reward operator [18], but, for the sake of simplicity, here we present
our methods only for the probabilistic operator P .

Let � be a CSL path formula and CP be a pCTMC over a space P. We denote
with ⇤ : P �! [0, 1] the satisfaction function such that ⇤(p) = P=?[�], that is,
⇤(p) is the probability of � being satisfied over the CTMC Cp. Note that the
path formula � may contain nested probabilistic operators, and therefore the
satisfaction function is, in general, not continuous.

Biochemical reaction networks provide a convenient formalism for describing
various biological processes as a system of well-mixed reactive species in a volume
of fixed size. A CTMC semantics can be derived whose states hold the number of
molecules for each species, and transitions correspond to reactions that consume
and produce molecules. Bounds on species counts can be imposed to obtain a
finite-state model. The rate matrix is defined as

R(si, sj)
def
=

X

r2reac(si,sj)

fr(K, si) (1)

where reac(si, sj) denotes all the reactions changing state si into sj and fr is
the stochastic rate function of reaction r over parameters k 2 K. In this paper
we assume multivariate polynomial rate functions that include, among others,
mass-action kinetics where k 2 K represent kinetic rate parameters.

Figure 1 illustrates a running example, a simple birth-death process with an
uncertain parameter k1 representing the birth rate. It depicts the corresponding
pCTMC and the satisfaction ⇤ for a simple reachability property.
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Fig. 1. Left: The example model contains one species X with the population bounded
by 40, two reactions, production of X (; ! X with rate k1) and degradation of X

(X ! ; with the rate k2 · [X], k2 = 0.01), and the initial population of X = 15.
The corresponding pCTMC has 41 states (initial state s0 corresponds to the state
with initial population). The formula � represents the quantitative property “What
is the probability that the population of X is between 15 and 20 at time 1000?” The
parameter space P is given by the interval of the stochastic rate constant k1 2 [0.1, 0.3].
Right: The satisfaction function ⇤.
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3 Problem Definition

We consider pCTMC models of biochemical reaction networks that can be para-
metric in the rate constants and in the initial state. We introduce two parameter
synthesis problems for this class of models: the threshold synthesis problem that,
given a threshold ⇠ r and a CSL path formula �, asks for the parameter region
where the probability of � meets ⇠ r; and the max synthesis problem that deter-
mines the parameter region where the probability of the input formula attains
its maximum, together with an estimation of that maximum. In the remainder
of the paper, we omit the min synthesis problem that is defined and solved in a
symmetric way to the max case.

In contrast to previous approaches that support only specific kinds of prop-
erties (e.g. reachability as in [14]), we consider the full time-bounded fragment of
CSL with rewards, thus enabling generic and more expressive synthesis require-
ments. Moreover, the variants of the synthesis problem that we define correspond
to qualitative and quantitative CSL formulas, which are of the form P�r[�] and
P=?[�], respectively. Solutions to the threshold problem admit parameter points
left undecided, while, in the max synthesis problem, the set of maximizing pa-
rameters is contained in the synthesis region. Our approach supports arbitrarily
precise solutions through an input tolerance that limits the volume of the un-
decided region (in the threshold case) and of the synthesis region (in the max
case). To the best of our knowledge, no other synthesis methods for CTMCs
exist that provide guaranteed error bounds.

Problem 1 (Threshold Synthesis). Let CP be a pCTMC over a parameter space
P, � = P�r[�] with r 2 [0, 1] be a CSL formula and " > 0 a volume tolerance.
The threshold synthesis problem is finding a partition {T, U, F} of P, such that:

1. 8p 2 T. ⇤(p) � r; and
2. 8p 2 F. ⇤(p) < r; and
3. vol(U)/vol(P)  "

where ⇤ is the satisfaction function of � on CP ; and vol(A) =
R
A
1dµ is the

volume of A.

Problem 2 (Max Synthesis). Let CP be a pCTMC over a parameter space P,
� = P=?[�] be a CSL formula and ✏ > 0 a probability tolerance. The max

synthesis problem is finding a partition {T, F} of P and probability bounds ⇤?,
⇤> such that:

1. ⇤? � ⇤>  ✏;
2. 8p 2 T. ⇤?  ⇤(p)  ⇤>; and
3. 9p 2 T. 8p0 2 F. ⇤(p) > ⇤(p0).

where ⇤ is the satisfaction function of � on CP .

Figure 2 illustrates the thresholds synthesises (left) and the max-synthesis
(right) for the running example. Note that we need to consider a probability
tolerance to control the inaccuracy of the max probability, and in turn of region
T . Indeed, constraining only the volume of T gives no guarantees on the precision
of the maximizing region.
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Fig. 2. The threshold synthesis (left) and the max-synthesis (right) for the running ex-
ample of Fig. 1, for volume tolerance " = 5% and probability tolerance ✏ = 2%.

4 Computing Lower and Upper Probability Bounds

This section presents a generalization of the parameter exploration procedure
originally introduced in [7]. The procedure takes a pCTMC CP and a CSL path
formula �, and provides safe under- and over-approximations for the minimal
and maximal probability that CP satisfies �, that is, lower and upper bounds
⇤min and ⇤max satisfying ⇤min  minp2P ⇤(p) and ⇤max � maxp2P ⇤(p). The
accuracy of these approximations is improved by partitioning the parameter
space P into subspaces and re-computing the corresponding bounds, which forms
the basis of the synthesis algorithms that we discus in the next section. For now
we focus on obtaining approximations ⇤min,⇤max for a fixed parameter space P.
The model-checking problem for any time-bounded CSL formula reduces to the
computation of transient probabilities [3], and a similar reduction is applicable
to the computation of lower and upper bounds. Following [7], to correctly handle
nested probabilistic operators, under- and over-approximations of the satisfying
sets of states in the nested formula are computed.

We now re-state the transient probabilities as given by standard uniformisa-
tion and include the dependency on the model parameters in our notation, so
that ⇡t,p = ⇡0

Pk✏

i=0 �i,qtP
i
p =

Pk✏

i=0 �i,qt⌧i,p where Pp is the uniformised rate

matrix obtained from the rate matrix Rp and ⌧k,p = ⇡0Pk
p is the probability

evolution in the discretized process. Observe that if some functions ⇡min
i and

⇡max
i can be obtained such that for any step i,

⌧min
i  min

p2P
⌧i,p and ⌧max

i � max
p2P

⌧i,p (2)

then robust approximations ⇡min
t =

Pk✏

i=0 �i,qt⌧
min
i and ⇡max

t =
Pk✏

i=0 �i,qt⌧
max
i

provide the bounds ⇤min and ⇤max that we seek. As usual, the vector ordering in
Equation 2 holds element-wise. If we assume that some functions fmin

k , fmax
k exist

such that fmin
k (⌧min

i ) = ⌧min
i+k and fmax

k (⌧max
i ) = ⌧max

i+k then recursively the terms
in Equation 2 for all i are obtained, given that the first k terms for ⌧min

i , ⌧max
i

are known. We now note that the functions

fmin
k (⌧min

i ) = min
p2P

⌧min
i P

k
p and fmax

k (⌧max
i ) = max

p2P
⌧max
i P

k
p (3)
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can be under- and over-approximated using analytical methods when the para-
metric rate matrix Rp employs low-degree polynomial expressions. Provided
that Rp(si, sj) is a polynomial of at most degree d over the parameter space,
the degree of ⌧k,p(s) = ⇡0Pk

p(s) is at most kd.
Here we present an e�cient method to obtain approximations using k = 1

whenRp is amulti-a�ne function, i.e. a multivariate polynomial where each vari-
able has degree at most 1, thus generalizing the result of [7] where only the case
k = 1 and d = 1 is considered. Recalling that P is a hyper-rectangular parameter
space, we exploit the property [4, 21] that any multi-a�ne function f defined on
a hyper-rectangular domain R is such that

min
p2R

f(p) = min
v2VR

f(v) and max
p2R

f(p) = max
v2VR

f(v) (4)

where VR is the set of vertices of R. For each state s, we consider function fmax
1,s

such that ⌧max
i+1 (s) = fmax

1,s (⌧max
i ). Following [7] we get that

fmax
1,s (⌧max

i ) = ⌧max
i (s) +

1

q
·max
p2P

{inflows(p)� outflows(p)} (5)

where for the parameter valuation p, inflows(p) =
P

s02S Rp(s0, s) · ⌧max
i (s0)

represents the probability inflow to s and outflows(p) =
P

s02S Rp(s, s0) ·⌧max
i (s)

represents the probability outflow from s.
We now note that inflows(p)�outflows(p) over p 2 P is in turn a multi-a�ne

function and, thus, according to Equation 4, its maximum is in one of the vertices
of P. This gives us an e↵ective computation procedure for the function fmax

1,s .
More advanced methods can be used, provided that the under- and over-

approximations for Equation 3 are sound. Note that the solution ⇡t,p(s) itself
can be expressed as a polynomial of degree at most k✏d. A direct attempt to
bound the polynomial expression of ⇡t,p(s) is di�cult due to the large num-
ber of uniformisation steps, k✏, and previous approaches in parameter synthesis
have provided an approximate solution by sampling the value of ⇡t,p over a
grid in P [14], rather than bounding the polynomial itself as in our approach.
The computational complexity depends on the chosen rate function and the
bounding method for the functions in Equation 3, but for our settings it has
the same asymptotic complexity as standard uniformisation. Two approxima-
tion errors are introduced when we compute ⇡max

t (or ⇡min
t ). Firstly, the prob-

abilities ⌧max
i , ⌧max

i+k , ⌧max
i+2k, . . . are locally maximized, so that di↵erent parameter

valuations are allowed at each step and for each state. Secondly, the error of
over-approximating fmax

k (⌧max
i ) accumulates in ⌧max

i at every iteration.

5 Refinement-based Parameter Synthesis

We present algorithms to solve Problems 1 and 2, based on the computation
of probability bounds introduced in Section 4 and on iterative parameter space
refinement. In the max synthesis case we employ parameter sampling to enhance
the synthesis procedure. We remark that our refinement procedure partitions a
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Algorithm 1 Threshold Synthesis
Require: pCTMC CP over parameter space P, CSL formula

� = P�r[�] and volume tolerance " > 0
Ensure: T , U and F as in Problem 1
1: T  ;, F  ;, U  P
2: repeat

3: R decompose(U), U  ;
4: for each R 2 R do

5: (⇤R
min

, ⇤R
max

) computeBounds(CR,�)

6: if ⇤R
min

� r then

7: T  T [R
8: else if ⇤R

max

< r then

9: F  F [R
10: else

11: U  U [R
12: until vol(U)/vol(P)  " . where vol(A) =

R
A

1dµ

�

�

�

Fig. 3. Refinement in threshold synthesis with � r. Parameter values are on the x-
axis, probabilities on the y-axis. Each box describes a parameter region (width), and
its probability bounds (height). The refinement of R yields regions in T and in U .

hyper-rectangular parameter region into hyper-rectangular subspaces, which are
in turn of the form required by the method in Section 4.

5.1 Threshold Synthesis

Algorithm 1 describes the method to solve the threshold synthesis problem with
input formula � = P�r[�]. The idea, also illustrated in Figure 3, is to iteratively
refine the undecided parameter subspace U (line 3) until the termination con-
dition is met (line 14). At each step, we obtain a partition R of U . For each
subspace R 2 R, the algorithm computes bounds ⇤R

min and ⇤R
max on the max-

imal and minimal probability that CR satisfies � (line 5). We then evaluate if
⇤R
min is above the threshold r, in which case the satisfaction of � is guaranteed

for the whole region R and thus it is added to T . Otherwise, the algorithm
tests whether R can be added to the set F by checking if ⇤R

max is below the
threshold r. If R is neither in T nor in F , it forms an undecided subspace that is
added to the set U . The algorithm terminates when the volume of the undecided
subspace is negligible with respect to the volume of the entire parameter space,
i.e. vol(U)/vol(P)  ", where " is the input tolerance. Otherwise, the algorithm
continues to the next iteration, where U is further refined.

We prove an important property of the satisfaction function that guarantees
termination of the synthesis algorithm for arbitrary time-bounded CSL path
formulae.

Theorem 1. For a finite-state pCTMC C, a finite time bounded CSL path for-

mula � and a bounded parameter space P, the corresponding satisfaction func-

tion ⇤ is piecewise polynomial with a finite number of subdomains.

Proof. As proved in [14] and discussed in Section 4, for every time-bounded
reachability property the corresponding satisfaction function ⇤ can be expressed
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as a polynomial function. Following [3], where model-checking of an arbitrary
nested-free CSL path formula � is reduced to the computation of transient prob-
abilities based on the modification of the rate matrix R, we get a polynomial
representation of ⇤ also for the nested-free fragment of time-bounded CSL. We
now prove that, for any time-bounded finite path formula �, the corresponding
satisfaction function ⇤ can be expressed as a piecewise polynomial function with
a finite number of subdomains.

Let � = (P⇠
1

r
1

[ 1]) U I (P⇠
2

r
2

[ 2]) be a nested CSL path formula where
i 2 {1, 2}, ⇠i 2 {<,,�, >}, ri 2 [0, 1], I 2 R is a bounded interval and  i is
an unnested time-bounded CSL path formula. Let ⇤ i

s denote the satisfaction
function for  i and the initial state s 2 S. Since, for each s 2 S, ⇤ i

s is a
polynomial function (i.e. ⇤ i

s � ri = 0 has a finite number of roots), there exists
a finite partition Ri

s of P that separates parameters yielding di↵erent satisfaction
values of ⇤ i

s (p) ⇠i ri:

8R 2 Ri
s : (8p 2 R : ⇤ i

s (p) ⇠i ri) _ (8p 2 R : ⇤ i
s (p) 6⇠i ri). (6)

Let R1 and R2 be partitions of P, then R1 �R2 = {R01, . . . ,R0n} is a minimal
common cut of R1 and R2 defined as a minimal partition of P that satisfies:

81  j  n : (9R1 2 R1 : R0j ✓ R1) ^ (9R2 2 R2 : R0j ✓ R2). (7)

Clearly, if R1 and R2 are finite then R1 � R2 is finite as well. Since S is fi-
nite, the partition R of P defined as R =

J
s2S,i2{1,2} R

i
s is also finite. For

p 2 P, let Sat i(p) = {s 2 S | ⇤ i
s (p) ⇠i ri} be a satisfaction set. Then, for

each subspace R 2 R, it holds that 8p1, p2 2 R : Sat 1(p1) = Sat 1(p2) ^
Sat 2(p1) = Sat 2(p2). Let �0 = Sat 1(p) U I Sat 2(p) and ⇤0 denote its satis-
faction function (Sat i(p) can be expressed using atomic propositions). Since for
all p 2 R the same set of states satisfies P⇠iri [ 1], then ⇤(p) = ⇤0(p). Note that
�0 is an unnested CSL path formula, and thus ⇤0 (and ⇤) can be expressed as a
polynomial function. Given the finite partition R of P, we get that the function
⇤ on P is a piecewise polynomial function with a finite number of subdomains.
Similarly, we can show the existence of a finite partition of P for an arbitrarily
nested finite time-bounded CSL path formula. ut

The theorem also implies that ⇤ has a finite number of discontinuities. As
shown in [7], if the satisfaction function ⇤ is continuous on a region R then
for any � > 0 there exists a finite partition R0 of R such that for each subspace
R0 2 R0 : ⇤R0

max�⇤R0

min < �. Therefore, the synthesis algorithm always terminates
since only a finite number of refinements reducing the area of the undecided
parameter region needs to be performed to obtain the desired precision.

The initial decomposition of the parameter space is guided by a priori sam-
pling of probability values. In Algorithm 2 (procedure decompose in Algorithm 1),
we present a heuristic for providing a good initial decomposition of the param-
eter space, assuming a hyper-rectangular parameter space. The idea, illustrated
also in Figure 4, is based on sampling a number of probability values (through



10 Milan Češka et al.

Algorithm 2 Sampling-guided parameter
decomposition in threshold synthesis
Require: Parameter region R = [l

1

, u
1

]⇥. . .⇥[lm, um]
and number of samples n

Ensure: Hyper-rectangular partition of R, R̄
1: (p

1

, . . . , pn) Uniform(R, n)
2: for i 1, . . . , n do

3: Pi  Discretize(⇤(pi))

4: for k  1, . . . ,m do . number of parameters
5: R̄k  ;
6: (p

1k
, . . . , pnk

) sort((p
1

, . . . , pn), k)

7: l lk
8: for i 1, . . . , n� 1 do

9: if Pik
6= P

(i+1)k
then

10: u 
⇣
p
1k

(k) + p
(i+1)k

(k)
⌘
/2

11: R̄k  R̄k [ {[l, u]}
12: l u
13: R̄k  R̄k [ {[l, uk]}
14: R̄ ⇥m

k=1

R̄k

15: if |R̄| = 1 then

16: R̄ ⇥m

k=1

{[lk, (lk + uk) /2], [(lk + uk) /2, uk]}

Fig. 4. Sampling-guided refinement of parameter space in threshold synthesis

standard model checking) and on finding a partition that sets apart sampled pa-
rameters with probabilities that satisfy and violate the threshold � r. In partic-
ular, we identify the following groups of probability values (procedure Discretize,
line 3): {[0, r� �), [r� �, r), [r, r+ �), [r+ �, 1]}, where � > 0 is a tolerance value
that helps in identifying regions close to the threshold. Ideally, a parameter re-
gion whose samples all have probabilities in the interval [0, r � �) is very likely
to lie below the threshold r, and therefore to be in the F -set, while a region with
sampled probabilities in [r + �, 1] is expected to be in the T -set. Regions whose
sampled probabilities are close to the threshold are more likely to be further
decomposed. Then, for each parameter, a splitting point is placed between each
pair of consecutive samples located in di↵erent probability groups (lines 10-14).
This requires processing each parameter individually, and sorting the samples in
ascending order (lines 5-17). If the resulting decomposition has only one element,
meaning that no splitting points were found with sampling, standard bisection
is applied (lines 19-21).

5.2 Max Synthesis

Algorithm 3 is used to solve the max synthesis problem, which returns the set
T containing the parameter valuations that maximize � = P=?[�] and the set
F not yielding the maximum value of �. Let R be a partition of T . For each
subspace R 2 R, the algorithm computes bounds ⇤R

min and ⇤R
max on the maximal

and minimal probability that CR satisfies � (line 5). The algorithm then rules
out subspaces that are guaranteed to be included in F , by deriving an under-
approximation (MLB) to the maximum satisfaction probability (line 7). If ⇤R

max

is below the under-approximation, the subspace R can be safely added to the
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Algorithm 3 Max Synthesis
Require: pCTMC CP over parameter space P, CSL

formula � = P
=?

[�] and probability tolerance ✏ > 0

Ensure: ⇤?, ⇤>, T and F as in Problem 2
1: F  ;, T  P
2: repeat

3: R decompose(T ), T  ;
4: for each R 2 R do

5: (⇤R
min

, ⇤R
max

) computeBounds(CR,�)

6: MLB getMaximalLowerBound(R)
7: for each R 2 R do

8: if ⇤R
max

< MLB then

9: F  F [R
10: else

11: T  T [R
12: ⇤?  min{⇤R

min

| R 2 T}
13: ⇤>  max{⇤R

max

| R 2 T}
14: until ⇤> � ⇤? < ✏

�

�

Fig. 5. Refinement in max synthesis. The two outermost regions (in red) cannot contain
the maximum, as their upper bound is below the maximum lower bound (MLB) found
at region R. The maximum lower bound is improved by sampling several points p 2 R
and taking the highest value (MLB) of the satisfaction function ⇤(p). The yellow area
highlights the improvement.

set F (line 9). Otherwise, it is added to the set T . The bound MLB is derived as
follows. In the naive approach, the algorithm uses the maximum over the least
bounds in the partition of T , that is, MLB = max{⇤R

min | R 2 R}. Let R be the
region with highest lower bound. The sampling-based approach improves on this
by sampling a set of parameters {p1, p2, . . .} ✓ R and taking the highest value
of ⇤(p), that is, MLB = max {⇤(pi) | pi 2 {p1, p2, . . .}}. Although regular CSL
model checking is nearly as expensive as the computation of the bounds for a
pCTMC, the bound obtained by the sampling method excludes more boxes (see
Figure 5), which in turn leads to fewer refinements in the next iteration.

We perform additional checks (not reported in Algorithm 3), using volume
tolerance ", for detecting and discarding regions containing points of jump dis-
continuity that might prevent the algorithm from reaching the target accuracy
and thus from terminating. In particular, each subspace R included in the region
T with volume vol(R) < " that does not satisfy the probability tolerance ✏ (i.e.
⇤R
max � ⇤R

min � ✏) is labelled as a possible jump discontinuity. Such subspaces
are reported and discarded from the termination condition (line 12 and 13 in
Algorithm 3).

Algorithm 4 illustrates a version of the procedure getMaximalLowerBound in
Algorithm 3, enhanced with sampling of probability values. This procedure com-
putes an under-approximation to the maximum probability value, given as input
a parameter decomposition R that contains the regions left to analyse. This algo-
rithm firstly identifies the region R having the highest lower probability bound
(line 1 of Algorithm 4). This value provides an under-approximation to the max-
imum probability, and is the best value obtainable using only the computation of
lower and upper bounds. Then, the under-approximation is refined by sampling
a number of points in R and by taking the maximum probability (computed
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Algorithm 4 Sampling-guided computation of a maximal lower bound
Require: Parameter decomposition R and number of samples n
Ensure: MLB, an improved lower bound for max probability in R
1: R = argmaxR2R ⇤

R
min

2: (p
1

, . . . , pn) Uniform(R, n)
3: MLB maxpi ⇤(pi)

through standard model checking) among those points (lines 2-3). Indeed, the
strategy of sampling probability values in R ensures that we can compute a
better under-approximation with respect to the lower probability bound in R,
taken as the best under-approximation when parameter sampling is not applied.

The overall time complexity of the synthesis algorithms is directly determined
by the number of subspaces that need to be analysed to obtain the desired
precision. This number depends on the number of unknown parameters, the
shape of the satisfaction function and the type of synthesis. In practice, the
algorithms scale exponentially in the number of parameters and linearly in the
volume of the parameter space.

6 Results

We demonstrate the applicability and e�ciency of the developed algorithms on
two case studies.

6.1 Epidemic model

The SIR model [17] describes the epidemic dynamics in a closed population
of susceptible (S), infected (I) and recovered (R) individuals. In the model, a
susceptible individual is infected after a contact with an infected individual with
rate ki. Infected individuals recover with rate kr, after which they are immune
to the infection. We can describe this process with the following biochemical

reaction model with mass action kinetics: i : S + I
ki�! I + I, r : I

kr�! R. We
represent the model as a pCTMC with ki and kr as parameters, and initial
populations S = 95, I = 5, R = 0. We consider the time-bounded CSL path
formula � = (I > 0)U [100,120](I = 0), specifying behaviour where the infection
lasts for at least 100 time units, and dies out before 120 time units. Model
parameters and the property are taken from [6], where the authors estimate the
satisfaction function for � following a Bayesian approach3.

Figure 6 and Table 1 illustrate the solutions for threshold synthesis problems
over one-dimensional parameter spaces (the top part of the figure, problems 1
and 2) and over a two-dimensional parameter space (the bottom part of the
figure, problem 3). As we can see, a significantly higher number of refinement
steps is required for parameter subspaces where the satisfaction function ⇤ is
close to the probability threshold r.

3 In [6], a linear-time specification equivalent to � is given.
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Fig. 6. Solution to threshold synthesis problems for P�0.1[(I > 0)U [100,120](I = 0)] (the
bottom part of the figure depicts two di↵erent visualizations of one solution). Volume
tolerance " = 10%.

Problem ki kr Runtime Subspaces
1. Threshold [0.005, 0.3] 0.05 42.2 s 23
2. Threshold 0.12 [0.005, 0.2] 26.7 s 15
3. Threshold [0.005, 0.3] [0.005, 0.2] 29.3 min 1320

Table 1. The computation of the synthesis problems for P�0.1[(I > 0)U [100,120](I = 0)]
using value tolerance " = 10%.

Figure 7 and Table 2 (problems 1-4) illustrate the solutions using sampling-
based refinement for max and min synthesis problems over one-dimensional pa-
rameter spaces. We report that, in order to meet the desired probability tol-
erance, problems 2 (Figure 7b) and 3 (Figure 7c) require a high number of
refinement steps due to two local extrema close to the minimizing region and a
bell-shaped ⇤ with the maximizing region at the top, respectively. Our precise
results for problem 1 (Figure 7a) improve on the estimation in [6], where in the
equivalent experiment the max probability is imprecisely registered at smaller
ki values.



14 Milan Češka et al.
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Fig. 7. Solution to max (a,c) and min (b,d) synthesis using sampling-based refinement
for P=?[(I > 0)U [100,120](I = 0)]. Probability tolerance ✏ = 1% (a,c) and ✏ = 0.1% (b,d).

Problem ki kr Runtime Subspaces ⇤⇤[%] T
1. Max [0.005, 0.3] 0.05 16.5 s 9 33.94 [0.267, 0.3]
2. Min [0.005, 0.3] 0.05 49.5 s 21 2.91 [0.005, 0.0054]
3. Max 0.12 [0.005, 0.2] 99.7 s 57 19.94 [0.071, 0.076]
4. Min 0.12 [0.005, 0.2] 10.4 s 5 0.005 [0.005, 0.026]
5. Max [0.005, 0.3] [0.005, 0.2] 3.6 h 5817 35.01 [0.217, 0.272]⇥[0.053, 0.059]
6. Max [0.005, 0.3] [0.005, 0.2] 6.2 h 10249 34.77 [0.209, 0.29]⇥[0.051, 0.061]

Table 2. The computation of the synthesis problems for P=?[(I > 0)U [100,120](I = 0)]
using probability tolerance ✏ = 1% (problems 1,3,5,6) and ✏ = 0.1% (problems 2,4).
The sampling-based refinement is used except for problem 5. The minimal bounding
box of T is reported in problems 5 and 6. ⇤⇤ denotes ⇤? (problems 1,3,5,6) and ⇤>

(problems 2,4).
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Fig. 8. Solutions to max synthesis with sampling-based refinement (a) and without
sampling (b) for P=?[(I > 0)U [100,120](I = 0)] using probability tolerance ✏ = 1%.

We also compare the solutions to the max synthesis problem over the two-
dimensional parameter space obtained by applying Algorithm 3 with sampling
(Figure 8a, problem 5 in Table 2) and without (Figure 8b, problem 6 in Table 2).
In the former case, a more precise T region is obtained (with a volume 2.04 times
smaller than in the approach without sampling), thus giving a more accurate ap-
proximation of the max probability. Sampling also allows us to rule out earlier
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those parameter regions that are outside the final solution, thus avoiding un-
necessary decompositions and improving the runtime (1.72 times faster than in
the approach without sampling). This is visible by the coarser approximations
of probabilities in the F region.

6.2 DNA walkers

We revisit models of a DNA walker, a man-made molecular motor that traverses
a track of anchorages and can take directions at junctions in the track [23], which
can be used to create circuits that evaluate Boolean functions. PRISM models
of the walker stepping behaviour were developed previously [10] based on rate
estimates in the experimental work. The walker model is modified here to allow
uncertainty in the stepping rate, and we consider its behaviour over a single-
junction circuit. Given a distance d between the walker-anchorage complex and
an uncut anchorage, and da being the distance between consecutive anchorages,
the stepping rate k is defined as:

k =

8
>>><

>>>:

ks when d  1.5da

c · ks/50 when 1.5da < d  2.5da

c · ks/100 when 2.5da < d  24nm

0 otherwise.

(8)

where the base stepping rate ks 2 [0.005, 0.020] is now defined as an interval,
as opposed to the original value of 0.009. We have also added factor c for steps
between anchorages that are not directly adjacent, but we will assume c = 1 for
now. The base stepping rate may depend on bu↵er conditions and temperature,
and we want to verify the robustness of the walker with respect to the uncertainty
in the value of ks.

We compute the minimal probability of the walker making it onto the cor-
rect final anchorage (min synthesis for the property P=?[F [T,T ] finish-correct])
and the maximum probability of the walker making it onto the incorrect an-
chorage (max synthesis for the property P=?[F [T,T ] finish-incorrect). We list the
probabilities at T = 15, 30, 45, 200 minutes in Table 3. For time T = 30, 45, 200,
we note that the walker is robust, as the minimal guaranteed probability for
the correct outcome is greater than the maximum possible probability for the
incorrect outcome. For time T = 15 this is not the case. We also consider a
property that provides bounds on the ratio between the walker finishing on
the correct versus the incorrect anchorage. The rates c · ks/50 and c · ks/100
correspond to the walker stepping onto anchorages that are not directly ad-
jacent, which a↵ects the probability for the walker to end up on the unin-
tended final anchorage. For higher values of c, we expect the walker to end
up in the unintended final anchorage more often. Now we add uncertainty on
the value of c, so that c 2 [0.25, 4], and define the performance related property
P�0.4[F [30,30] finish-correct] ^ P0.08[F [30,30] finish-incorrect], that is, the prob-
ability of the walker to make it onto the correct anchorage is at least 40% by
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Runtime Subspaces
Time bound Min. correct Max. incorrect ; Sampling ; Sampling
T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

Table 3. The computation of min-synthesis for P=?[F
[T,T ] finish-correct] and max-

synthesis for P=?[F
[T,T ] finish-incorrect] using ks 2 [0.005, 0.020], c = 1 and probability

tolerance ✏ = 1%. The runtime and subspaces are listed only for the min-synthesis (the
results for the max-synthesis are similar).
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Fig. 9. The computation and results of the threshold synthesis for di↵erent formulae,
using volume tolerance " = 10%. a) �1 = P�0.4[F

[30,30] finish-correct], runtime 443.5
s, 2692 subspaces. b) �2 = P0.08[F

[30,30] finish-incorrect], runtime 132.3 s, 807 sub-
spaces. c) �1^�2. d) P�0.8[F

[200,200] finish-correct]^P0.16[F
[200,200] finish-incorrect],

runtime 12.3 h, 47229 subspaces.

time T = 30 min, while the probability for it to make it onto the incorrect an-
chorage is no greater than 8%. In other words, we require a correct signal of at
least 40% and a correct-to-incorrect ratio of at least 5 by time T = 30 min. We
define a similar property at time T = 200 min, this time requiring a signal of at
least 80%: P�0.8[F [200,200] finish-correct]^P0.16[F [200,200] finish-incorrect]. The
synthesized ranges of ks and c where the properties hold are shown in Figure 9.

7 Conclusion

We have developed e�cient algorithms for synthesising rate parameters for bio-
chemical networks so that a given reliability or performance requirement, ex-
pressed as a time-bounded CSL formula, is guaranteed to be satisfied. The tech-
niques are based on the computation of lower and upper probability bounds
of [7] in conjunction with region refinement and sampling. The high computa-
tional costs observed in our case studies can be reduced by parallel processing of
individual subspaces, or by utilizing advanced uniformisation techniques [20, 9].
We plan to include the synthesis algorithms in the param module of the PRISM
model checker [8, 19].
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