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Course overview 

•  5 lectures: Mon-Fri, 11am-12.30pm 

−  Introduction 
−  1 – Discrete time Markov chains 
−  2 – Markov decision processes 
−  3 – Continuous-time Markov chains 
−  4 – Probabilistic model checking in practice 
−  5 – Probabilistic timed automata 

•  Course materials available here: 
−  http://www.prismmodelchecker.org/lectures/esslli10/ 
−  lecture slides, reference list 



Probabilistic model checking 
in practice 

Part 4 
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Overview (Part 4) 

•  Tool support for probabilistic model checking 
−  motivation, existing tools 

•  The PRISM model checker 
−  functionality, features 
−  modelling language & property specification 
−  PRISM demonstration 

•  Probabilistic counterexamples 
−  (smallest) counterexamples for PCTL + DTMCs 

•  Probabilistic bisimulation 
−  bisimulation equivalences for DTMCs, CTMCs + minimisation 
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Motivation 

•  Complexity of PCTL model checking 
−  generally polynomial in model size (number of states) 

•  State space explosion problem 
−  models for realistic case studies are typically huge 

•  Clearly tool support is required 

•  Benefits: 
−  fully automated process 
−  high-level languages/formalisms for building models 
−  visualisation of quantitative results 
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Tools - Probabilistic model checkers 

•  PRISM (Probabilistic Symbolic Model Checker) 
−  DTMCs, MDPs, CTMCs + rewards, [Birmingham/Oxford] 

•  MRMC (Markov Reward Model Checker) 
−  DTMCs, CTMCs + reward extensions, [Twente/Aachen] 

•  LiQuor: LTL model checking for MDPs, Probmela language 
(probabilistic version of SPIN’s Promela), [Dresden] 

•  Simulation-based probabilistic model checking: 
−  APMC, Ymer (both based on PRISM language), VESTA 

•  Many other related tools/prototypes 
−  RAPTURE, CADP, Möbius, APNN-Toolbox, SMART, GreatSPN, 

GRIP, CASPA, Premo, PASS, … 
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The PRISM tool 

•  PRISM: Probabilistic symbolic model checker 
−  developed at Birmingham/Oxford University, since 1999 
−  free, open source (GPL) 
−  versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs 

•  Modelling of: 
−  DTMCs, CTMCs, MDPs  +  costs/rewards 

•  Model checking of: 
−  PCTL, CSL, LTL, PCTL*  +  extensions  +  costs/rewards 
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PRISM functionality 

•  High-level modelling language 
•  Wide range of model analysis methods 

−  efficient symbolic implementation techniques 
−  also: approximate verification using simulation + sampling 

•  Graphical user interface 
−  model/property editor 
−  discrete-event simulator - model traces for debugging, etc. 
−  easy automation of verification experiments 
−  graphical visualisation of results 

•  Command-line version 
−  same underlying verification engines 
−  useful for scripting, batch jobs 
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Modelling languages/formalisms 

•  Many high-level modelling languages, formalisms available 

•  For example: 
−  probabilistic/stochastic process algebras 
−  stochastic Petri nets 
−  stochastic activity networks 

•  Custom languages for tools, e.g.: 
−  PRISM modelling language 
−  Probmela (probabilistic variant of Promela, the input language 

for the model checker SPIN) - used in LiQuor 
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PRISM modelling language 

•  Simple, textual, state-based language 
−  modelling of DTMCs, CTMCs and MDPs 
−  based on Reactive Modules [AH99] 

•  Basic components… 
•  Modules: 

−  components of system being modelled 
−  composed in parallel 

•  Variables 
−  finite (integer ranges or Booleans) 
−  local or global 
−  all variables public: anyone can read, only owner can modify 
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PRISM modelling language 

•  Guarded commands 
−  describe behaviour of each module 
−  i.e. the changes in state that can occur 
−  labelled with probabilities (or, for CTMCs, rates) 
−  (optional) action labels 

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4); 

action guard probability update probability update 
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PRISM modelling language 

•  Parallel composition 
−  model multiple components that can execute independently 
−  for DTMC models, mostly assume components operate 

synchronously, i.e. move in lock-step 

•  Synchronisation 
−  simultaneous transitions in more than one module 
−  guarded commands with matching action-labels 
−  probability of combined transition is product of individual 

probabilities for each component 

•  More complex parallel compositions can be defined 
−  using process-algebraic operators 
−  other types of parallel composition, action hiding/renaming 
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Simple example 

module M1 
    x : [0..3] init 0; 
    [a] x=0 -> (x’=1); 
    [b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3); 
endmodule 

module M2 
    y : [0..3] init 0; 
    [a] y=0 -> (y’=1); 
    [b] y=1 -> 0.4:(y’=2) + 0.6:(y’=3); 
endmodule 
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Example: Leader election 

•  Randomised leader election protocol 
−  due to Itai & Rodeh (1990) 

•  Set-up: N nodes, connected in a ring 
−  communication is synchronous (lock-step) 

•  Aim: elect a leader 
−  i.e. one uniquely designated node 
−  by passing messages around the ring 

•  Protocol operates in rounds. In each round: 
−  each node choose a (uniformly) random id ∈ {0,…,k-1} 
−  (k is a parameter of the protocol) 
−  all nodes pass their id around the ring 
−  if there is maximum unique id, node with this id is the leader 
−  if not, try again with a new round 



15 

PRISM code 
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PRISM property specifications 

•  Based on (probabilistic extensions of) temporal logic 
−  incorporates PCTL, CSL, LTL, PCTL* 
−  also includes: quantitative extensions, costs/rewards 

•  Leader election properties 
−  P≥1 [ F elected ] 

•  with probability 1, a leader is eventually elected 
−  P>0.8 [ F≤k elected ] 

•  with probability greater than 0.8, a leader is elected within k steps 

•  Usually focus on quantitative properties: 
−  P=? [ F≤k elected ] 

•  what is the probability that a leader is elected within k steps? 
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PRISM property specifications 

•  Best/worst-case scenarios  
−  combining “quantitative” and “exhaustive” aspects 

•  e.g. computing values for a range of states… 

•  P=? [ F≤t elected {tokens≤k}{min} ] -  
−  “minimum probability of the leader election algorithm 

completing within t steps from any state where there are at 
most k tokens” 

•  R=? [ F end {“init”}{max} ] -  
−  “maximum expected run-time over all possible initial 

configurations” 
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PRISM property specifications 

•  Experiments: 
−  ranges of model/property parameters 
−  e.g. P=? [ F≤T error ] for N=1..5, T=1..100 

 where N is some model parameter and T a time bound 
−  identify patterns, trends, anomalies in quantitative results 
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PRISM… 
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More info on PRISM 

•  PRISM website: http://www.prismmodelchecker.org/  

−  tool download: binaries, source code (GPL) 
−  example repository (50+ case studies) 
−  on-line PRISM manual 
−  support: help forum, bug tracking, feature requests    
−  related publications, talks, tutorials, links 

•  Tutorial: http://www.prismmodelchecker.org/tutorial/  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Overview (Part 4) 

•  Tool support for probabilistic model checking 
−  motivation, existing tools 

•  The PRISM model checker 
−  functionality, features 
−  modelling language & property specification 
−  PRISM demonstration 

•  Probabilistic counterexamples 
−  (smallest) counterexamples for PCTL + DTMCs 

•  Probabilistic bisimulation 
−  bisimulation equivalences for DTMCs, CTMCs + minimisation 
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Non probabilistic counterexamples 

•  Counterexamples (for non-probabilistic model checking) 
−  generated when model checking a (universal) property fails 
−  trace through model illustrating why property does not hold 
−  major advantage of the model checking approach 
−  bug finding vs. verification 

•  Example: 
−  CTL property AG ¬err 
−  (or equivalently, ¬EF err) 
−  (“an error state is never reached”) 
−  counterexample is a finite trace  

to a state satisfying err 
−  alternatively, this is a witness 

to the satisfaction of formula EF err 

{err} 
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Counterexamples for DTMCs? 

•  PCTL example: P<0.01 [ F err ] 
−  “the probability of reaching an error state is less than 0.01” 
−  what is a counterexample for s ⊭ P<0.01 [ F err ] ? 
−  not necessarily illustrated by a single trace to an err state 
−  in fact, “counterexample” is a set of paths satisfying F err 

whose combined measure is greater than or equal to 0.01 

•  Alternative approach seen so far: 
−  probabilistic model checker provides actual probabilities 
−  e.g. queries of the form P=? [ F err ] 
−  anomalous behaviour identified by examining trends 
−  e.g. P=? [ F≤T err ] for T=0,…,100 

•  This lecture: DTMC counterexamples in style of [HK07] 
−  also some work done on CTMC/MDP counterexamples 
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DTMC notation 

•  DTMC: D = (S,sinit,P,L) 
•  Path(s) = set of all infinite paths starting in state s 
•  Prs : ΣPath(s) → [0,1] = probability measure over infinite paths 

−  where ΣPath(s) is the σ-algebra on Path(s) 
−  defined in terms of probabilities for finite paths 

•  Ps(ω) = probability for finite path ω = ss1…sn 
−  Ps(s) = 1 
−  Ps(ss1…sn) = P(s,s1) · P(s1,s2) · … · P(sn-1,sn) 
−  extend notation to sets: Ps(C) for set of finite paths C 
−  Ps extends uniquely to Prs 

•  Path(s, ψ) = { ω ∈ Path(s) | ω ⊨ ψ } 
−  Prob(s, ψ) = Prs(Path(s, ψ)) 

•  Pathfin(s, ψ) = set of finite paths from s satisfying ψ 
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Counterexamples for DTMCs 

•  Consider PCTL properties of the form: 
−  P≤p [ Φ1 U≤k Φ2 ],  where k ∈ ℕ ∪ {∞} 
−  i.e. bounded or unbounded until formulae with closed upper 

probability bounds 

•  Refutation: 
−  s ⊭ P≤p [ Φ1 U≤k Φ2 ] 
− ⇔ Prob(s, [ Φ1 U≤k Φ2 ]) > p 
− ⇔ Prs(Path(s, Φ1 U≤k Φ2)) > p 
−  i.e. total probability mass of Φ1 U≤k Φ2 paths exceeds p 

•  Since the property is an until formula 
−  this is evidenced by a set of finite paths 
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Counterexamples for DTMCs 

•  A counterexample for P≤p [ Φ1 U≤k Φ2 ] in state s is: 
−  a set C of finite paths such that C ⊆ Pathfin(s, ψ) and Ps(C) > p 

•  Example 
−  Consider the PCTL formula: 
−  P≤0.3 [ F a ] 
−  This is not satisfied in s0 
−  Prob(s0, F a) = 1/4+1/8+1/16+… = 1/2 
−  A counterexample: C = { s0s2, s0s0s2 } 
−  Ps0(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375 

s1 

1/2 

1 

1/4 

1 

{a} 

s0 

s2 

1/4 
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Finiteness of counterexamples 

•  There is always a finite counterexample for: 
−  s ⊭ P≤p [ Φ1 U≤k Φ2 ] 

•  On the other hand, consider this DTMC: 
−  and the PCTL formula: 
−  P<1/2 [ F a ] 

−  Prob(s0, F a) = 1/4+1/8+1/16+… 
                    = 1/2 

−  s0 ⊭ P<1/2 [ F a ] 

−  counterexample would require infinite set of paths 
−  { (s0)is2 }i∈ℕ 

s1 

1/2 

1 

1/4 

1 

{a} 

s0 

s2 

1/4 
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Counterexamples for DTMCs 

•  Aim: counterexamples should be succinct, comprehensible 

•  Set of all counterexamples: 
−  CXp(s,ψ) = set of all counterexamples for P≤p [ψ] in state s 

•  Minimal counterexample 
−  counterexample C with |C| ≤ |C’| for all C’ ∈ CXp(s,ψ) 

•  “Smallest” counterexample 
−  minimal counterexample C with P(C) ≥ P(C’)  

for all minimal C’ ∈ CXp(s,ψ) 
•  Strongest (most probable) evidence 

−  finite path ω in Pathfin(s, ψ) such that P(ω) ≥ P(ω’)  
for all ω’ ∈ Pathfin(s, ψ) 

−  i.e. contributes most to violation of PCTL formula 
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Example 

•  PCTL formula: P≤1/2 [ F b ] 
−  s0 ⊭ P≤1/2 [ F b ] 
−  since Prob(s0, F b) = 0.9 

•  Counterexamples: 
−  C1 = { s0s1s2, s0s1s4s2, s0s1s4s5, s0s4s2 } 

•  Ps0(C1) = 0.2+0.2+0.12+0.15 = 0.67      (not minimal) 
−  C2 = { s0s1s2, s0s1s4s2, s0s1s4s5 } 

•  Ps0(C2) = 0.2+0.2+0.12 = 0.52      (not “smallest”) 
−  C3 = { s0s1s2, s0s1s4s2, s0s4s2 } 

•  Ps0(C3) = 0.2+0.2+0.15 = 0.55 

{b} 
1/3 

1 1 

s0 s1 s2 

s3 s4 s5 

0.6 

0.3 0.1 

0.2 

0.3 

0.3 
0.7 

0.5 
2/3 

{b} 
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Weighted digraphs 

•  A weighted directed graph is a tuple G = (V, E, w) where: 
−  V is a set of vertices 
−  E ⊆ V × V is a set of edges 
−  w : E → ℝ≥0 is a weight function 

•  Finite path ω in G 
−  is a sequence of vertices v0v1v2…vn such that (vi,vi+1)∈E ∀i≥0 
−  the distance of ω =  v0v1v2…vn is: Σi=0…n-1 w(vi,vi+1) 

•  Shortest path problem 
−  given a weighted digraph, find a path between two vertices v1 

and v2 with the smallest distance 
−  i.e. a path ω s.t. d(ω) ≤ d(ω’) for all other such paths ω’ 



31 

Finding strongest evidences 

•  Reduction to graph problem… 
•  Step 1: Adapt the DTMC 

−  make states satisfying ¬Φ1∧ ¬Φ2 absorbing 
•  (i.e. replace all outgoing transitions with a single self-loop) 

−  add an extra state t and replace all transitions from any Φ2 
state with a single transition to t (with probability 1) 

•  Step 2: Convert new DTMC into a weighted digraph 
−  for the (adapted) DTMC D = (S,sinit,P,L): 
−  corresponding graph is GD = (V, E, w) where: 
−  V = S and E = { (s,s’)∈S×S | P(s,s’)>0 } 
−  w(s,s’) = log(1/P(s,s’)) 

•  Key idea: for any two paths ω and ω’ in D (and in GD) 
−  Ps(ω’) ≥ Ps{ω} if and only if d(ω’) ≤ d(ω) 
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Example… 

•  PCTL formula: P≤1/2 [ F b ] 

log(3) 

log(1) 

s0 s1 s2 

s3 s4 s5 

log(5/3) 

log 
(10/3) 

log(10) 

log(5) 

log 
(10/3) 

log 
(2) log 

(3/2) t 
1 

1 
1 

{b} 
1/3 

1 1 

s0 s1 s2 

s3 s4 s5 

0.6 

0.3 0.1 

0.2 

0.3 

0.3 
0.7 

0.5 
2/3 

{b} 

DTMC 

weighted digraph 
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Finding strongest evidences 

•  To find strongest evidence in DTMC D 
−  analyse corresponding digraph 

•  For unbounded until formula P≤p [ Φ1 U Φ2 ] 
−  solve shortest path problem in digraph (target t) 
−  polynomial time algorithms exist 

•  e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V|·log|V|) 
•  For bounded until formula P≤p [ Φ1 U≤k Φ2 ] 

−  solve special case of the constrained shortest path problem  
−  also solvable in polynomial time 

•  Generation of smallest counterexamples 
−  based on computation of k shortest paths 
−  k can be computed on the fly 
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Other cases 

•  Lower bounds on probabilities 
−  i.e. s ⊭ P≥p [ Φ1 U≤k Φ2 ] 
−  negate until formula to reverse probability bound 
−  solvable with BSCC computation + probabilistic reachability 
−  for details, see [HK07] 

•  Continuous-time Markov chains 
−  these techniques can be extended to CTMCs and CSL [HK07b] 
−  naïve approach: apply DTMC techniques to uniformised DTMC 
−  modifications required to get smaller counterexamples 
−  another possibility: directed search based techniques [AHL05] 
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Overview (Part 4) 

•  Tool support for probabilistic model checking 
−  motivation, existing tools 

•  The PRISM model checker 
−  functionality, features 
−  modelling language & property specification 
−  PRISM demonstration 

•  Probabilistic counterexamples 
−  (smallest) counterexamples for PCTL + DTMCs 

•  Probabilistic bisimulation 
−  bisimulation equivalences for DTMCs, CTMCs + minimisation 
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Bisimulation 

•  Identifies models with the same branching structure 
−  i.e. the same stepwise behaviour 
−  each model can simulate the actions of the other 
−  guarantees that models satisfy many of the same properties 

•  Uses of bisimulation: 
−  show equivalence between a model and its specification 
−  state space reduction: bisimulation minimisation 

•  Formally, bisimulation is an equivalence relation over states 
−  bisimilar states must have identical labelling 

and identical stepwise behaviour 
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Bisimulation on DTMCs 

•  Consider a DTMC D = (S,sinit,P,L) 

•  Some notation: 
−  P(s,T) = Σs’∈T P(s,s’) for T ⊆ S 

•  An equivalence relation R on S is a probabilistic 
bisimulation on D if and only if for all s1 R s2: 
−  L(s1) = L(s2) 
−  P(s1, T) = P(s2, T) for all T ∈ S/R  (i.e. for all equivalence classes of R) 

•  States s1 and s2 are bisimulation-equivalent (or bisimilar) 
−  if there exists a probabilistic bisimulation R on D with s1 R s2 
−  denoted s1 ~ s2 
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Simple example 

•  Bisimulation relation ~ 

•  Quotient of S under ~ 
−  denoted S/~ 
−  { {s1}, {u1, u2}, {v1, v2} } 

•  Bisimilar states: 
−  u1 ~ u2 

−  v1 ~ v2 u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 
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Bisimulation on DTMCs 

•  Bisimulation between DTMCs D1 and D2 
−  D1 ~ D2 if they have bisimilar initial states 

•  Formally: 
−  state labellings for D1 and D2 over same set of atomic prop.s 
−  bisimulation relation is over disjoint union of D1 and D2 

u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 

u 1 v 

s 

{b} {a} 

1 

2/3 1/3 

1 

D1 D2 
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Simple example 

•  Bisimilar states:                Bisimilar DTMCs: D1 ~ D2 
−  u1 ~ u2 ~ u 

−  v1 ~ v2 ~ v 
−  s1 ~ s 

u2 u1 1 

{b} {a} 

v1 v2 

1 

2/3 

s1 

1/3 

{b} 
{a} 

1 1 

1/2 1/6 
1/6 1/6 

u 1 v 

s 

{b} {a} 

1 

2/3 1/3 

1 

D1 D2 
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Quotient DTMC 

•  For a DTMC D = (S,sinit,P,L) and probabilistic bisimulation ~ 

•  Quotient DTMC is 
−  D/~ = (S’,s’init,P’,L’) 

•  where: 
−  S’ = S/~ = { [s]~ | s ∈ S } 
−  s’init = [sinit]~ 
−  P’([s]~, [s’]~) = P(s, [s’]~) 
−  L’([s]~) = L(s) 

[u]~ 1 

[s]~ 

{b} {a} 

1 

2/3 1/3 

1 

[v]~ 

well defined since 
bisimulation ensures 

P(s, [s’]~) same for all s in [s]~ 
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Bisimulation and PCTL 

•  Probabilistic bisimulation preserves all PCTL formulae 

•  For all states s and s’:  

s ~ s’ 
⇔ 

for all PCTL formulae Φ, s ⊨ Φ if and only if s’ ⊨ Φ 

•  Note also: 
−  every pair of non-bisimilar states can be distinguished with 

some PCTL formula 
−  ~ is the coarsest relation with this property 
−  in fact, bisimulation also preserves all PCTL* formulae 
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CTMC bisimulation 

•  Check equivalence of rates, not probabilities… 

•  An equivalence relation R on S is a probabilistic 
bisimulation on CTMC C=(S,sinit,R,L)  
if and only if for all s1 R s2: 
−  L(s1) = L(s2) 
−  R(s1, T) = R (s2, T) for all classes T in S/R 

•  Alternatively, check: 
−  L(s1) = L(s2), Pemb(C)(s1, T) = Pemb(C)(s2, T), E(s1) = E(s2) 

•  Bisimulation on CTMCs preserves CSL 
−  (see [BHHK03] and also [DP03]) 
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Bisimulation minimisation 

•  More efficient to perform PCTL/CSL model checking on the 
quotient DTMC/CTMC 
−  assuming quotient model can be constructed efficiently 
−  (see [KKZJ07] for experimental results on this) 

•  Bisimulation minimisation 
−  algorithm to construct quotient model 
−  based on partition refinement 
−  repeated splitting of an initially coarse partition 
−  final partition is coarsest bisimulation wrt. initial partition 
−  (optimisations/variants possible by changing initial partition) 
−  complexity: O(|P|·log|S| + |AP|·|S|) [DHS’03] 

•  assuming suitable data structure used (splay trees) 
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Bisimulation minimisation 

•  1. Start with initial partition 
−  say Π = { { s∈S | a∈L(s) } | a∈AP } 

•  2. Find a splitter T ∈ Π for some block B ∈ Π 
−  a splitter T is a block such that probability of going to T 

differs for some states in block B 
−  i.e. ∃s,s’∈B . P(s,T) ≠ P(s’,T) 

•  3. Split B into sub-blocks 
−  such that P(s,T) is the same for all states in each sub-block 

•  4. Repeat steps 2/3 until no more splitters exist 
−  i.e. no change to partition Π 

replace P with R 
for CTMCs 
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CTMC example 

•  Consider model checking P~p [ F[0,t] a ] on this CTMC: 

Minimisation: 

Π0: B1={s0,s1,s2,s3,s4,s5}, B2={s6} 
B2 is a splitter for B1 

(since e.g. R(s1,B2)=0≠2=R(s2,B2)) 
Π1: B1={s0,s1,s4,s5}, B2={s6}, B3={s2,s3} 
B3 is a splitter for B1 

(since e.g. R(s1,B3)=0≠4=R(s0,B3)) 
Π2: B1={s1,s5}, B2={s6}, B3={s2,s3}, B4={s0,s4} 
No more splitters… 

S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} } 

s1 s0 1 s2 s3 

2 

{a} s5 s4 s6 

2 

2.5 
1.5 

4 

3.5 
1 

1 2 

5.5 

5 

6 
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CTMC example… 

C S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} } 

C/~ 

s0,s4 1 s6 

{a} 
2 

4 

1 
5.5 

s1,s5 s2,s3 
11 

ProbC(s, F[0,t] a)  =  ProbC/~({s0,s4}, F[0,t] a) 

s1 s0 1 s2 s3 

2 

{a} s5 s4 s6 

2 

2.5 
1.5 

4 

3.5 
1 

1 2 

5.5 

5 

6 
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Summary 

•  PRISM: Probabilistic model checker 
−  for DTMCs, MDPs, CTMCs, … 
−  high-level modelling language, property specifications 
−  graphical user interface 

•  Counterexamples 
−  essential ingredient of non-probabilistic model checking 
−  for PCTL + DTMCs, need set of finite paths/evidences 
−  computation: reduction to well-known graph problems 

•  Bisimulation 
−  relates states/Markov chains with identical labelling 

and identical stepwise behaviour, preserves PCTL, CSL, … 
−  minimisation: automated construction of quotient model 

•  Tomorrow: probabilistic timed automata (PTAs) 


