
ESSLLI’10 Summer School, Copenhagen, August 2010

2

Course overview

•  5 lectures: Mon-Fri, 11am-12.30pm

−  Introduction
−  1 – Discrete time Markov chains
−  2 – Markov decision processes
−  3 – Continuous-time Markov chains
−  4 – Probabilistic model checking in practice
−  5 – Probabilistic timed automata

•  Course materials available here:
−  http://www.prismmodelchecker.org/lectures/esslli10/
−  lecture slides, reference list

Probabilistic model checking
in practice

Part 4

4

Overview (Part 4)

•  Tool support for probabilistic model checking
−  motivation, existing tools

•  The PRISM model checker
−  functionality, features
−  modelling language & property specification
−  PRISM demonstration

•  Probabilistic counterexamples
−  (smallest) counterexamples for PCTL + DTMCs

•  Probabilistic bisimulation
−  bisimulation equivalences for DTMCs, CTMCs + minimisation

5

Motivation

•  Complexity of PCTL model checking
−  generally polynomial in model size (number of states)

•  State space explosion problem
−  models for realistic case studies are typically huge

•  Clearly tool support is required

•  Benefits:
−  fully automated process
−  high-level languages/formalisms for building models
−  visualisation of quantitative results

6

Tools - Probabilistic model checkers

•  PRISM (Probabilistic Symbolic Model Checker)
−  DTMCs, MDPs, CTMCs + rewards, [Birmingham/Oxford]

•  MRMC (Markov Reward Model Checker)
−  DTMCs, CTMCs + reward extensions, [Twente/Aachen]

•  LiQuor: LTL model checking for MDPs, Probmela language
(probabilistic version of SPIN’s Promela), [Dresden]

•  Simulation-based probabilistic model checking:
−  APMC, Ymer (both based on PRISM language), VESTA

•  Many other related tools/prototypes
−  RAPTURE, CADP, Möbius, APNN-Toolbox, SMART, GreatSPN,

GRIP, CASPA, Premo, PASS, …

7

The PRISM tool

•  PRISM: Probabilistic symbolic model checker
−  developed at Birmingham/Oxford University, since 1999
−  free, open source (GPL)
−  versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

•  Modelling of:
−  DTMCs, CTMCs, MDPs + costs/rewards

•  Model checking of:
−  PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

8

PRISM functionality

•  High-level modelling language
•  Wide range of model analysis methods

−  efficient symbolic implementation techniques
−  also: approximate verification using simulation + sampling

•  Graphical user interface
−  model/property editor
−  discrete-event simulator - model traces for debugging, etc.
−  easy automation of verification experiments
−  graphical visualisation of results

•  Command-line version
−  same underlying verification engines
−  useful for scripting, batch jobs

9

Modelling languages/formalisms

•  Many high-level modelling languages, formalisms available

•  For example:
−  probabilistic/stochastic process algebras
−  stochastic Petri nets
−  stochastic activity networks

•  Custom languages for tools, e.g.:
−  PRISM modelling language
−  Probmela (probabilistic variant of Promela, the input language

for the model checker SPIN) - used in LiQuor

10

PRISM modelling language

•  Simple, textual, state-based language
−  modelling of DTMCs, CTMCs and MDPs
−  based on Reactive Modules [AH99]

•  Basic components…
•  Modules:

−  components of system being modelled
−  composed in parallel

•  Variables
−  finite (integer ranges or Booleans)
−  local or global
−  all variables public: anyone can read, only owner can modify

11

PRISM modelling language

•  Guarded commands
−  describe behaviour of each module
−  i.e. the changes in state that can occur
−  labelled with probabilities (or, for CTMCs, rates)
−  (optional) action labels

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

12

PRISM modelling language

•  Parallel composition
−  model multiple components that can execute independently
−  for DTMC models, mostly assume components operate

synchronously, i.e. move in lock-step

•  Synchronisation
−  simultaneous transitions in more than one module
−  guarded commands with matching action-labels
−  probability of combined transition is product of individual

probabilities for each component

•  More complex parallel compositions can be defined
−  using process-algebraic operators
−  other types of parallel composition, action hiding/renaming

13

Simple example

module M1
 x : [0..3] init 0;
 [a] x=0 -> (x’=1);
 [b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3);
endmodule

module M2
 y : [0..3] init 0;
 [a] y=0 -> (y’=1);
 [b] y=1 -> 0.4:(y’=2) + 0.6:(y’=3);
endmodule

14

Example: Leader election

•  Randomised leader election protocol
−  due to Itai & Rodeh (1990)

•  Set-up: N nodes, connected in a ring
−  communication is synchronous (lock-step)

•  Aim: elect a leader
−  i.e. one uniquely designated node
−  by passing messages around the ring

•  Protocol operates in rounds. In each round:
−  each node choose a (uniformly) random id ∈ {0,…,k-1}
−  (k is a parameter of the protocol)
−  all nodes pass their id around the ring
−  if there is maximum unique id, node with this id is the leader
−  if not, try again with a new round

15

PRISM code

16

PRISM property specifications

•  Based on (probabilistic extensions of) temporal logic
−  incorporates PCTL, CSL, LTL, PCTL*
−  also includes: quantitative extensions, costs/rewards 

•  Leader election properties
−  P≥1 [F elected]

•  with probability 1, a leader is eventually elected
−  P>0.8 [F≤k elected]

•  with probability greater than 0.8, a leader is elected within k steps 

•  Usually focus on quantitative properties:
−  P=? [F≤k elected]

•  what is the probability that a leader is elected within k steps?

17

PRISM property specifications

•  Best/worst-case scenarios
−  combining “quantitative” and “exhaustive” aspects

•  e.g. computing values for a range of states…

•  P=? [F≤t elected {tokens≤k}{min}] -
−  “minimum probability of the leader election algorithm

completing within t steps from any state where there are at
most k tokens”

•  R=? [F end {“init”}{max}] -
−  “maximum expected run-time over all possible initial

configurations”

18

PRISM property specifications

•  Experiments:
−  ranges of model/property parameters
−  e.g. P=? [F≤T error] for N=1..5, T=1..100

 where N is some model parameter and T a time bound
−  identify patterns, trends, anomalies in quantitative results

19

PRISM…

20

More info on PRISM

•  PRISM website: http://www.prismmodelchecker.org/  

−  tool download: binaries, source code (GPL)
−  example repository (50+ case studies)
−  on-line PRISM manual
−  support: help forum, bug tracking, feature requests
−  related publications, talks, tutorials, links

•  Tutorial: http://www.prismmodelchecker.org/tutorial/  

21

Overview (Part 4)

•  Tool support for probabilistic model checking
−  motivation, existing tools

•  The PRISM model checker
−  functionality, features
−  modelling language & property specification
−  PRISM demonstration

•  Probabilistic counterexamples
−  (smallest) counterexamples for PCTL + DTMCs

•  Probabilistic bisimulation
−  bisimulation equivalences for DTMCs, CTMCs + minimisation

22

Non probabilistic counterexamples

•  Counterexamples (for non-probabilistic model checking)
−  generated when model checking a (universal) property fails
−  trace through model illustrating why property does not hold
−  major advantage of the model checking approach
−  bug finding vs. verification

•  Example:
−  CTL property AG ¬err
−  (or equivalently, ¬EF err)
−  (“an error state is never reached”)
−  counterexample is a finite trace  

to a state satisfying err
−  alternatively, this is a witness 

to the satisfaction of formula EF err

{err}

23

Counterexamples for DTMCs?

•  PCTL example: P<0.01 [F err]
−  “the probability of reaching an error state is less than 0.01”
−  what is a counterexample for s ⊭ P<0.01 [F err] ?
−  not necessarily illustrated by a single trace to an err state
−  in fact, “counterexample” is a set of paths satisfying F err

whose combined measure is greater than or equal to 0.01

•  Alternative approach seen so far:
−  probabilistic model checker provides actual probabilities
−  e.g. queries of the form P=? [F err]
−  anomalous behaviour identified by examining trends
−  e.g. P=? [F≤T err] for T=0,…,100

•  This lecture: DTMC counterexamples in style of [HK07]
−  also some work done on CTMC/MDP counterexamples

24

DTMC notation

•  DTMC: D = (S,sinit,P,L)
•  Path(s) = set of all infinite paths starting in state s
•  Prs : ΣPath(s) → [0,1] = probability measure over infinite paths

−  where ΣPath(s) is the σ-algebra on Path(s)
−  defined in terms of probabilities for finite paths

•  Ps(ω) = probability for finite path ω = ss1…sn
−  Ps(s) = 1
−  Ps(ss1…sn) = P(s,s1) · P(s1,s2) · … · P(sn-1,sn)
−  extend notation to sets: Ps(C) for set of finite paths C
−  Ps extends uniquely to Prs

•  Path(s, ψ) = { ω ∈ Path(s) | ω ⊨ ψ }
−  Prob(s, ψ) = Prs(Path(s, ψ))

•  Pathfin(s, ψ) = set of finite paths from s satisfying ψ

25

Counterexamples for DTMCs

•  Consider PCTL properties of the form:
−  P≤p [Φ1 U≤k Φ2], where k ∈ ℕ ∪ {∞}
−  i.e. bounded or unbounded until formulae with closed upper

probability bounds

•  Refutation:
−  s ⊭ P≤p [Φ1 U≤k Φ2]
− ⇔ Prob(s, [Φ1 U≤k Φ2]) > p
− ⇔ Prs(Path(s, Φ1 U≤k Φ2)) > p
−  i.e. total probability mass of Φ1 U≤k Φ2 paths exceeds p

•  Since the property is an until formula
−  this is evidenced by a set of finite paths

26

Counterexamples for DTMCs

•  A counterexample for P≤p [Φ1 U≤k Φ2] in state s is:
−  a set C of finite paths such that C ⊆ Pathfin(s, ψ) and Ps(C) > p

•  Example
−  Consider the PCTL formula:
−  P≤0.3 [F a]
−  This is not satisfied in s0
−  Prob(s0, F a) = 1/4+1/8+1/16+… = 1/2
−  A counterexample: C = { s0s2, s0s0s2 }
−  Ps0(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375

s1

1/2

1

1/4

1

{a}

s0

s2

1/4

27

Finiteness of counterexamples

•  There is always a finite counterexample for:
−  s ⊭ P≤p [Φ1 U≤k Φ2]

•  On the other hand, consider this DTMC:
−  and the PCTL formula:
−  P<1/2 [F a]

−  Prob(s0, F a) = 1/4+1/8+1/16+… 
 = 1/2

−  s0 ⊭ P<1/2 [F a]

−  counterexample would require infinite set of paths
−  { (s0)is2 }i∈ℕ

s1

1/2

1

1/4

1

{a}

s0

s2

1/4

28

Counterexamples for DTMCs

•  Aim: counterexamples should be succinct, comprehensible

•  Set of all counterexamples:
−  CXp(s,ψ) = set of all counterexamples for P≤p [ψ] in state s

•  Minimal counterexample
−  counterexample C with |C| ≤ |C’| for all C’ ∈ CXp(s,ψ)

•  “Smallest” counterexample
−  minimal counterexample C with P(C) ≥ P(C’)  

for all minimal C’ ∈ CXp(s,ψ)
•  Strongest (most probable) evidence

−  finite path ω in Pathfin(s, ψ) such that P(ω) ≥ P(ω’)  
for all ω’ ∈ Pathfin(s, ψ)

−  i.e. contributes most to violation of PCTL formula

29

Example

•  PCTL formula: P≤1/2 [F b]
−  s0 ⊭ P≤1/2 [F b]
−  since Prob(s0, F b) = 0.9

•  Counterexamples:
−  C1 = { s0s1s2, s0s1s4s2, s0s1s4s5, s0s4s2 }

•  Ps0(C1) = 0.2+0.2+0.12+0.15 = 0.67 (not minimal)
−  C2 = { s0s1s2, s0s1s4s2, s0s1s4s5 }

•  Ps0(C2) = 0.2+0.2+0.12 = 0.52 (not “smallest”)
−  C3 = { s0s1s2, s0s1s4s2, s0s4s2 }

•  Ps0(C3) = 0.2+0.2+0.15 = 0.55

{b}
1/3

1 1

s0 s1 s2

s3 s4 s5

0.6

0.3 0.1

0.2

0.3

0.3
0.7

0.5
2/3

{b}

30

Weighted digraphs

•  A weighted directed graph is a tuple G = (V, E, w) where:
−  V is a set of vertices
−  E ⊆ V × V is a set of edges
−  w : E → ℝ≥0 is a weight function

•  Finite path ω in G
−  is a sequence of vertices v0v1v2…vn such that (vi,vi+1)∈E ∀i≥0
−  the distance of ω = v0v1v2…vn is: Σi=0…n-1 w(vi,vi+1)

•  Shortest path problem
−  given a weighted digraph, find a path between two vertices v1

and v2 with the smallest distance
−  i.e. a path ω s.t. d(ω) ≤ d(ω’) for all other such paths ω’

31

Finding strongest evidences

•  Reduction to graph problem…
•  Step 1: Adapt the DTMC

−  make states satisfying ¬Φ1∧ ¬Φ2 absorbing
•  (i.e. replace all outgoing transitions with a single self-loop)

−  add an extra state t and replace all transitions from any Φ2
state with a single transition to t (with probability 1)

•  Step 2: Convert new DTMC into a weighted digraph
−  for the (adapted) DTMC D = (S,sinit,P,L):
−  corresponding graph is GD = (V, E, w) where:
−  V = S and E = { (s,s’)∈S×S | P(s,s’)>0 }
−  w(s,s’) = log(1/P(s,s’))

•  Key idea: for any two paths ω and ω’ in D (and in GD)
−  Ps(ω’) ≥ Ps{ω} if and only if d(ω’) ≤ d(ω)

32

Example…

•  PCTL formula: P≤1/2 [F b]

log(3)

log(1)

s0 s1 s2

s3 s4 s5

log(5/3)

log
(10/3)

log(10)

log(5)

log
(10/3)

log
(2) log

(3/2) t
1

1
1

{b}
1/3

1 1

s0 s1 s2

s3 s4 s5

0.6

0.3 0.1

0.2

0.3

0.3
0.7

0.5
2/3

{b}

DTMC

weighted digraph

33

Finding strongest evidences

•  To find strongest evidence in DTMC D
−  analyse corresponding digraph

•  For unbounded until formula P≤p [Φ1 U Φ2]
−  solve shortest path problem in digraph (target t)
−  polynomial time algorithms exist

•  e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V|·log|V|)
•  For bounded until formula P≤p [Φ1 U≤k Φ2]

−  solve special case of the constrained shortest path problem
−  also solvable in polynomial time

•  Generation of smallest counterexamples
−  based on computation of k shortest paths
−  k can be computed on the fly

34

Other cases

•  Lower bounds on probabilities
−  i.e. s ⊭ P≥p [Φ1 U≤k Φ2]
−  negate until formula to reverse probability bound
−  solvable with BSCC computation + probabilistic reachability
−  for details, see [HK07]

•  Continuous-time Markov chains
−  these techniques can be extended to CTMCs and CSL [HK07b]
−  naïve approach: apply DTMC techniques to uniformised DTMC
−  modifications required to get smaller counterexamples
−  another possibility: directed search based techniques [AHL05]

35

Overview (Part 4)

•  Tool support for probabilistic model checking
−  motivation, existing tools

•  The PRISM model checker
−  functionality, features
−  modelling language & property specification
−  PRISM demonstration

•  Probabilistic counterexamples
−  (smallest) counterexamples for PCTL + DTMCs

•  Probabilistic bisimulation
−  bisimulation equivalences for DTMCs, CTMCs + minimisation

36

Bisimulation

•  Identifies models with the same branching structure
−  i.e. the same stepwise behaviour
−  each model can simulate the actions of the other
−  guarantees that models satisfy many of the same properties

•  Uses of bisimulation:
−  show equivalence between a model and its specification
−  state space reduction: bisimulation minimisation

•  Formally, bisimulation is an equivalence relation over states
−  bisimilar states must have identical labelling 

and identical stepwise behaviour

37

Bisimulation on DTMCs

•  Consider a DTMC D = (S,sinit,P,L)

•  Some notation:
−  P(s,T) = Σs’∈T P(s,s’) for T ⊆ S

•  An equivalence relation R on S is a probabilistic
bisimulation on D if and only if for all s1 R s2:
−  L(s1) = L(s2)
−  P(s1, T) = P(s2, T) for all T ∈ S/R (i.e. for all equivalence classes of R)

•  States s1 and s2 are bisimulation-equivalent (or bisimilar)
−  if there exists a probabilistic bisimulation R on D with s1 R s2
−  denoted s1 ~ s2

38

Simple example

•  Bisimulation relation ~

•  Quotient of S under ~
−  denoted S/~
−  { {s1}, {u1, u2}, {v1, v2} }

•  Bisimilar states:
−  u1 ~ u2

−  v1 ~ v2 u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

39

Bisimulation on DTMCs

•  Bisimulation between DTMCs D1 and D2
−  D1 ~ D2 if they have bisimilar initial states

•  Formally:
−  state labellings for D1 and D2 over same set of atomic prop.s
−  bisimulation relation is over disjoint union of D1 and D2

u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

u 1 v

s

{b} {a}

1

2/3 1/3

1

D1 D2

40

Simple example

•  Bisimilar states: Bisimilar DTMCs: D1 ~ D2
−  u1 ~ u2 ~ u

−  v1 ~ v2 ~ v
−  s1 ~ s

u2 u1 1

{b} {a}

v1 v2

1

2/3

s1

1/3

{b}
{a}

1 1

1/2 1/6
1/6 1/6

u 1 v

s

{b} {a}

1

2/3 1/3

1

D1 D2

41

Quotient DTMC

•  For a DTMC D = (S,sinit,P,L) and probabilistic bisimulation ~

•  Quotient DTMC is
−  D/~ = (S’,s’init,P’,L’)

•  where:
−  S’ = S/~ = { [s]~ | s ∈ S }
−  s’init = [sinit]~
−  P’([s]~, [s’]~) = P(s, [s’]~)
−  L’([s]~) = L(s)

[u]~ 1

[s]~

{b} {a}

1

2/3 1/3

1

[v]~

well defined since
bisimulation ensures 

P(s, [s’]~) same for all s in [s]~

42

Bisimulation and PCTL

•  Probabilistic bisimulation preserves all PCTL formulae

•  For all states s and s’:

s ~ s’
⇔

for all PCTL formulae Φ, s ⊨ Φ if and only if s’ ⊨ Φ

•  Note also:
−  every pair of non-bisimilar states can be distinguished with

some PCTL formula
−  ~ is the coarsest relation with this property
−  in fact, bisimulation also preserves all PCTL* formulae

43

CTMC bisimulation

•  Check equivalence of rates, not probabilities…

•  An equivalence relation R on S is a probabilistic
bisimulation on CTMC C=(S,sinit,R,L)  
if and only if for all s1 R s2:
−  L(s1) = L(s2)
−  R(s1, T) = R (s2, T) for all classes T in S/R

•  Alternatively, check:
−  L(s1) = L(s2), Pemb(C)(s1, T) = Pemb(C)(s2, T), E(s1) = E(s2)

•  Bisimulation on CTMCs preserves CSL
−  (see [BHHK03] and also [DP03])

44

Bisimulation minimisation

•  More efficient to perform PCTL/CSL model checking on the
quotient DTMC/CTMC
−  assuming quotient model can be constructed efficiently
−  (see [KKZJ07] for experimental results on this)

•  Bisimulation minimisation
−  algorithm to construct quotient model
−  based on partition refinement
−  repeated splitting of an initially coarse partition
−  final partition is coarsest bisimulation wrt. initial partition
−  (optimisations/variants possible by changing initial partition)
−  complexity: O(|P|·log|S| + |AP|·|S|) [DHS’03]

•  assuming suitable data structure used (splay trees)

45

Bisimulation minimisation

•  1. Start with initial partition
−  say Π = { { s∈S | a∈L(s) } | a∈AP }

•  2. Find a splitter T ∈ Π for some block B ∈ Π
−  a splitter T is a block such that probability of going to T

differs for some states in block B
−  i.e. ∃s,s’∈B . P(s,T) ≠ P(s’,T)

•  3. Split B into sub-blocks
−  such that P(s,T) is the same for all states in each sub-block

•  4. Repeat steps 2/3 until no more splitters exist
−  i.e. no change to partition Π

replace P with R
for CTMCs

46

CTMC example

•  Consider model checking P~p [F[0,t] a] on this CTMC:

Minimisation:

Π0: B1={s0,s1,s2,s3,s4,s5}, B2={s6}
B2 is a splitter for B1

(since e.g. R(s1,B2)=0≠2=R(s2,B2))
Π1: B1={s0,s1,s4,s5}, B2={s6}, B3={s2,s3}
B3 is a splitter for B1

(since e.g. R(s1,B3)=0≠4=R(s0,B3))
Π2: B1={s1,s5}, B2={s6}, B3={s2,s3}, B4={s0,s4}
No more splitters…

S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} }

s1 s0 1 s2 s3

2

{a} s5 s4 s6

2

2.5
1.5

4

3.5
1

1 2

5.5

5

6

47

CTMC example…

C S/~ = { {s1,s5}, {s6}, {s2,s3}, {s0,s4} }

C/~

s0,s4 1 s6

{a}
2

4

1
5.5

s1,s5 s2,s3
11

ProbC(s, F[0,t] a) = ProbC/~({s0,s4}, F[0,t] a)

s1 s0 1 s2 s3

2

{a} s5 s4 s6

2

2.5
1.5

4

3.5
1

1 2

5.5

5

6

48

Summary

•  PRISM: Probabilistic model checker
−  for DTMCs, MDPs, CTMCs, …
−  high-level modelling language, property specifications
−  graphical user interface

•  Counterexamples
−  essential ingredient of non-probabilistic model checking
−  for PCTL + DTMCs, need set of finite paths/evidences
−  computation: reduction to well-known graph problems

•  Bisimulation
−  relates states/Markov chains with identical labelling 

and identical stepwise behaviour, preserves PCTL, CSL, …
−  minimisation: automated construction of quotient model

•  Tomorrow: probabilistic timed automata (PTAs)

