UNIVERSITY OF

OXFORD

Probabilistic Model Checking

Marta Kwiatkowska
Dave Parker

Oxford University Computing Laboratory

ESSLLI’TO Summer School, Copenhagen, August 2010

Course overview

5 lectures: Mon-Fri, TTam-12.30pm

— Introduction

— 1 - Discrete time Markov chains

— 2 - Markov decision processes

— 3 - Continuous-time Markov chains

— 4 - Probabilistic model checking in practice
— 5 - Probabilistic timed automata

Course materials available here:
— http://www.prismmodelchecker.org/lectures/esslli1 0/

— lecture slides, reference list

Part 4

Probabilistic model checking
In practice

Overview (Part 4)

» Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features
— modelling language & property specification
— PRISM demonstration

Probabilistic counterexamples
— (smallest) counterexamples for PCTL + DTMCs

Probabilistic bisimulation
— bisimulation equivalences for DTMCs, CTMCs + minimisation

Motivation

- Complexity of PCTL model checking

— generally polynomial in model size (number of states)

- State space explosion problem

— models for realistic case studies are typically huge

- Clearly tool support is required

Benefits:
— fully automated process
— high-level languages/formalisms for building models
— visualisation of quantitative results

Tools - Probabilistic model checkers

PRISM (Probabilistic Symbolic Model Checker)
— DTMCs, MDPs, CTMCs + rewards, [Birmingham/Oxford]
- MRMC (Markov Reward Model Checker)
— DTMCs, CTMCs + reward extensions, [Twente/Aachen]

- LiQuor: LTL model checking for MDPs, Probmela language
(probabilistic version of SPIN’s Promela), [Dresden]

- Simulation-based probabilistic model checking:
— APMC, Ymer (both based on PRISM language), VESTA

- Many other related tools/prototypes

— RAPTURE, CADP, Mobius, APNN-Toolbox, SMART, GreatSPN,
GRIP, CASPA, Premo, PASS, ...

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999

— free, open source (GPL)
— versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

Modelling of:
— DTMCs, CTMCs, MDPs + costs/rewards ‘

Model checking of:
— PCTL, CSL, LTL, PCTL* + extensions + costs/rewards

PRISM functionality

High-level modelling language
- Wide range of model analysis methods
— efficient symbolic implementation techniques
— also: approximate verification using simulation + sampling
Graphical user interface
— model/property editor
— discrete-event simulator - model traces for debugging, etc.
— easy automation of verification experiments
— graphical visualisation of results
Command-line version
— same underlying verification engines
— useful for scripting, batch jobs

Modelling languages/formalisms

Many high-level modelling languages, formalisms available

For example:
— probabilistic/stochastic process algebras
— stochastic Petri nets
— stochastic activity networks

- Custom languages for tools, e.q.:
— PRISM modelling language

— Probmela (probabilistic variant of Promela, the input language
for the model checker SPIN) - used in LiQuor

PRISM modelling language

- Simple, textual, state-based language
— modelling of DTMCs, CTMCs and MDPs
— based on Reactive Modules [AH99]

Basic components...
Modules:

— components of system being modelled
— composed in parallel

- Variables
— finite (integer ranges or Booleans)
— local or global
— all variables public: anyone can read, only owner can modify

10

PRISM modelling language

- Guarded commands
— describe behaviour of each module
— i.e. the changes in state that can occur
— labelled with probabilities (or, for CTMCs, rates)
— (optional) action labels

[send] (s=2) -> p, ... : (s'=3)&(lost'=lost+1) + (1-p,...) : (s'=4);

— >) — e
action guard probability update probability —update

11

PRISM modelling language

- Parallel composition
— model multiple components that can execute independently

— for DTMC models, mostly assume components operate
synchronously, i.e. move in lock-step

+ Synchronisation
— simultaneous transitions in more than one module
— guarded commands with matching action-labels

— probability of combined transition is product of individual
probabilities for each component

- More complex parallel compositions can be defined
— using process-algebraic operators
— other types of parallel composition, action hiding/renaming

12

Simple example

module M1
x : [0..3] init O;
[a] x=0 -> (X’=1);
[b] x=1 -> 0.5:(x’=2) + 0.5:(x’=3);

endmodule

module M2
y : [0..3] init O;
[a] y=0 -> (y'=1);
[bl] y=1 -> 0.4:(y’=2) + 0.6:(y'=3);

endmodule

13

Example: Leader election

Randomised leader election protocol
— due to Itai & Rodeh (1990)
- Set-up: N nodes, connected in a ring
— communication is synchronous (lock-step)
- Aim: elect a leader
— i.e. one uniquely designated node
— by passing messages around the ring
Protocol operates in rounds. In each round:
— each node choose a (uniformly) random id € {0,...,k-1}
— (k is a parameter of the protocol)

— all nodes pass their id around the ring
— if there is maximum unique id, node with this id is the leader

— if not, try again with a new round

14

v
S
@)
O
=
=
o
o

PRISM property specifications

Based on (probabilistic extensions of) temporal logic
— incorporates PCTL, CSL, LTL, PCTL*
— also includes: quantitative extensions, costs/rewards

Leader election properties

— P_, [F elected]
. with probability 1, a leader is eventually elected

— P_gg [FEk elected]
. with probability greater than 0.8, a leader is elected within k steps

Usually focus on quantitative properties:
— P_, [F=k elected]
. what is the probability that a leader is elected within k steps?

16

PRISM property specifications

Best/worst-case scenarios
— combining “quantitative” and “exhaustive” aspects

e.g. computing values for a range of states...

P_, [F=t elected {tokens<k}{min}] -

— “minimum probability of the leader election algorithm
completing within t steps from any state where there are at
most k tokens”

R_,[F end {"init"{max}] -

— “maximum expected run-time over all possible initial
configurations”

17

PRISM property specifications

Experiments:
— ranges of model/property parameters
— e.g. P_,[F=Terror] for N=1..5, T=1..100
where N is some model parameter and T a time bound
— identify patterns, trends, anomalies in quantitative results

60
'—
= 1
50 °
—e—N=19 S 08
—a—N=17 3
© 40 >
E ~4—N=15 206 /// "’"’/ “
E 5 ' - ‘
£ 30 ——N=11 o 04 / ///
2 N=9 P «l!!l / %=\ / ‘¢-
& ——N=7 %% "‘—:':'- / "‘
——N=3 E 1
10 10
D/Oa o
0 .) : O, 3 (S)
1 3 5 7 9 11 13 15 17 19 %%/ 0 0 @0
K

18

More info on PRISM

PRISM website: http://www.prismmodelchecker.org/

— tool download: binaries, source code (GPL)

— example repository (50+ case studies)
— on-line PRISM manual

— support: help forum, bug tracking, feature requests
— related publications, talks, tutorials, links

- Tutorial: http://www.prismmodelchecker.org/tutorial/

20

Overview (Part 4)

- Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features
— modelling language & property specification
— PRISM demonstration

Probabilistic counterexamples
— (smallest) counterexamples for PCTL + DTMCs

Probabilistic bisimulation
— bisimulation equivalences for DTMCs, CTMCs + minimisation

21

Non probabilistic counterexamples

- Counterexamples (for non-probabilistic model checking)
— generated when model checking a (universal) property fails

— trace through model illustrating why property does not hold
— major advantage of the model checking approach

— bug finding vs. verification

Example:
— CTL property AG —err
— (or equivalently, —EF err) /
— ("an error state is never reached”)

— counterexample is a finite trace C{"
to a state satisfying err 3)

— alternatively, this is a witness
to the satisfaction of formula EF err

22

Counterexamples for DTMCs?

PCTL example: P_, 4, [F err]
— “the probability of reaching an error state is less than 0.01”
— what is a counterexample fors = P_, 4, [Ferr]?
— not necessarily illustrated by a single trace to an err state

— in fact, “counterexample” is a set of paths satisfying F err
whose combined measure is greater than or equal to 0.01

- Alternative approach seen so far:

— probabilistic model checker provides actual probabilities
— e.g. queries of the form P_, [F err]

— anomalous behaviour identified by examining trends
— e.g. P_,[F=<Terr] for T=0,...,100

- This lecture: DTMC counterexamples in style of [HKO07]
— also some work done on CTMC/MDP counterexamples 23

DTMC notation

* DTMC D — (S’Sinit!P’L)
- Path(s) = set of all infinite paths starting in state s

+ Pry: o) — [0,1] = probability measure over infinite paths
— where X, is the o-algebra on Path(s)

— defined in terms of probabilities for finite paths

- P,(w) = probability for finite path w = ss;...s,

— P.(s) =1

— P.(ss,...s,) = P(s,s;) - P(s;,S5) - ... - P(s,_1,S,)

— extend notation to sets: P,(C) for set of finite paths C

— P, extends uniquely to Pr,

- Path(s, @) ={ w € Path(s) | w = Y }

— Prob(s, @) = Pr(Path(s,))
- Pathg (s, @) = set of finite paths from s satisfying @

24

Counterexamples for DTMCs

- Consider PCTL properties of the form:
— P_,[®, Uk d,], where k € N U {0}

— i.e. bounded or unbounded until formulae with closed upper
probability bounds

- Refutation:
—sEP_ [® Uskd,]
— < Prob(s, [®, Uskd,]) > p
— < Pr.(Path(s, @, U=k ®,)) > p
— i.e. total probability mass of ®, U=k &, paths exceeds p

- Since the property is an until formula
— this is evidenced by a set of finite paths

25

- Example

Counterexamples for DTMCs

+ A counterexample for P_, [®; U=k @,] in state s is:
— a set C of finite paths such that C < Pathg, (s, @) and P,(C) > p

— Consider the PCTL formula:
o PsO.3 [F a]

— This is not satisfied in s,

— Prob(sy, Fa) =1/44+1/8+1/16+... =1/2
— A counterexample: C = { s,4S,, S4505> }

— PO =1/4+01/2)(1/4)=3/8 =0.375

26

Finiteness of counterexamples

- There is always a finite counterexample for:
- S I?l: Psp[q)] USkq)z]

- On the other hand, consider this DTMC:
— and the PCTL formula:

— Prob(s,, Fa) =1/4+1/8+1/16+...
=1/2

—so# Py [Fal 12 {al

— counterexample would require infinite set of paths
— {(So)'s; }ien

27

Counterexamples for DTMCs

- Aim: counterexamples should be succinct, comprehensible

- Set of all counterexamples:
— CX,(s,p) = set of all counterexamples for P_, [y] in state s
Minimal counterexample

— counterexample C with [C| < [C’| for all C’ € CX(s,p)
- “Smallest” counterexample

— minimal counterexample C with P(C) > P(C’)
for all minimal C’ & CX,(s,W)

- Strongest (most probable) evidence

— finite path w in Pathg, (s,) such that P(w) > P(w’)
for all w’ € Pathg, (s, W)

— i.e. contributes most to violation of PCTL formula

28

Example

PCTL formula: P_, , [F b]
- Sobl:PS]/z[Fb]
— since Prob(sy, F b) = 0.9

Counterexamples:
— G = {50515, 50515452, 505154555 50545, }
- P,o(Cy) = 0.2+0.2+0.12+0.15 = 0.67 (not minimal)
— €y = {50515, 50515452, S0S154Ss }
- P,o(C,) =0.2+0.2+0.12 = 0.52 (not “smallest”)
— C3 = 1505152, S0515452, S0545> }
. P,(C3) = 0.240.2+0.15 = 0.55

29

Weighted digraphs

- A weighted directed graph is a tuple G = (V, E, w) where:
— V is a set of vertices

— E <V X Vis aset of edges

—w:E— R,,is aweight function

Finite path w in G
— is a sequence of vertices vyv,v,...v, such that (v,v,,,)€E Vi=0
— the distance of w = vyvv,...v, is: Z_o 1 W(V,Vi,q)

- Shortest path problem

— given a weighted digraph, find a path between two vertices v,
and v, with the smallest distance

— i.e. a path w s.t. d(w) < d(w’) for all other such paths w’

30

Finding strongest evidences

- Reduction to graph problem...

- Step 1: Adapt the DTMC

— make states satisfying —-®,; A =®, absorbing
. (i.e. replace all outgoing transitions with a single self-loop)

— add an extra state t and replace all transitions from any o,
state with a single transition to t (with probability 1)

- Step 2: Convert new DTMC into a weighted digraph

— for the (adapted) DTMC D = (S,s;;;,P,L):

— corresponding graph is Gy = (V, E, w) where:
—V=Sand E ={(s,s’)eSxS | P(s,s’)>0 }

— w(s,s’) = log(1/P(s,s’))

- Key idea: for any two paths w and w’ in D (and in Gp)
— P (w’) = P{w} if and only if d(w’) < d(w)

31

Finding strongest evidences

- To find strongest evidence in DTMC D
— analyse corresponding digraph
For unbounded until formula P_, [®, U &,]
— solve shortest path problem in digraph (target t)
— polynomial time algorithms exist
. e.g. Dijsktra’s algorithm can be implemented in O(|E|+|V/|-log|V|)
For bounded until formula P_, [&, U=k @,]
— solve special case of the constrained shortest path problem
— also solvable in polynomial time
- Generation of smallest counterexamples
— based on computation of k shortest paths
— k can be computed on the fly

33

Other cases

Lower bounds on probabilities
—ie.sE P [D Uskd,]
— negate until formula to reverse probability bound
— solvable with BSCC computation + probabilistic reachability
— for details, see [HKO7]

- Continuous-time Markov chains
— these techniques can be extended to CTMCs and CSL [HKO7b]

— naive approach: apply DTMC techniques to uniformised DTMC
— modifications required to get smaller counterexamples

— another possibility: directed search based techniques [AHLO5]

34

Overview (Part 4)

- Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features
— modelling language & property specification
— PRISM demonstration

Probabilistic counterexamples
— (smallest) counterexamples for PCTL + DTMCs

Probabilistic bisimulation
— bisimulation equivalences for DTMCs, CTMCs + minimisation

35

Bisimulation

Identifies models with the same branching structure
— i.e. the same stepwise behaviour
— each model can simulate the actions of the other
— guarantees that models satisfy many of the same properties

Uses of bisimulation:
— show equivalence between a model and its specification
— state space reduction: bisimulation minimisation

Formally, bisimulation is an equivalence relation over states

— bisimilar states must have identical labelling
and identical stepwise behaviour

36

Bisimulation on DTMCs

- Consider a DTMC D = (S,s,,;;,P,L)

- Some notation:

— P(s,T) =3, P(s,s")forTcS

- An equivalence relation R on S is a probabilistic

bisimulation on D if and only if for all s; R s,:
— L(s;) = L(s,)
— P(s;, T) = P(s,, T) for all T € S/R (i.e. for all equivalence classes of R)

- States s, and s, are bisimulation-equivalent (or bisimilar)
— if there exists a probabilistic bisimulation R on D with s, R s,
— denoted s, ~ s,

37

Simple example

- Bisimulation relation ~

- Quotient of S under ~
— denoted S/~

— {{s;}, {uy, uy}, {vy, vt}

. Bisimilar states:
— Uy~ U
— Vi~V

38

Bisimulation on DTMCs

- Bisimulation between DTMCs D, and D,
— D, ~ D, if they have bisimilar initial states
- Formally:

— state labellings for D, and D, over same set of atomic prop.s
— bisimulation relation is over disjoint union of D, and D,

2/3 1/3
{a} {b}

39

Simple example

- Bisimilar states: Bisimilar DTMCs: D, ~ D,
- LI] ~ Uz ~ U
— Vi~ V, ~V

2/3 1/3
{a} {b}

40

Quotient DTMC

- Fora DTMC D = (§,s;,,P,L) and probabilistic bisimulation ~

- Quotient DTMC is
T D/N — (S’ls’initip,’L’)

- where:
- S =5/~={[s]l.|s€S}
— Sinit = [Sinitl-
— P'([s]., [s’].) = P(s, [s].) 1 1

- L(sl) = Ls) \ ... ~.

well defined since
bisimulation ensures
P(s, [s’].) same for all s in [s].

41

Bisimulation and PCTL

Probabilistic bisimulation preserves all PCTL formulae

For all states s and s’;

for all PCTL formulae ¢, s = ® if and only if s’ = ®

Note also:

— every pair of non-bisimilar states can be distinguished with
some PCTL formula

— ~ is the coarsest relation with this property
— in fact, bisimulation also preserves all PCTL* formulae

42

CTMC bisimulation

- Check equivalence of rates, not probabilities...

- An equivalence relation R on S is a probabilistic
bisimulation on CTMC C=(S,s,;,R,L)
if and only if for all s; R s,:

— L(s;) = L(s,)
— R(s;, T) = R(s,, T) for all classes T in S/R

- Alternatively, check:
_ I—(S]) = L(SZ)1 Pemb(c)(S]1 T) = Pemb(c)(521 T)1 E(S]) — E(SZ)

- Bisimulation on CTMCs preserves CSL
— (see [BHHKO3] and also [DP03])

43

Bisimulation minimisation

More efficient to perform PCTL/CSL model checking on the
quotient DTMC/CTMC

— assuming quotient model can be constructed efficiently
— (see [KKZJO7] for experimental results on this)

Bisimulation minimisation
— algorithm to construct quotient model
— based on partition refinement
— repeated splitting of an initially coarse partition
— final partition is coarsest bisimulation wrt. initial partition
— (optimisations/variants possible by changing initial partition)
— complexity: O(|P|-log|S| + |AP|-|S|) [DHS 03]
. assuming suitable data structure used (splay trees)

44

Bisimulation minimisation

1. Start with initial partition
—say T ={{seS | acl(s)} | acAP}

.+ 2. Find a splitter T € TT for some block B € TT

— a splitter T is a block such that probability of goingto T
differs for some states in block B

— i.e. 3s,5’€B . P(s,T) # P(s’,T) <« replace P with R

. forCTMCs |
3_ Sp||t B |nto Sub_blocks / ...

— such that P(s,T) is the same for all states in each sub-block

- 4. Repeat steps 2/3 until no more splitters exist
— i.e. no change to partition TI

45

CTMC example

- Consider model checking P_, [FI%Ua] on this CTMC:

Minimisation:

@3@ @ @ My. B;={S0,51,52,53,54,S5}, Bo={S¢}
B, is a splitter for B,
(since e.g. R(s;,B,)=0+2=R(s,,B,))
T,: B;={s0,51,54,Ss}, Bo=1{s¢}, B3={s,,53}

Q e @ Bs is a splitter for B,

(since e.g. R(s;,B3)=0+4=R(s,,B5))
TT,: B1={51;55}, Bz={56}; Bg={52;53}; B4={So,54}
No more splitters...

S/~ ={ {51,55}, {56}’ {52,53}, {50;54} }

46

CTMC example...

S/~ = {{sy,Ssh {S6} {52,553}, {S(,S4} }

E o s

Prob<(s, FI%Ua) = Prob®~({sg,s,}, F%Ua)

47

Summary

PRISM: Probabilistic model checker
— for DTMCs, MDPs, CTMCs, ...
— high-level modelling language, property specifications
— graphical user interface

Counterexamples
— essential ingredient of non-probabilistic model checking
— for PCTL + DTMCs, need set of finite paths/evidences
— computation: reduction to well-known graph problems

Bisimulation

— relates states/Markov chains with identical labelling
and identical stepwise behaviour, preserves PCTL, CSL, ...

— minimisation: automated construction of quotient model

- Tomorrow: probabilistic timed automata (PTAS)
48

