: Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 9 - PRISM

Overview

- Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features
— resources
— modelling language
— property specification

PRISM tool demo

Motivation

Complexity of PCTL model checking
— generally polynomial in model size (number of states)

State space explosion problem
— models for realistic case studies are typically huge

Clearly tool support is required

Benefits:
— fully automated process
— high-level languages/formalisms for building models
— visualisation of quantitative results

Probabilistic model checkers

- PRISM (this talk)

— DTMCs, MDPs, CTMCs + rewards

- ETMCC/MRMC

— DTMCs, CTMCs + reward extensions
MDP tools
— LiQuor: LTL verification for MDPs (Probmela language)
— RAPTURE: prototype for abstraction/refinement of MDPs
- Simulation-based probabilistic model checking:
— APMC, Ymer (both based on PRISM language), VESTA

+ CSL model checking for CTMCs:

— APNN-Toolbox, SMART
- Multiple formalism/tool solutions:
— CADP, Mébius

Overview

- Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker
— functionality, features
— resources
— modelling language
— property specification

PRISM tool demo

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at the Birmingham/Oxford University, since 1999
— free, open source (GPL)
— versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

Modelling of:
— DTMCs, MDPs, CTMCs + costs/rewards
- Verification of:
— PCTL, CSL + extensions + costs/rewards
Features:

— high-level modelling language, wide range of model analysis
methods, graphical user interface, efficient implementation

Getting PRISM + Other Resources

PRISM website: www.prismmodelchecker.org
— tool download: binaries, source code (GPL)
— on-line example repository (40+ case studies)
— on-line documentation:

. PRISM manual
. PRISM tutorial

— support: help forum, bug tracking, feature requests
. hosted on Sourceforge

— related publications, talks, tutorials, links

PRISM - Model building

- First step of verification = construct full probabilistic model
(not always necessary in non-probabilistic model checking)

High-level DTMC, CTMC,
model MDP

(PRISM
language)

PRISM - Imports and exports

- Support for connections to other formats/tools:

Exports:
High-level DTMC, CTMC,
Imports: model MDP == Taxt
Py
PEPA | B _} Matlab
: ~ MRMC
Text L=
. (PRISM (matrix, = Dot
language) MTBDD, ...)
In progress: —

probabilistic CSP,
pi calculus, SBML,
Probmela, ...

PRISM modelling language

- Simple, state-based language for DTMCs/MDPs/CTMCs
— based on Reactive Modules [AH99]

- Modules (system components, composed in parallel)

- Variables (finite-valued, local or global)

- Guarded commands (labelled with probabilities/rates)

- Synchronisation (CSP-style) + process-algebraic operators
(parallel composition, action hiding/renaming)

[send] (s=2) -> p,,., : (s'=3)&(lost’=lost+1) + (1-p,) : (s'=4);

G— — G—) ¢ > G— —
action guard probability update probability update

10

PRISM language example

// Herman's self-stabilisation algorithm [Her90]
dtmc // Algorithm is fully synchronous
module process1 // First of N=5 symmetric processes

x1 :[0..1]; // One bit per process; xi=x(i-1) means proc i has a token
[step] (xT=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] 'x1=x5 -> (x1'=x5);

endmodule

// Add further processes through renaming

module process2 = process] [x1=x2, x5=x1] endmodule
module process3 = process1 [x1=x3, x5=x2] endmodule
module process4 = process1 [x1=x4, x5=x3] endmodule
module process5 = process1 [x1=x5, x5=x4] endmodule

// Can start in any possible configuration
init true endinit

11

PRISM language example 2 (fragment)

// Embedded control system
ctmc

const int MIN_SENSORS = 2;
const double lambda_p = 1/(365*24*60%60); // MTTF = 1 year

module sensors

s : [0..3] init 3; // Number of sensors working

[1 s>1 -> s*lambda_s : (s'=s-1); // Failure of a single sensor
endmodule

module proci // (takes data from sensors and passes onto main processor)
i : [0..2] init 2; // 2=0k, 1=transient fault, O=failed
[1i>0 & s>=MIN_SENSORS -> lambda_p : (i'=0); // Failure of processor
[]i=2 & s>=MIN_SENSORS -> delta_f : (i'=1); // Transient fault
[reboot] i=1 & s>=MIN_SENSORS -> delta_r : (i'=2); // Transient reboot
endmodule

12

Costs and rewards

Real-valued quantities assigned to model states/transitions

— many possible uses, e.g. time, power consumption, current
queue size, number of messages lost, ...

No distinction between costs (“bad”) and rewards (“good”)
— PRISM terminology is rewards

- The meaning of these rewards varies depending on:

— the type of property used to analyse the model:
instantaneous or cumulative

13

Rewards in the PRISM language

rewards “total_queue_size”
true : queuel +queue?;
endrewards

(instantaneous, state rewards)

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;
endrewards

(cumulative, state rewards)
(up = number of operational
components)

rewards “time”
true : 1;
endrewards

(cumulative, state rewards)

rewards "dropped"”
[receive] g=g_max : 1;
endrewards

(cumulative, transition rewards)
(g = queue size, g_max = max

queue size)

14

PRISM property specifications

Based on (probabilistic extensions of) temporal logic
— incorporates PCTL for DTMCs/MDPs, CSL for CTMCs
— also includes: quantitative extensions, costs/rewards

- Simple PCTL/CSL example:

— P<0.001 [true U shutdown] - “the system eventually shuts
down with probability at most 0.001”

Usually focus on quantitative properties:

— P=?[true U shutdown] - “what is the probability that the
system eventually shuts down?’

— nested probabilistic operators must be probability-bounded

15

Basic types of property specifications

+ (Unbounded) reachability:

— P=?[true U shutdown] - “probability of eventual shutdown”

- Transient/time-bounded properties:

— P=?[true U[t,t] (deliv_rate < min)] - “probability that the
packet delivery rate has dropped below minimum at time t”

— P=?[!repair U<200 done] - “probability of the process
completing within 200 hours and without requiring repairs”

- Steady-state properties:

— S=?[num_sensors > min] - “long-run probability that an
adequate number of sensors are operational”

16

Cost- and reward-based properties

- Two different interpretations of model rewards
— instantaneous and cumulative properties
— reason about expected values of rewards

Instantaneous reward properties
— state rewards only

N 13

— state-based measures: “queue size”, “number of operational

channels”, “concentration of reactant X, ...

R=?[1=t]
— e.g. “expected size of the message queue at time t?”
R=?[S]

— e.g. “long-run expected size of the queue?”

17

Cost- and reward-based properties

- Cumulative reward properties

— both state and transition rewards
— CTMC state rewards interpreted as reward rates
— e.g. “time”, “power consumption”, “number of messages lost”
R=?[Fend]

— e.g. “expected time taken for the protocol to terminate?”
R=?[C<2]

— e.g. “expected power consumption during the first 2 hours
that the system is in operation?”

— e.g. “expected number of messages lost during...”

18

Best/worst-case scenarios

Combining “quantitative” and “exhaustive” aspects

Computing values for a range of states

— R=?[F end {“init"{max}] - “maximum expected run-time over
all possible initial configurations”

— P=?[true U<t elected {tokens<k}{min}] - “minimum
probability of the leader election algorithm completing within
t steps from any state where there are at most k tokens”

- All possible resolutions of nondeterminism (MDPs)

— Pmin=?[lend2 U end1] - “minimum probability of process 1
finishing before process 2, for any scheduling of processes?”

— Rmax=?[F message_delivered] - “maximum expected
number of bits revealed under any eavesdropping strategy?”

19

ldentifying trends and anomalies

Counterexamples (error traces)
— widely used in non-probabilistic model checking
— situation much less clear in probabilistic model checking
— counterexample for P<p [true U error] ? and for P=?[...]7?
— work in progress...

Experiments: ranges of model/property parameters
— e.g. P=? [true U<T error] for N=1..5, T=1..100
where N is some model parameter and T a time bound
— identify patterns, trends, anomalies in quantitative results

20

£o---9---8---0

PRISM [21] 1 :;g
—e— A =0.01
"""" ——— =002 058 Farty A
b), =0.03 —e—EGL
=0. el ittty | —2— EGL2
;:a_lyz;ca?[g? 208 —b—EGL3
...... -e- =001 E B\eg,a) | | ——LCEGL4
=B 28 4 o? Party B
o SR @ 04} -4 -EGL4
—————— -4- A=0.04 | AbrhA-ddhd-bddbdhd-badbdl-a-EQ3
-8-EGL2
0.2§ -e-EGL
Number of restorative stages "\
U-—e—e-&&-.—-u-.—.—u—.—wa—c—n—n—o—u
Probablllty that 2 4 8 B 1DN12 14 16 18 20
10% of gate = '
outputs are E;zo_a- PrOb.abllltY thatf .
20.6- == "‘i‘
erroneous for £ "-,‘_/:,?_I'.‘:,‘:_:’}"‘.“,“{‘ parties galr]! unrair
varying S advqntage or
gate failure rates ., e varying numbers
g0

. of secret packets
3 09 Sent

Or,

and numbers of o
stages oy,

Optimum

probability of

leader election by

time T for various

coin biases 3

—e—N-19 8
—a—N=17
—a&—N=15

—4—N=13
—=—=N=11
N=9

—CDC14
——N=7

_____/’-'"'_—__— -
d ——CYCLIN
—ib— N =5

- ——N=3
' 2
1. 8 5 7 9 11 13 15 17 19 0
K

0 2 4 8 B8 10 12

Expected quantity

3 Time (hours)
Worst-case g% ; Expected reactant
expected number e concentrations

of steps to 2 a7s0| | over the first 12
stabilise for initial £ __ | hours
configurations 8

with K tokens Chasl| |

amongst N Eseoo T

processes = % chabity of choosmg fast - O

Maximum

expected time for

leader election for

various coin

biases 22

PRISM functionality

Graphical user interface
— model/property editor
— discrete-event simulator - model traces for debugging, etc.
— verification of PCTL, CSL + costs/rewards, etc.
— approximate verification using simulation + sampling
— easy automation of verification experiments
— graphical visualisation of results

Command-line version

— same underlying verification engines
— useful for scripting, batch jobs

23

Overview

- Tool support for probabilistic model checking
— motivation, existing tools

- The PRISM model checker

— functionality, features
— resources

— modelling language
— property specification

PRISM tool demo

24

	Probabilistic Model Checking
	Overview
	Motivation
	Probabilistic model checkers
	Overview
	The PRISM tool
	Getting PRISM + Other Resources
	PRISM – Model building
	PRISM – Imports and exports
	PRISM modelling language
	PRISM language example
	PRISM language example 2 (fragment)
	Costs and rewards
	Rewards in the PRISM language
	PRISM property specifications
	Basic types of property specifications
	Cost- and reward-based properties
	Cost- and reward-based properties
	Best/worst-case scenarios
	Identifying trends and anomalies
	PRISM functionality
	Overview

